mirror of
https://github.com/Karllzy/cotton_color.git
synced 2025-11-08 18:53:53 +00:00
onnx添加日期
This commit is contained in:
parent
eb6816eb49
commit
76cee347d9
@ -1,222 +0,0 @@
|
||||
# Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
|
||||
.git
|
||||
.cache
|
||||
.idea
|
||||
runs
|
||||
output
|
||||
coco
|
||||
storage.googleapis.com
|
||||
|
||||
data/samples/*
|
||||
**/results*.csv
|
||||
*.jpg
|
||||
|
||||
# Neural Network weights -----------------------------------------------------------------------------------------------
|
||||
**/*.pt
|
||||
**/*.pth
|
||||
**/*.onnx
|
||||
**/*.engine
|
||||
**/*.mlmodel
|
||||
**/*.torchscript
|
||||
**/*.torchscript.pt
|
||||
**/*.tflite
|
||||
**/*.h5
|
||||
**/*.pb
|
||||
*_saved_model/
|
||||
*_web_model/
|
||||
*_openvino_model/
|
||||
|
||||
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
||||
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
env/
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
*.egg-info/
|
||||
wandb/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
.hypothesis/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# pyenv
|
||||
.python-version
|
||||
|
||||
# celery beat schedule file
|
||||
celerybeat-schedule
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# dotenv
|
||||
.env
|
||||
|
||||
# virtualenv
|
||||
.venv*
|
||||
venv*/
|
||||
ENV*/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
|
||||
|
||||
# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
|
||||
|
||||
# General
|
||||
.DS_Store
|
||||
.AppleDouble
|
||||
.LSOverride
|
||||
|
||||
# Icon must end with two \r
|
||||
Icon
|
||||
Icon?
|
||||
|
||||
# Thumbnails
|
||||
._*
|
||||
|
||||
# Files that might appear in the root of a volume
|
||||
.DocumentRevisions-V100
|
||||
.fseventsd
|
||||
.Spotlight-V100
|
||||
.TemporaryItems
|
||||
.Trashes
|
||||
.VolumeIcon.icns
|
||||
.com.apple.timemachine.donotpresent
|
||||
|
||||
# Directories potentially created on remote AFP share
|
||||
.AppleDB
|
||||
.AppleDesktop
|
||||
Network Trash Folder
|
||||
Temporary Items
|
||||
.apdisk
|
||||
|
||||
|
||||
# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
|
||||
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
|
||||
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
|
||||
|
||||
# User-specific stuff:
|
||||
.idea/*
|
||||
.idea/**/workspace.xml
|
||||
.idea/**/tasks.xml
|
||||
.idea/dictionaries
|
||||
.html # Bokeh Plots
|
||||
.pg # TensorFlow Frozen Graphs
|
||||
.avi # videos
|
||||
|
||||
# Sensitive or high-churn files:
|
||||
.idea/**/dataSources/
|
||||
.idea/**/dataSources.ids
|
||||
.idea/**/dataSources.local.xml
|
||||
.idea/**/sqlDataSources.xml
|
||||
.idea/**/dynamic.xml
|
||||
.idea/**/uiDesigner.xml
|
||||
|
||||
# Gradle:
|
||||
.idea/**/gradle.xml
|
||||
.idea/**/libraries
|
||||
|
||||
# CMake
|
||||
cmake-build-debug/
|
||||
cmake-build-release/
|
||||
|
||||
# Mongo Explorer plugin:
|
||||
.idea/**/mongoSettings.xml
|
||||
|
||||
## File-based project format:
|
||||
*.iws
|
||||
|
||||
## Plugin-specific files:
|
||||
|
||||
# IntelliJ
|
||||
out/
|
||||
|
||||
# mpeltonen/sbt-idea plugin
|
||||
.idea_modules/
|
||||
|
||||
# JIRA plugin
|
||||
atlassian-ide-plugin.xml
|
||||
|
||||
# Cursive Clojure plugin
|
||||
.idea/replstate.xml
|
||||
|
||||
# Crashlytics plugin (for Android Studio and IntelliJ)
|
||||
com_crashlytics_export_strings.xml
|
||||
crashlytics.properties
|
||||
crashlytics-build.properties
|
||||
fabric.properties
|
||||
2
YOLO/yolov5-master/.gitattributes
vendored
2
YOLO/yolov5-master/.gitattributes
vendored
@ -1,2 +0,0 @@
|
||||
# this drop notebooks from GitHub language stats
|
||||
*.ipynb linguist-vendored
|
||||
@ -1,87 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
name: 🐛 Bug Report
|
||||
# title: " "
|
||||
description: Problems with YOLOv5
|
||||
labels: [bug, triage]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thank you for submitting a YOLOv5 🐛 Bug Report!
|
||||
|
||||
- type: checkboxes
|
||||
attributes:
|
||||
label: Search before asking
|
||||
description: >
|
||||
Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar bug report already exists.
|
||||
options:
|
||||
- label: >
|
||||
I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar bug report.
|
||||
required: true
|
||||
|
||||
- type: dropdown
|
||||
attributes:
|
||||
label: YOLOv5 Component
|
||||
description: |
|
||||
Please select the part of YOLOv5 where you found the bug.
|
||||
multiple: true
|
||||
options:
|
||||
- "Training"
|
||||
- "Validation"
|
||||
- "Detection"
|
||||
- "Export"
|
||||
- "PyTorch Hub"
|
||||
- "Multi-GPU"
|
||||
- "Evolution"
|
||||
- "Integrations"
|
||||
- "Other"
|
||||
validations:
|
||||
required: false
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Bug
|
||||
description: Provide console output with error messages and/or screenshots of the bug.
|
||||
placeholder: |
|
||||
💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Environment
|
||||
description: Please specify the software and hardware you used to produce the bug.
|
||||
placeholder: |
|
||||
- YOLO: YOLOv5 🚀 v6.0-67-g60e42e1 torch 1.9.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB)
|
||||
- OS: Ubuntu 20.04
|
||||
- Python: 3.9.0
|
||||
validations:
|
||||
required: false
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Minimal Reproducible Example
|
||||
description: >
|
||||
When asking a question, people will be better able to provide help if you provide code that they can easily understand and use to **reproduce** the problem.
|
||||
This is referred to by community members as creating a [minimal reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/).
|
||||
placeholder: |
|
||||
```
|
||||
# Code to reproduce your issue here
|
||||
```
|
||||
validations:
|
||||
required: false
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Additional
|
||||
description: Anything else you would like to share?
|
||||
|
||||
- type: checkboxes
|
||||
attributes:
|
||||
label: Are you willing to submit a PR?
|
||||
description: >
|
||||
(Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature.
|
||||
See the YOLOv5 [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started.
|
||||
options:
|
||||
- label: Yes I'd like to help by submitting a PR!
|
||||
@ -1,13 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
blank_issues_enabled: true
|
||||
contact_links:
|
||||
- name: 📄 Docs
|
||||
url: https://docs.ultralytics.com/yolov5
|
||||
about: View Ultralytics YOLOv5 Docs
|
||||
- name: 💬 Forum
|
||||
url: https://community.ultralytics.com/
|
||||
about: Ask on Ultralytics Community Forum
|
||||
- name: 🎧 Discord
|
||||
url: https://ultralytics.com/discord
|
||||
about: Ask on Ultralytics Discord
|
||||
@ -1,52 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
name: 🚀 Feature Request
|
||||
description: Suggest a YOLOv5 idea
|
||||
# title: " "
|
||||
labels: [enhancement]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thank you for submitting a YOLOv5 🚀 Feature Request!
|
||||
|
||||
- type: checkboxes
|
||||
attributes:
|
||||
label: Search before asking
|
||||
description: >
|
||||
Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar feature request already exists.
|
||||
options:
|
||||
- label: >
|
||||
I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar feature requests.
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Description
|
||||
description: A short description of your feature.
|
||||
placeholder: |
|
||||
What new feature would you like to see in YOLOv5?
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Use case
|
||||
description: |
|
||||
Describe the use case of your feature request. It will help us understand and prioritize the feature request.
|
||||
placeholder: |
|
||||
How would this feature be used, and who would use it?
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Additional
|
||||
description: Anything else you would like to share?
|
||||
|
||||
- type: checkboxes
|
||||
attributes:
|
||||
label: Are you willing to submit a PR?
|
||||
description: >
|
||||
(Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature.
|
||||
See the YOLOv5 [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started.
|
||||
options:
|
||||
- label: Yes I'd like to help by submitting a PR!
|
||||
@ -1,35 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
name: ❓ Question
|
||||
description: Ask a YOLOv5 question
|
||||
# title: " "
|
||||
labels: [question]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thank you for asking a YOLOv5 ❓ Question!
|
||||
|
||||
- type: checkboxes
|
||||
attributes:
|
||||
label: Search before asking
|
||||
description: >
|
||||
Please search the [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) to see if a similar question already exists.
|
||||
options:
|
||||
- label: >
|
||||
I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions.
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Question
|
||||
description: What is your question?
|
||||
placeholder: |
|
||||
💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Additional
|
||||
description: Anything else you would like to share?
|
||||
27
YOLO/yolov5-master/.github/dependabot.yml
vendored
27
YOLO/yolov5-master/.github/dependabot.yml
vendored
@ -1,27 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
# Dependabot for package version updates
|
||||
# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
|
||||
|
||||
version: 2
|
||||
updates:
|
||||
- package-ecosystem: pip
|
||||
directory: "/"
|
||||
schedule:
|
||||
interval: weekly
|
||||
time: "04:00"
|
||||
open-pull-requests-limit: 10
|
||||
reviewers:
|
||||
- glenn-jocher
|
||||
labels:
|
||||
- dependencies
|
||||
|
||||
- package-ecosystem: github-actions
|
||||
directory: "/.github/workflows"
|
||||
schedule:
|
||||
interval: weekly
|
||||
time: "04:00"
|
||||
open-pull-requests-limit: 5
|
||||
reviewers:
|
||||
- glenn-jocher
|
||||
labels:
|
||||
- dependencies
|
||||
150
YOLO/yolov5-master/.github/workflows/ci-testing.yml
vendored
150
YOLO/yolov5-master/.github/workflows/ci-testing.yml
vendored
@ -1,150 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
# YOLOv5 Continuous Integration (CI) GitHub Actions tests
|
||||
|
||||
name: YOLOv5 CI
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [master]
|
||||
pull_request:
|
||||
branches: [master]
|
||||
schedule:
|
||||
- cron: "0 0 * * *" # runs at 00:00 UTC every day
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
Benchmarks:
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [ubuntu-latest]
|
||||
python-version: ["3.11"] # requires python<=3.11
|
||||
model: [yolov5n]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
cache: "pip" # cache pip dependencies
|
||||
- name: Install requirements
|
||||
run: |
|
||||
python -m pip install --upgrade pip wheel
|
||||
pip install -r requirements.txt coremltools openvino-dev "tensorflow-cpu<2.15.1" --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
yolo checks
|
||||
pip list
|
||||
- name: Benchmark DetectionModel
|
||||
run: |
|
||||
python benchmarks.py --data coco128.yaml --weights ${{ matrix.model }}.pt --img 320 --hard-fail 0.29
|
||||
- name: Benchmark SegmentationModel
|
||||
run: |
|
||||
python benchmarks.py --data coco128-seg.yaml --weights ${{ matrix.model }}-seg.pt --img 320 --hard-fail 0.22
|
||||
- name: Test predictions
|
||||
run: |
|
||||
python export.py --weights ${{ matrix.model }}-cls.pt --include onnx --img 224
|
||||
python detect.py --weights ${{ matrix.model }}.onnx --img 320
|
||||
python segment/predict.py --weights ${{ matrix.model }}-seg.onnx --img 320
|
||||
python classify/predict.py --weights ${{ matrix.model }}-cls.onnx --img 224
|
||||
|
||||
Tests:
|
||||
timeout-minutes: 60
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [ubuntu-latest, windows-latest, macos-14] # macos-latest bug https://github.com/ultralytics/yolov5/pull/9049
|
||||
python-version: ["3.11"]
|
||||
model: [yolov5n]
|
||||
include:
|
||||
- os: ubuntu-latest
|
||||
python-version: "3.8" # torch 1.8.0 requires python >=3.6, <=3.8
|
||||
model: yolov5n
|
||||
torch: "1.8.0" # min torch version CI https://pypi.org/project/torchvision/
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
cache: "pip" # caching pip dependencies
|
||||
- name: Install requirements
|
||||
run: |
|
||||
python -m pip install --upgrade pip wheel
|
||||
torch=""
|
||||
if [ "${{ matrix.torch }}" == "1.8.0" ]; then
|
||||
torch="torch==1.8.0 torchvision==0.9.0"
|
||||
fi
|
||||
pip install -r requirements.txt $torch --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
shell: bash # for Windows compatibility
|
||||
- name: Check environment
|
||||
run: |
|
||||
yolo checks
|
||||
pip list
|
||||
- name: Test detection
|
||||
shell: bash # for Windows compatibility
|
||||
run: |
|
||||
# export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories
|
||||
m=${{ matrix.model }} # official weights
|
||||
b=runs/train/exp/weights/best # best.pt checkpoint
|
||||
python train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train
|
||||
for d in cpu; do # devices
|
||||
for w in $m $b; do # weights
|
||||
python val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val
|
||||
python detect.py --imgsz 64 --weights $w.pt --device $d # detect
|
||||
done
|
||||
done
|
||||
python hubconf.py --model $m # hub
|
||||
# python models/tf.py --weights $m.pt # build TF model
|
||||
python models/yolo.py --cfg $m.yaml # build PyTorch model
|
||||
python export.py --weights $m.pt --img 64 --include torchscript # export
|
||||
python - <<EOF
|
||||
import torch
|
||||
im = torch.zeros([1, 3, 64, 64])
|
||||
for path in '$m', '$b':
|
||||
model = torch.hub.load('.', 'custom', path=path, source='local')
|
||||
print(model('data/images/bus.jpg'))
|
||||
model(im) # warmup, build grids for trace
|
||||
torch.jit.trace(model, [im])
|
||||
EOF
|
||||
- name: Test segmentation
|
||||
shell: bash # for Windows compatibility
|
||||
run: |
|
||||
m=${{ matrix.model }}-seg # official weights
|
||||
b=runs/train-seg/exp/weights/best # best.pt checkpoint
|
||||
python segment/train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train
|
||||
python segment/train.py --imgsz 64 --batch 32 --weights '' --cfg $m.yaml --epochs 1 --device cpu # train
|
||||
for d in cpu; do # devices
|
||||
for w in $m $b; do # weights
|
||||
python segment/val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val
|
||||
python segment/predict.py --imgsz 64 --weights $w.pt --device $d # predict
|
||||
python export.py --weights $w.pt --img 64 --include torchscript --device $d # export
|
||||
done
|
||||
done
|
||||
- name: Test classification
|
||||
shell: bash # for Windows compatibility
|
||||
run: |
|
||||
m=${{ matrix.model }}-cls.pt # official weights
|
||||
b=runs/train-cls/exp/weights/best.pt # best.pt checkpoint
|
||||
python classify/train.py --imgsz 32 --model $m --data mnist160 --epochs 1 # train
|
||||
python classify/val.py --imgsz 32 --weights $b --data ../datasets/mnist160 # val
|
||||
python classify/predict.py --imgsz 32 --weights $b --source ../datasets/mnist160/test/7/60.png # predict
|
||||
python classify/predict.py --imgsz 32 --weights $m --source data/images/bus.jpg # predict
|
||||
python export.py --weights $b --img 64 --include torchscript # export
|
||||
python - <<EOF
|
||||
import torch
|
||||
for path in '$m', '$b':
|
||||
model = torch.hub.load('.', 'custom', path=path, source='local')
|
||||
EOF
|
||||
|
||||
Summary:
|
||||
runs-on: ubuntu-latest
|
||||
needs: [Benchmarks, Tests] # Add job names that you want to check for failure
|
||||
if: always() # This ensures the job runs even if previous jobs fail
|
||||
steps:
|
||||
- name: Check for failure and notify
|
||||
if: (needs.Benchmarks.result == 'failure' || needs.Tests.result == 'failure' || needs.Benchmarks.result == 'cancelled' || needs.Tests.result == 'cancelled') && github.repository == 'ultralytics/yolov5' && (github.event_name == 'schedule' || github.event_name == 'push')
|
||||
uses: slackapi/slack-github-action@v1.27.0
|
||||
with:
|
||||
payload: |
|
||||
{"text": "<!channel> GitHub Actions error for ${{ github.workflow }} ❌\n\n\n*Repository:* https://github.com/${{ github.repository }}\n*Action:* https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}\n*Author:* ${{ github.actor }}\n*Event:* ${{ github.event_name }}\n"}
|
||||
env:
|
||||
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_YOLO }}
|
||||
44
YOLO/yolov5-master/.github/workflows/cla.yml
vendored
44
YOLO/yolov5-master/.github/workflows/cla.yml
vendored
@ -1,44 +0,0 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Ultralytics Contributor License Agreement (CLA) action https://docs.ultralytics.com/help/CLA
|
||||
# This workflow automatically requests Pull Requests (PR) authors to sign the Ultralytics CLA before PRs can be merged
|
||||
|
||||
name: CLA Assistant
|
||||
on:
|
||||
issue_comment:
|
||||
types:
|
||||
- created
|
||||
pull_request_target:
|
||||
types:
|
||||
- reopened
|
||||
- opened
|
||||
- synchronize
|
||||
|
||||
permissions:
|
||||
actions: write
|
||||
contents: write
|
||||
pull-requests: write
|
||||
statuses: write
|
||||
|
||||
jobs:
|
||||
CLA:
|
||||
if: github.repository == 'ultralytics/yolov5'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: CLA Assistant
|
||||
if: (github.event.comment.body == 'recheck' || github.event.comment.body == 'I have read the CLA Document and I sign the CLA') || github.event_name == 'pull_request_target'
|
||||
uses: contributor-assistant/github-action@v2.6.1
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
# Must be repository secret PAT
|
||||
PERSONAL_ACCESS_TOKEN: ${{ secrets._GITHUB_TOKEN }}
|
||||
with:
|
||||
path-to-signatures: "signatures/version1/cla.json"
|
||||
path-to-document: "https://docs.ultralytics.com/help/CLA" # CLA document
|
||||
# Branch must not be protected
|
||||
branch: "cla-signatures"
|
||||
allowlist: dependabot[bot],github-actions,[pre-commit*,pre-commit*,bot*
|
||||
|
||||
remote-organization-name: ultralytics
|
||||
remote-repository-name: cla
|
||||
custom-pr-sign-comment: "I have read the CLA Document and I sign the CLA"
|
||||
custom-allsigned-prcomment: All Contributors have signed the CLA. ✅
|
||||
@ -1,42 +0,0 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
name: "CodeQL"
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: "0 0 1 * *"
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
analyze:
|
||||
name: Analyze
|
||||
runs-on: ${{ 'ubuntu-latest' }}
|
||||
permissions:
|
||||
actions: read
|
||||
contents: read
|
||||
security-events: write
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
language: ["python"]
|
||||
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python', 'ruby' ]
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
# Initializes the CodeQL tools for scanning.
|
||||
- name: Initialize CodeQL
|
||||
uses: github/codeql-action/init@v3
|
||||
with:
|
||||
languages: ${{ matrix.language }}
|
||||
# If you wish to specify custom queries, you can do so here or in a config file.
|
||||
# By default, queries listed here will override any specified in a config file.
|
||||
# Prefix the list here with "+" to use these queries and those in the config file.
|
||||
# queries: security-extended,security-and-quality
|
||||
|
||||
- name: Perform CodeQL Analysis
|
||||
uses: github/codeql-action/analyze@v3
|
||||
with:
|
||||
category: "/language:${{matrix.language}}"
|
||||
60
YOLO/yolov5-master/.github/workflows/docker.yml
vendored
60
YOLO/yolov5-master/.github/workflows/docker.yml
vendored
@ -1,60 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
# Builds ultralytics/yolov5:latest images on DockerHub https://hub.docker.com/r/ultralytics/yolov5
|
||||
|
||||
name: Publish Docker Images
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [master]
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
docker:
|
||||
if: github.repository == 'ultralytics/yolov5'
|
||||
name: Push Docker image to Docker Hub
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout repo
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0 # copy full .git directory to access full git history in Docker images
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v3
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Login to Docker Hub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
|
||||
- name: Build and push arm64 image
|
||||
uses: docker/build-push-action@v6
|
||||
continue-on-error: true
|
||||
with:
|
||||
context: .
|
||||
platforms: linux/arm64
|
||||
file: utils/docker/Dockerfile-arm64
|
||||
push: true
|
||||
tags: ultralytics/yolov5:latest-arm64
|
||||
|
||||
- name: Build and push CPU image
|
||||
uses: docker/build-push-action@v6
|
||||
continue-on-error: true
|
||||
with:
|
||||
context: .
|
||||
file: utils/docker/Dockerfile-cpu
|
||||
push: true
|
||||
tags: ultralytics/yolov5:latest-cpu
|
||||
|
||||
- name: Build and push GPU image
|
||||
uses: docker/build-push-action@v6
|
||||
continue-on-error: true
|
||||
with:
|
||||
context: .
|
||||
file: utils/docker/Dockerfile
|
||||
push: true
|
||||
tags: ultralytics/yolov5:latest
|
||||
58
YOLO/yolov5-master/.github/workflows/format.yml
vendored
58
YOLO/yolov5-master/.github/workflows/format.yml
vendored
@ -1,58 +0,0 @@
|
||||
# Ultralytics 🚀 - AGPL-3.0 License https://ultralytics.com/license
|
||||
# Ultralytics Actions https://github.com/ultralytics/actions
|
||||
# This workflow automatically formats code and documentation in PRs to official Ultralytics standards
|
||||
|
||||
name: Ultralytics Actions
|
||||
|
||||
on:
|
||||
issues:
|
||||
types: [opened]
|
||||
pull_request_target:
|
||||
branches: [main, master]
|
||||
types: [opened, closed, synchronize, review_requested]
|
||||
|
||||
jobs:
|
||||
format:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Run Ultralytics Formatting
|
||||
uses: ultralytics/actions@main
|
||||
with:
|
||||
token: ${{ secrets._GITHUB_TOKEN }} # note GITHUB_TOKEN automatically generated
|
||||
labels: true # autolabel issues and PRs
|
||||
python: true # format Python code and docstrings
|
||||
prettier: true # format YAML, JSON, Markdown and CSS
|
||||
spelling: true # check spelling
|
||||
links: false # check broken links
|
||||
summary: true # print PR summary with GPT4o (requires 'openai_api_key')
|
||||
openai_api_key: ${{ secrets.OPENAI_API_KEY }}
|
||||
first_issue_response: |
|
||||
👋 Hello @${{ github.actor }}, thank you for your interest in YOLOv5 🚀! Please visit our ⭐️ [Tutorials](https://docs.ultralytics.com/yolov5/) to get started, where you can find quickstart guides for simple tasks like [Custom Data Training](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/) all the way to advanced concepts like [Hyperparameter Evolution](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution/).
|
||||
|
||||
If this is a 🐛 Bug Report, please provide a **minimum reproducible example** to help us debug it.
|
||||
|
||||
If this is a custom training ❓ Question, please provide as much information as possible, including dataset image examples and training logs, and verify you are following our [Tips for Best Training Results](https://docs.ultralytics.com/guides/model-training-tips/).
|
||||
|
||||
## Requirements
|
||||
|
||||
[**Python>=3.8.0**](https://www.python.org/) with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/). To get started:
|
||||
```bash
|
||||
git clone https://github.com/ultralytics/yolov5 # clone
|
||||
cd yolov5
|
||||
pip install -r requirements.txt # install
|
||||
```
|
||||
|
||||
## Environments
|
||||
|
||||
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
|
||||
|
||||
- **Notebooks** with free GPU: <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a> <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/models/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
||||
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)
|
||||
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)
|
||||
- **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
||||
|
||||
## Status
|
||||
|
||||
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
|
||||
|
||||
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 [training](https://github.com/ultralytics/yolov5/blob/master/train.py), [validation](https://github.com/ultralytics/yolov5/blob/master/val.py), [inference](https://github.com/ultralytics/yolov5/blob/master/detect.py), [export](https://github.com/ultralytics/yolov5/blob/master/export.py) and [benchmarks](https://github.com/ultralytics/yolov5/blob/master/benchmarks.py) on macOS, Windows, and Ubuntu every 24 hours and on every commit.
|
||||
73
YOLO/yolov5-master/.github/workflows/links.yml
vendored
73
YOLO/yolov5-master/.github/workflows/links.yml
vendored
@ -1,73 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
# Continuous Integration (CI) GitHub Actions tests broken link checker using https://github.com/lycheeverse/lychee
|
||||
# Ignores the following status codes to reduce false positives:
|
||||
# - 403(OpenVINO, 'forbidden')
|
||||
# - 429(Instagram, 'too many requests')
|
||||
# - 500(Zenodo, 'cached')
|
||||
# - 502(Zenodo, 'bad gateway')
|
||||
# - 999(LinkedIn, 'unknown status code')
|
||||
|
||||
name: Check Broken links
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
- cron: "0 0 * * *" # runs at 00:00 UTC every day
|
||||
|
||||
jobs:
|
||||
Links:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Download and install lychee
|
||||
run: |
|
||||
LYCHEE_URL=$(curl -s https://api.github.com/repos/lycheeverse/lychee/releases/latest | grep "browser_download_url" | grep "x86_64-unknown-linux-gnu.tar.gz" | cut -d '"' -f 4)
|
||||
curl -L $LYCHEE_URL -o lychee.tar.gz
|
||||
tar xzf lychee.tar.gz
|
||||
sudo mv lychee /usr/local/bin
|
||||
|
||||
- name: Test Markdown and HTML links with retry
|
||||
uses: ultralytics/actions/retry@main
|
||||
with:
|
||||
timeout_minutes: 5
|
||||
retry_delay_seconds: 60
|
||||
retries: 2
|
||||
run: |
|
||||
lychee \
|
||||
--scheme 'https' \
|
||||
--timeout 60 \
|
||||
--insecure \
|
||||
--accept 403,429,500,502,999 \
|
||||
--exclude-all-private \
|
||||
--exclude 'https?://(www\.)?(linkedin\.com|twitter\.com|instagram\.com|kaggle\.com|fonts\.gstatic\.com|url\.com)' \
|
||||
--exclude-path '**/ci.yaml' \
|
||||
--github-token ${{ secrets.GITHUB_TOKEN }} \
|
||||
--header "User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.6478.183 Safari/537.36" \
|
||||
'./**/*.md' \
|
||||
'./**/*.html'
|
||||
|
||||
- name: Test Markdown, HTML, YAML, Python and Notebook links with retry
|
||||
if: github.event_name == 'workflow_dispatch'
|
||||
uses: ultralytics/actions/retry@main
|
||||
with:
|
||||
timeout_minutes: 5
|
||||
retry_delay_seconds: 60
|
||||
retries: 2
|
||||
run: |
|
||||
lychee \
|
||||
--scheme 'https' \
|
||||
--timeout 60 \
|
||||
--insecure \
|
||||
--accept 429,999 \
|
||||
--exclude-all-private \
|
||||
--exclude 'https?://(www\.)?(linkedin\.com|twitter\.com|instagram\.com|kaggle\.com|fonts\.gstatic\.com|url\.com)' \
|
||||
--exclude-path '**/ci.yaml' \
|
||||
--github-token ${{ secrets.GITHUB_TOKEN }} \
|
||||
--header "User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.6478.183 Safari/537.36" \
|
||||
'./**/*.md' \
|
||||
'./**/*.html' \
|
||||
'./**/*.yml' \
|
||||
'./**/*.yaml' \
|
||||
'./**/*.py' \
|
||||
'./**/*.ipynb'
|
||||
@ -1,71 +0,0 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Automatically merges repository 'main' branch into all open PRs to keep them up-to-date
|
||||
# Action runs on updates to main branch so when one PR merges to main all others update
|
||||
|
||||
name: Merge main into PRs
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
# push:
|
||||
# branches:
|
||||
# - ${{ github.event.repository.default_branch }}
|
||||
|
||||
jobs:
|
||||
Merge:
|
||||
if: github.repository == 'ultralytics/yolov5'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.x"
|
||||
cache: "pip"
|
||||
- name: Install requirements
|
||||
run: |
|
||||
pip install pygithub
|
||||
- name: Merge default branch into PRs
|
||||
shell: python
|
||||
run: |
|
||||
from github import Github
|
||||
import os
|
||||
|
||||
g = Github(os.getenv('GITHUB_TOKEN'))
|
||||
repo = g.get_repo(os.getenv('GITHUB_REPOSITORY'))
|
||||
|
||||
# Fetch the default branch name
|
||||
default_branch_name = repo.default_branch
|
||||
default_branch = repo.get_branch(default_branch_name)
|
||||
|
||||
for pr in repo.get_pulls(state='open', sort='created'):
|
||||
try:
|
||||
# Get full names for repositories and branches
|
||||
base_repo_name = repo.full_name
|
||||
head_repo_name = pr.head.repo.full_name
|
||||
base_branch_name = pr.base.ref
|
||||
head_branch_name = pr.head.ref
|
||||
|
||||
# Check if PR is behind the default branch
|
||||
comparison = repo.compare(default_branch.commit.sha, pr.head.sha)
|
||||
|
||||
if comparison.behind_by > 0:
|
||||
print(f"⚠️ PR #{pr.number} ({head_repo_name}:{head_branch_name} -> {base_repo_name}:{base_branch_name}) is behind {default_branch_name} by {comparison.behind_by} commit(s).")
|
||||
|
||||
# Attempt to update the branch
|
||||
try:
|
||||
success = pr.update_branch()
|
||||
assert success, "Branch update failed"
|
||||
print(f"✅ Successfully merged '{default_branch_name}' into PR #{pr.number} ({head_repo_name}:{head_branch_name} -> {base_repo_name}:{base_branch_name}).")
|
||||
except Exception as update_error:
|
||||
print(f"❌ Could not update PR #{pr.number} ({head_repo_name}:{head_branch_name} -> {base_repo_name}:{base_branch_name}): {update_error}")
|
||||
print(" This might be due to branch protection rules or insufficient permissions.")
|
||||
else:
|
||||
print(f"✅ PR #{pr.number} ({head_repo_name}:{head_branch_name} -> {base_repo_name}:{base_branch_name}) is up to date with {default_branch_name}.")
|
||||
except Exception as e:
|
||||
print(f"❌ Could not process PR #{pr.number}: {e}")
|
||||
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets._GITHUB_TOKEN }}
|
||||
GITHUB_REPOSITORY: ${{ github.repository }}
|
||||
47
YOLO/yolov5-master/.github/workflows/stale.yml
vendored
47
YOLO/yolov5-master/.github/workflows/stale.yml
vendored
@ -1,47 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
name: Close stale issues
|
||||
on:
|
||||
schedule:
|
||||
- cron: "0 0 * * *" # Runs at 00:00 UTC every day
|
||||
|
||||
jobs:
|
||||
stale:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/stale@v9
|
||||
with:
|
||||
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
stale-issue-message: |
|
||||
👋 Hello there! We wanted to give you a friendly reminder that this issue has not had any recent activity and may be closed soon, but don't worry - you can always reopen it if needed. If you still have any questions or concerns, please feel free to let us know how we can help.
|
||||
|
||||
For additional resources and information, please see the links below:
|
||||
|
||||
- **Docs**: https://docs.ultralytics.com
|
||||
- **HUB**: https://hub.ultralytics.com
|
||||
- **Community**: https://community.ultralytics.com
|
||||
|
||||
Feel free to inform us of any other **issues** you discover or **feature requests** that come to mind in the future. Pull Requests (PRs) are also always welcomed!
|
||||
|
||||
Thank you for your contributions to YOLO 🚀 and Vision AI ⭐
|
||||
|
||||
stale-pr-message: |
|
||||
👋 Hello there! We wanted to let you know that we've decided to close this pull request due to inactivity. We appreciate the effort you put into contributing to our project, but unfortunately, not all contributions are suitable or aligned with our product roadmap.
|
||||
|
||||
We hope you understand our decision, and please don't let it discourage you from contributing to open source projects in the future. We value all of our community members and their contributions, and we encourage you to keep exploring new projects and ways to get involved.
|
||||
|
||||
For additional resources and information, please see the links below:
|
||||
|
||||
- **Docs**: https://docs.ultralytics.com
|
||||
- **HUB**: https://hub.ultralytics.com
|
||||
- **Community**: https://community.ultralytics.com
|
||||
|
||||
Thank you for your contributions to YOLO 🚀 and Vision AI ⭐
|
||||
|
||||
days-before-issue-stale: 30
|
||||
days-before-issue-close: 10
|
||||
days-before-pr-stale: 90
|
||||
days-before-pr-close: 30
|
||||
exempt-issue-labels: "documentation,tutorial,TODO"
|
||||
operations-per-run: 300 # The maximum number of operations per run, used to control rate limiting.
|
||||
258
YOLO/yolov5-master/.gitignore
vendored
258
YOLO/yolov5-master/.gitignore
vendored
@ -1,258 +0,0 @@
|
||||
# Repo-specific GitIgnore ----------------------------------------------------------------------------------------------
|
||||
*.jpg
|
||||
*.jpeg
|
||||
*.png
|
||||
*.bmp
|
||||
*.tif
|
||||
*.tiff
|
||||
*.heic
|
||||
*.JPG
|
||||
*.JPEG
|
||||
*.PNG
|
||||
*.BMP
|
||||
*.TIF
|
||||
*.TIFF
|
||||
*.HEIC
|
||||
*.mp4
|
||||
*.mov
|
||||
*.MOV
|
||||
*.avi
|
||||
*.data
|
||||
*.json
|
||||
*.cfg
|
||||
!setup.cfg
|
||||
!cfg/yolov3*.cfg
|
||||
|
||||
storage.googleapis.com
|
||||
runs/*
|
||||
data/*
|
||||
data/images/*
|
||||
!data/*.yaml
|
||||
!data/hyps
|
||||
!data/scripts
|
||||
!data/images
|
||||
!data/images/zidane.jpg
|
||||
!data/images/bus.jpg
|
||||
!data/*.sh
|
||||
|
||||
results*.csv
|
||||
|
||||
# Datasets -------------------------------------------------------------------------------------------------------------
|
||||
coco/
|
||||
coco128/
|
||||
VOC/
|
||||
|
||||
# MATLAB GitIgnore -----------------------------------------------------------------------------------------------------
|
||||
*.m~
|
||||
*.mat
|
||||
!targets*.mat
|
||||
|
||||
# Neural Network weights -----------------------------------------------------------------------------------------------
|
||||
*.weights
|
||||
*.pt
|
||||
*.pb
|
||||
*.onnx
|
||||
*.engine
|
||||
*.mlmodel
|
||||
*.mlpackage
|
||||
*.torchscript
|
||||
*.tflite
|
||||
*.h5
|
||||
*_saved_model/
|
||||
*_web_model/
|
||||
*_openvino_model/
|
||||
*_paddle_model/
|
||||
darknet53.conv.74
|
||||
yolov3-tiny.conv.15
|
||||
|
||||
# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
env/
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
*.egg-info/
|
||||
/wandb/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
.hypothesis/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# pyenv
|
||||
.python-version
|
||||
|
||||
# celery beat schedule file
|
||||
celerybeat-schedule
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# dotenv
|
||||
.env
|
||||
|
||||
# virtualenv
|
||||
.venv*
|
||||
venv*/
|
||||
ENV*/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
|
||||
|
||||
# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
|
||||
|
||||
# General
|
||||
.DS_Store
|
||||
.AppleDouble
|
||||
.LSOverride
|
||||
|
||||
# Icon must end with two \r
|
||||
Icon
|
||||
Icon?
|
||||
|
||||
# Thumbnails
|
||||
._*
|
||||
|
||||
# Files that might appear in the root of a volume
|
||||
.DocumentRevisions-V100
|
||||
.fseventsd
|
||||
.Spotlight-V100
|
||||
.TemporaryItems
|
||||
.Trashes
|
||||
.VolumeIcon.icns
|
||||
.com.apple.timemachine.donotpresent
|
||||
|
||||
# Directories potentially created on remote AFP share
|
||||
.AppleDB
|
||||
.AppleDesktop
|
||||
Network Trash Folder
|
||||
Temporary Items
|
||||
.apdisk
|
||||
|
||||
|
||||
# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
|
||||
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
|
||||
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
|
||||
|
||||
# User-specific stuff:
|
||||
.idea/*
|
||||
.idea/**/workspace.xml
|
||||
.idea/**/tasks.xml
|
||||
.idea/dictionaries
|
||||
.html # Bokeh Plots
|
||||
.pg # TensorFlow Frozen Graphs
|
||||
.avi # videos
|
||||
|
||||
# Sensitive or high-churn files:
|
||||
.idea/**/dataSources/
|
||||
.idea/**/dataSources.ids
|
||||
.idea/**/dataSources.local.xml
|
||||
.idea/**/sqlDataSources.xml
|
||||
.idea/**/dynamic.xml
|
||||
.idea/**/uiDesigner.xml
|
||||
|
||||
# Gradle:
|
||||
.idea/**/gradle.xml
|
||||
.idea/**/libraries
|
||||
|
||||
# CMake
|
||||
cmake-build-debug/
|
||||
cmake-build-release/
|
||||
|
||||
# Mongo Explorer plugin:
|
||||
.idea/**/mongoSettings.xml
|
||||
|
||||
## File-based project format:
|
||||
*.iws
|
||||
|
||||
## Plugin-specific files:
|
||||
|
||||
# IntelliJ
|
||||
out/
|
||||
|
||||
# mpeltonen/sbt-idea plugin
|
||||
.idea_modules/
|
||||
|
||||
# JIRA plugin
|
||||
atlassian-ide-plugin.xml
|
||||
|
||||
# Cursive Clojure plugin
|
||||
.idea/replstate.xml
|
||||
|
||||
# Crashlytics plugin (for Android Studio and IntelliJ)
|
||||
com_crashlytics_export_strings.xml
|
||||
crashlytics.properties
|
||||
crashlytics-build.properties
|
||||
fabric.properties
|
||||
@ -1,14 +0,0 @@
|
||||
cff-version: 1.2.0
|
||||
preferred-citation:
|
||||
type: software
|
||||
message: If you use YOLOv5, please cite it as below.
|
||||
authors:
|
||||
- family-names: Jocher
|
||||
given-names: Glenn
|
||||
orcid: "https://orcid.org/0000-0001-5950-6979"
|
||||
title: "YOLOv5 by Ultralytics"
|
||||
version: 7.0
|
||||
doi: 10.5281/zenodo.3908559
|
||||
date-released: 2020-5-29
|
||||
license: AGPL-3.0
|
||||
url: "https://github.com/ultralytics/yolov5"
|
||||
@ -1,76 +0,0 @@
|
||||
## Contributing to YOLOv5 🚀
|
||||
|
||||
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's:
|
||||
|
||||
- Reporting a bug
|
||||
- Discussing the current state of the code
|
||||
- Submitting a fix
|
||||
- Proposing a new feature
|
||||
- Becoming a maintainer
|
||||
|
||||
YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be helping push the frontiers of what's possible in AI 😃!
|
||||
|
||||
## Submitting a Pull Request (PR) 🛠️
|
||||
|
||||
Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps:
|
||||
|
||||
### 1. Select File to Update
|
||||
|
||||
Select `requirements.txt` to update by clicking on it in GitHub.
|
||||
|
||||
<p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
|
||||
|
||||
### 2. Click 'Edit this file'
|
||||
|
||||
The button is in the top-right corner.
|
||||
|
||||
<p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
|
||||
|
||||
### 3. Make Changes
|
||||
|
||||
Change the `matplotlib` version from `3.2.2` to `3.3`.
|
||||
|
||||
<p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
|
||||
|
||||
### 4. Preview Changes and Submit PR
|
||||
|
||||
Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch** for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃!
|
||||
|
||||
<p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
|
||||
|
||||
### PR recommendations
|
||||
|
||||
To allow your work to be integrated as seamlessly as possible, we advise you to:
|
||||
|
||||
- ✅ Verify your PR is **up-to-date** with `ultralytics/yolov5` `master` branch. If your PR is behind you can update your code by clicking the 'Update branch' button or by running `git pull` and `git merge master` locally.
|
||||
|
||||
<p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 15" src="https://user-images.githubusercontent.com/26833433/187295893-50ed9f44-b2c9-4138-a614-de69bd1753d7.png"></p>
|
||||
|
||||
- ✅ Verify all YOLOv5 Continuous Integration (CI) **checks are passing**.
|
||||
|
||||
<p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 03" src="https://user-images.githubusercontent.com/26833433/187296922-545c5498-f64a-4d8c-8300-5fa764360da6.png"></p>
|
||||
|
||||
- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee
|
||||
|
||||
## Submitting a Bug Report 🐛
|
||||
|
||||
If you spot a problem with YOLOv5 please submit a Bug Report!
|
||||
|
||||
For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few short guidelines below to help users provide what we need to get started.
|
||||
|
||||
When asking a question, people will be better able to provide help if you provide **code** that they can easily understand and use to **reproduce** the problem. This is referred to by community members as creating a [minimum reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/). Your code that reproduces the problem should be:
|
||||
|
||||
- ✅ **Minimal** – Use as little code as possible that still produces the same problem
|
||||
- ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
|
||||
- ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
|
||||
|
||||
In addition to the above requirements, for [Ultralytics](https://www.ultralytics.com/) to provide assistance your code should be:
|
||||
|
||||
- ✅ **Current** – Verify that your code is up-to-date with the current GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new copy to ensure your problem has not already been resolved by previous commits.
|
||||
- ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this repository. [Ultralytics](https://www.ultralytics.com/) does not provide support for custom code ⚠️.
|
||||
|
||||
If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛 **Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and provide a [minimum reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/) to help us better understand and diagnose your problem.
|
||||
|
||||
## License
|
||||
|
||||
By contributing, you agree that your contributions will be licensed under the [AGPL-3.0 license](https://choosealicense.com/licenses/agpl-3.0/)
|
||||
@ -1,661 +0,0 @@
|
||||
GNU AFFERO GENERAL PUBLIC LICENSE
|
||||
Version 3, 19 November 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU Affero General Public License is a free, copyleft license for
|
||||
software and other kinds of works, specifically designed to ensure
|
||||
cooperation with the community in the case of network server software.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
our General Public Licenses are intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
Developers that use our General Public Licenses protect your rights
|
||||
with two steps: (1) assert copyright on the software, and (2) offer
|
||||
you this License which gives you legal permission to copy, distribute
|
||||
and/or modify the software.
|
||||
|
||||
A secondary benefit of defending all users' freedom is that
|
||||
improvements made in alternate versions of the program, if they
|
||||
receive widespread use, become available for other developers to
|
||||
incorporate. Many developers of free software are heartened and
|
||||
encouraged by the resulting cooperation. However, in the case of
|
||||
software used on network servers, this result may fail to come about.
|
||||
The GNU General Public License permits making a modified version and
|
||||
letting the public access it on a server without ever releasing its
|
||||
source code to the public.
|
||||
|
||||
The GNU Affero General Public License is designed specifically to
|
||||
ensure that, in such cases, the modified source code becomes available
|
||||
to the community. It requires the operator of a network server to
|
||||
provide the source code of the modified version running there to the
|
||||
users of that server. Therefore, public use of a modified version, on
|
||||
a publicly accessible server, gives the public access to the source
|
||||
code of the modified version.
|
||||
|
||||
An older license, called the Affero General Public License and
|
||||
published by Affero, was designed to accomplish similar goals. This is
|
||||
a different license, not a version of the Affero GPL, but Affero has
|
||||
released a new version of the Affero GPL which permits relicensing under
|
||||
this license.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU Affero General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Remote Network Interaction; Use with the GNU General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, if you modify the
|
||||
Program, your modified version must prominently offer all users
|
||||
interacting with it remotely through a computer network (if your version
|
||||
supports such interaction) an opportunity to receive the Corresponding
|
||||
Source of your version by providing access to the Corresponding Source
|
||||
from a network server at no charge, through some standard or customary
|
||||
means of facilitating copying of software. This Corresponding Source
|
||||
shall include the Corresponding Source for any work covered by version 3
|
||||
of the GNU General Public License that is incorporated pursuant to the
|
||||
following paragraph.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the work with which it is combined will remain governed by version
|
||||
3 of the GNU General Public License.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU Affero General Public License from time to time. Such new versions
|
||||
will be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU Affero General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU Affero General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU Affero General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Affero General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Affero General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Affero General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If your software can interact with users remotely through a computer
|
||||
network, you should also make sure that it provides a way for users to
|
||||
get its source. For example, if your program is a web application, its
|
||||
interface could display a "Source" link that leads users to an archive
|
||||
of the code. There are many ways you could offer source, and different
|
||||
solutions will be better for different programs; see section 13 for the
|
||||
specific requirements.
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU AGPL, see
|
||||
<https://www.gnu.org/licenses/>.
|
||||
@ -1,470 +0,0 @@
|
||||
<div align="center">
|
||||
<p>
|
||||
<a href="https://www.ultralytics.com/events/yolovision" target="_blank">
|
||||
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
|
||||
</p>
|
||||
|
||||
[中文](https://docs.ultralytics.com/zh) | [한국어](https://docs.ultralytics.com/ko) | [日本語](https://docs.ultralytics.com/ja) | [Русский](https://docs.ultralytics.com/ru) | [Deutsch](https://docs.ultralytics.com/de) | [Français](https://docs.ultralytics.com/fr) | [Español](https://docs.ultralytics.com/es) | [Português](https://docs.ultralytics.com/pt) | [Türkçe](https://docs.ultralytics.com/tr) | [Tiếng Việt](https://docs.ultralytics.com/vi) | [العربية](https://docs.ultralytics.com/ar)
|
||||
|
||||
<div>
|
||||
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
|
||||
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
|
||||
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
||||
<a href="https://discord.com/invite/ultralytics"><img alt="Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a> <a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a> <a href="https://reddit.com/r/ultralytics"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
|
||||
<br>
|
||||
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
|
||||
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
||||
<a href="https://www.kaggle.com/models/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
||||
</div>
|
||||
<br>
|
||||
|
||||
YOLOv5 🚀 is the world's most loved vision AI, representing <a href="https://www.ultralytics.com/">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
|
||||
|
||||
We hope that the resources here will help you get the most out of YOLOv5. Please browse the YOLOv5 <a href="https://docs.ultralytics.com/yolov5/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/yolov5/issues/new/choose">GitHub</a> for support, and join our <a href="https://discord.com/invite/ultralytics">Discord</a> community for questions and discussions!
|
||||
|
||||
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).
|
||||
|
||||
<div align="center">
|
||||
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
|
||||
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
|
||||
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
|
||||
<a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
|
||||
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
|
||||
<a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="2%" alt="Ultralytics BiliBili"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
|
||||
<a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<br>
|
||||
|
||||
## <div align="center">YOLO11 🚀 NEW</div>
|
||||
|
||||
We are excited to unveil the launch of Ultralytics YOLO11 🚀, the latest advancement in our state-of-the-art (SOTA) vision models! Available now at **[GitHub](https://github.com/ultralytics/ultralytics)**, YOLO11 builds on our legacy of speed, precision, and ease of use. Whether you're tackling object detection, image segmentation, or image classification, YOLO11 delivers the performance and versatility needed to excel in diverse applications.
|
||||
|
||||
Get started today and unlock the full potential of YOLO11! Visit the [Ultralytics Docs](https://docs.ultralytics.com/) for comprehensive guides and resources:
|
||||
|
||||
[](https://badge.fury.io/py/ultralytics) [](https://www.pepy.tech/projects/ultralytics)
|
||||
|
||||
```bash
|
||||
pip install ultralytics
|
||||
```
|
||||
|
||||
<div align="center">
|
||||
<a href="https://www.ultralytics.com/yolo" target="_blank">
|
||||
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png"></a>
|
||||
</div>
|
||||
|
||||
## <div align="center">Documentation</div>
|
||||
|
||||
See the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5/) for full documentation on training, testing and deployment. See below for quickstart examples.
|
||||
|
||||
<details open>
|
||||
<summary>Install</summary>
|
||||
|
||||
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a [**Python>=3.8.0**](https://www.python.org/) environment, including [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
|
||||
|
||||
```bash
|
||||
git clone https://github.com/ultralytics/yolov5 # clone
|
||||
cd yolov5
|
||||
pip install -r requirements.txt # install
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Inference</summary>
|
||||
|
||||
YOLOv5 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
|
||||
|
||||
```python
|
||||
import torch
|
||||
|
||||
# Model
|
||||
model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom
|
||||
|
||||
# Images
|
||||
img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
|
||||
|
||||
# Inference
|
||||
results = model(img)
|
||||
|
||||
# Results
|
||||
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Inference with detect.py</summary>
|
||||
|
||||
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
|
||||
|
||||
```bash
|
||||
python detect.py --weights yolov5s.pt --source 0 # webcam
|
||||
img.jpg # image
|
||||
vid.mp4 # video
|
||||
screen # screenshot
|
||||
path/ # directory
|
||||
list.txt # list of images
|
||||
list.streams # list of streams
|
||||
'path/*.jpg' # glob
|
||||
'https://youtu.be/LNwODJXcvt4' # YouTube
|
||||
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Training</summary>
|
||||
|
||||
The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) results. [Models](https://github.com/ultralytics/yolov5/tree/master/models) and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are 1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/) times faster). Use the largest `--batch-size` possible, or pass `--batch-size -1` for YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
|
||||
|
||||
```bash
|
||||
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
|
||||
yolov5s 64
|
||||
yolov5m 40
|
||||
yolov5l 24
|
||||
yolov5x 16
|
||||
```
|
||||
|
||||
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
|
||||
|
||||
</details>
|
||||
|
||||
<details open>
|
||||
<summary>Tutorials</summary>
|
||||
|
||||
- [Train Custom Data](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/) 🚀 RECOMMENDED
|
||||
- [Tips for Best Training Results](https://docs.ultralytics.com/guides/model-training-tips/) ☘️
|
||||
- [Multi-GPU Training](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/)
|
||||
- [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/) 🌟 NEW
|
||||
- [TFLite, ONNX, CoreML, TensorRT Export](https://docs.ultralytics.com/yolov5/tutorials/model_export/) 🚀
|
||||
- [NVIDIA Jetson platform Deployment](https://docs.ultralytics.com/yolov5/tutorials/running_on_jetson_nano/) 🌟 NEW
|
||||
- [Test-Time Augmentation (TTA)](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/)
|
||||
- [Model Ensembling](https://docs.ultralytics.com/yolov5/tutorials/model_ensembling/)
|
||||
- [Model Pruning/Sparsity](https://docs.ultralytics.com/yolov5/tutorials/model_pruning_and_sparsity/)
|
||||
- [Hyperparameter Evolution](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution/)
|
||||
- [Transfer Learning with Frozen Layers](https://docs.ultralytics.com/yolov5/tutorials/transfer_learning_with_frozen_layers/)
|
||||
- [Architecture Summary](https://docs.ultralytics.com/yolov5/tutorials/architecture_description/) 🌟 NEW
|
||||
- [Ultralytics HUB to train and deploy YOLO](https://www.ultralytics.com/hub) 🚀 RECOMMENDED
|
||||
- [ClearML Logging](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration/)
|
||||
- [YOLOv5 with Neural Magic's Deepsparse](https://docs.ultralytics.com/yolov5/tutorials/neural_magic_pruning_quantization/)
|
||||
- [Comet Logging](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration/) 🌟 NEW
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">Integrations</div>
|
||||
|
||||
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [W&B](https://docs.wandb.ai/guides/integrations/ultralytics/), [Comet](https://bit.ly/yolov8-readme-comet), [Roboflow](https://roboflow.com/?ref=ultralytics) and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
|
||||
|
||||
<br>
|
||||
<a href="https://www.ultralytics.com/hub" target="_blank">
|
||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations"></a>
|
||||
<br>
|
||||
<br>
|
||||
|
||||
<div align="center">
|
||||
<a href="https://www.ultralytics.com/hub">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics HUB logo"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
|
||||
<a href="https://docs.wandb.ai/guides/integrations/ultralytics/">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="ClearML logo"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
|
||||
<a href="https://bit.ly/yolov8-readme-comet">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" alt="Comet ML logo"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
|
||||
<a href="https://bit.ly/yolov5-neuralmagic">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="NeuralMagic logo"></a>
|
||||
</div>
|
||||
|
||||
| Ultralytics HUB 🚀 | W&B | Comet ⭐ NEW | Neural Magic |
|
||||
| :--------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
|
||||
| Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://www.ultralytics.com/hub). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.wandb.ai/guides/integrations/ultralytics/) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLOv5 models, resume training, and interactively visualize and debug predictions | Run YOLO11 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
|
||||
|
||||
## <div align="center">Ultralytics HUB</div>
|
||||
|
||||
Experience seamless AI with [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** now!
|
||||
|
||||
<a align="center" href="https://www.ultralytics.com/hub" target="_blank">
|
||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
|
||||
|
||||
## <div align="center">Why YOLOv5</div>
|
||||
|
||||
YOLOv5 has been designed to be super easy to get started and simple to learn. We prioritize real-world results.
|
||||
|
||||
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
|
||||
<details>
|
||||
<summary>YOLOv5-P5 640 Figure</summary>
|
||||
|
||||
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
|
||||
</details>
|
||||
<details>
|
||||
<summary>Figure Notes</summary>
|
||||
|
||||
- **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
|
||||
- **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
|
||||
- **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
|
||||
- **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
|
||||
|
||||
</details>
|
||||
|
||||
### Pretrained Checkpoints
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | Speed<br><sup>CPU b1<br>(ms) | Speed<br><sup>V100 b1<br>(ms) | Speed<br><sup>V100 b32<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
|
||||
| ----------------------------------------------------------------------------------------------- | --------------------- | -------------------- | ----------------- | ---------------------------- | ----------------------------- | ------------------------------ | ------------------ | ---------------------- |
|
||||
| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** |
|
||||
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
|
||||
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
|
||||
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
|
||||
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
|
||||
| | | | | | | | | |
|
||||
| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 |
|
||||
| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 |
|
||||
| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
|
||||
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
|
||||
| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x6.pt)<br>+ [TTA] | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- |
|
||||
|
||||
<details>
|
||||
<summary>Table Notes</summary>
|
||||
|
||||
- All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
|
||||
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
|
||||
- **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
|
||||
- **TTA** [Test Time Augmentation](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">Segmentation</div>
|
||||
|
||||
Our new YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) instance segmentation models are the fastest and most accurate in the world, beating all current [SOTA benchmarks](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco). We've made them super simple to train, validate and deploy. See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and visit our [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for quickstart tutorials.
|
||||
|
||||
<details>
|
||||
<summary>Segmentation Checkpoints</summary>
|
||||
|
||||
<div align="center">
|
||||
<a align="center" href="https://www.ultralytics.com/yolo" target="_blank">
|
||||
<img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png"></a>
|
||||
</div>
|
||||
|
||||
We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) notebooks for easy reproducibility.
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Train time<br><sup>300 epochs<br>A100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TRT A100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
|
||||
| ------------------------------------------------------------------------------------------ | --------------------- | -------------------- | --------------------- | --------------------------------------------- | ------------------------------ | ------------------------------ | ------------------ | ---------------------- |
|
||||
| [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** |
|
||||
| [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 |
|
||||
| [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 |
|
||||
| [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 |
|
||||
| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 |
|
||||
|
||||
- All checkpoints are trained to 300 epochs with SGD optimizer with `lr0=0.01` and `weight_decay=5e-5` at image size 640 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5_v70_official
|
||||
- **Accuracy** values are for single-model single-scale on COCO dataset.<br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
|
||||
- **Speed** averaged over 100 inference images using a [Colab Pro](https://colab.research.google.com/signup) A100 High-RAM instance. Values indicate inference speed only (NMS adds about 1ms per image). <br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
|
||||
- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Segmentation Usage Examples <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
|
||||
|
||||
### Train
|
||||
|
||||
YOLOv5 segmentation training supports auto-download COCO128-seg segmentation dataset with `--data coco128-seg.yaml` argument and manual download of COCO-segments dataset with `bash data/scripts/get_coco.sh --train --val --segments` and then `python train.py --data coco.yaml`.
|
||||
|
||||
```bash
|
||||
# Single-GPU
|
||||
python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
|
||||
|
||||
# Multi-GPU DDP
|
||||
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
|
||||
```
|
||||
|
||||
### Val
|
||||
|
||||
Validate YOLOv5s-seg mask mAP on COCO dataset:
|
||||
|
||||
```bash
|
||||
bash data/scripts/get_coco.sh --val --segments # download COCO val segments split (780MB, 5000 images)
|
||||
python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # validate
|
||||
```
|
||||
|
||||
### Predict
|
||||
|
||||
Use pretrained YOLOv5m-seg.pt to predict bus.jpg:
|
||||
|
||||
```bash
|
||||
python segment/predict.py --weights yolov5m-seg.pt --source data/images/bus.jpg
|
||||
```
|
||||
|
||||
```python
|
||||
model = torch.hub.load(
|
||||
"ultralytics/yolov5", "custom", "yolov5m-seg.pt"
|
||||
) # load from PyTorch Hub (WARNING: inference not yet supported)
|
||||
```
|
||||
|
||||
|  |  |
|
||||
| ---------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- |
|
||||
|
||||
### Export
|
||||
|
||||
Export YOLOv5s-seg model to ONNX and TensorRT:
|
||||
|
||||
```bash
|
||||
python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">Classification</div>
|
||||
|
||||
YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) brings support for classification model training, validation and deployment! See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v6.2) and visit our [YOLOv5 Classification Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb) for quickstart tutorials.
|
||||
|
||||
<details>
|
||||
<summary>Classification Checkpoints</summary>
|
||||
|
||||
<br>
|
||||
|
||||
We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) for easy reproducibility.
|
||||
|
||||
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Training<br><sup>90 epochs<br>4xA100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TensorRT V100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@224 (B) |
|
||||
| -------------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | -------------------------------------------- | ------------------------------ | ----------------------------------- | ------------------ | ---------------------- |
|
||||
| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** |
|
||||
| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 |
|
||||
| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 |
|
||||
| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 |
|
||||
| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 |
|
||||
| | | | | | | | | |
|
||||
| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 |
|
||||
| [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 |
|
||||
| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 |
|
||||
| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 |
|
||||
| | | | | | | | | |
|
||||
| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 |
|
||||
| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 |
|
||||
| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 |
|
||||
| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 |
|
||||
|
||||
<details>
|
||||
<summary>Table Notes (click to expand)</summary>
|
||||
|
||||
- All checkpoints are trained to 90 epochs with SGD optimizer with `lr0=0.001` and `weight_decay=5e-5` at image size 224 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2
|
||||
- **Accuracy** values are for single-model single-scale on [ImageNet-1k](https://www.image-net.org/index.php) dataset.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224`
|
||||
- **Speed** averaged over 100 inference images using a Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM instance.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
|
||||
- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
|
||||
|
||||
</details>
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Classification Usage Examples <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
|
||||
|
||||
### Train
|
||||
|
||||
YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the `--data` argument. To start training on MNIST for example use `--data mnist`.
|
||||
|
||||
```bash
|
||||
# Single-GPU
|
||||
python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
|
||||
|
||||
# Multi-GPU DDP
|
||||
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
|
||||
```
|
||||
|
||||
### Val
|
||||
|
||||
Validate YOLOv5m-cls accuracy on ImageNet-1k dataset:
|
||||
|
||||
```bash
|
||||
bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
|
||||
python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate
|
||||
```
|
||||
|
||||
### Predict
|
||||
|
||||
Use pretrained YOLOv5s-cls.pt to predict bus.jpg:
|
||||
|
||||
```bash
|
||||
python classify/predict.py --weights yolov5s-cls.pt --source data/images/bus.jpg
|
||||
```
|
||||
|
||||
```python
|
||||
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s-cls.pt") # load from PyTorch Hub
|
||||
```
|
||||
|
||||
### Export
|
||||
|
||||
Export a group of trained YOLOv5s-cls, ResNet and EfficientNet models to ONNX and TensorRT:
|
||||
|
||||
```bash
|
||||
python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">Environments</div>
|
||||
|
||||
Get started in seconds with our verified environments. Click each icon below for details.
|
||||
|
||||
<div align="center">
|
||||
<a href="https://bit.ly/yolov5-paperspace-notebook">
|
||||
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-gradient.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
||||
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
|
||||
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-colab-small.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
||||
<a href="https://www.kaggle.com/models/ultralytics/yolov5">
|
||||
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-kaggle-small.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
||||
<a href="https://hub.docker.com/r/ultralytics/yolov5">
|
||||
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-docker-small.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
||||
<a href="https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/">
|
||||
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-aws-small.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
||||
<a href="https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/">
|
||||
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-gcp-small.png" width="10%" /></a>
|
||||
</div>
|
||||
|
||||
## <div align="center">Contribute</div>
|
||||
|
||||
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started, and fill out the [YOLOv5 Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!
|
||||
|
||||
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
|
||||
|
||||
<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" /></a>
|
||||
|
||||
## <div align="center">License</div>
|
||||
|
||||
Ultralytics offers two licensing options to accommodate diverse use cases:
|
||||
|
||||
- **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/license) open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/yolov5/blob/master/LICENSE) file for more details.
|
||||
- **Enterprise License**: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through [Ultralytics Licensing](https://www.ultralytics.com/license).
|
||||
|
||||
## <div align="center">Contact</div>
|
||||
|
||||
For YOLOv5 bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues), and join our [Discord](https://discord.com/invite/ultralytics) community for questions and discussions!
|
||||
|
||||
<br>
|
||||
<div align="center">
|
||||
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
|
||||
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
|
||||
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
|
||||
<a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
|
||||
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
|
||||
<a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="3%" alt="Ultralytics BiliBili"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
|
||||
<a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
|
||||
</div>
|
||||
|
||||
[tta]: https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation
|
||||
@ -1,470 +0,0 @@
|
||||
<div align="center">
|
||||
<p>
|
||||
<a href="https://www.ultralytics.com/events/yolovision" target="_blank">
|
||||
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
|
||||
</p>
|
||||
|
||||
[中文](https://docs.ultralytics.com/zh) | [한국어](https://docs.ultralytics.com/ko) | [日本語](https://docs.ultralytics.com/ja) | [Русский](https://docs.ultralytics.com/ru) | [Deutsch](https://docs.ultralytics.com/de) | [Français](https://docs.ultralytics.com/fr) | [Español](https://docs.ultralytics.com/es) | [Português](https://docs.ultralytics.com/pt) | [Türkçe](https://docs.ultralytics.com/tr) | [Tiếng Việt](https://docs.ultralytics.com/vi) | [العربية](https://docs.ultralytics.com/ar)
|
||||
|
||||
<div>
|
||||
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
|
||||
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
|
||||
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
||||
<a href="https://discord.com/invite/ultralytics"><img alt="Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a> <a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a> <a href="https://reddit.com/r/ultralytics"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
|
||||
<br>
|
||||
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
|
||||
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
||||
<a href="https://www.kaggle.com/models/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
||||
</div>
|
||||
<br>
|
||||
|
||||
YOLOv5 🚀 是世界上最受欢迎的视觉 AI,代表<a href="https://www.ultralytics.com/"> Ultralytics </a>对未来视觉 AI 方法的开源研究,结合在数千小时的研究和开发中积累的经验教训和最佳实践。
|
||||
|
||||
我们希望这里的资源能帮助您充分利用 YOLOv5。请浏览 YOLOv5 <a href="https://docs.ultralytics.com/yolov5/">文档</a> 了解详细信息,在 <a href="https://github.com/ultralytics/yolov5/issues/new/choose">GitHub</a> 上提交问题以获得支持,并加入我们的 <a href="https://discord.com/invite/ultralytics">Discord</a> 社区进行问题和讨论!
|
||||
|
||||
如需申请企业许可,请在 [Ultralytics Licensing](https://www.ultralytics.com/license) 处填写表格
|
||||
|
||||
<div align="center">
|
||||
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
|
||||
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
|
||||
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
|
||||
<a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
|
||||
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
|
||||
<a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="2%" alt="Ultralytics BiliBili"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
|
||||
<a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## <div align="center">YOLO11 🚀 全新发布</div>
|
||||
|
||||
我们很高兴宣布推出 Ultralytics YOLO11 🚀,这是我们最先进视觉模型的最新进展!现已在 **[GitHub](https://github.com/ultralytics/ultralytics)** 上发布。YOLO11 在速度、精度和易用性方面进一步提升,无论是处理目标检测、图像分割还是图像分类任务,YOLO11 都具备出色的性能和多功能性,助您在各种应用中脱颖而出。
|
||||
|
||||
立即开始,解锁 YOLO11 的全部潜力!访问 [Ultralytics 文档](https://docs.ultralytics.com/) 获取全面的指南和资源:
|
||||
|
||||
[](https://badge.fury.io/py/ultralytics) [](https://www.pepy.tech/projects/ultralytics)
|
||||
|
||||
```bash
|
||||
pip install ultralytics
|
||||
```
|
||||
|
||||
<div align="center">
|
||||
<a href="https://www.ultralytics.com/yolo" target="_blank">
|
||||
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png"></a>
|
||||
</div>
|
||||
|
||||
## <div align="center">文档</div>
|
||||
|
||||
有关训练、测试和部署的完整文档见[YOLOv5 文档](https://docs.ultralytics.com/yolov5/)。请参阅下面的快速入门示例。
|
||||
|
||||
<details open>
|
||||
<summary>安装</summary>
|
||||
|
||||
克隆 repo,并要求在 [**Python>=3.8.0**](https://www.python.org/) 环境中安装 [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) ,且要求 [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/) 。
|
||||
|
||||
```bash
|
||||
git clone https://github.com/ultralytics/yolov5 # clone
|
||||
cd yolov5
|
||||
pip install -r requirements.txt # install
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>推理</summary>
|
||||
|
||||
使用 YOLOv5 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/) 推理。最新 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 将自动的从 YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下载。
|
||||
|
||||
```python
|
||||
import torch
|
||||
|
||||
# Model
|
||||
model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom
|
||||
|
||||
# Images
|
||||
img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
|
||||
|
||||
# Inference
|
||||
results = model(img)
|
||||
|
||||
# Results
|
||||
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>使用 detect.py 推理</summary>
|
||||
|
||||
`detect.py` 在各种来源上运行推理, [模型](https://github.com/ultralytics/yolov5/tree/master/models) 自动从 最新的YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下载,并将结果保存到 `runs/detect` 。
|
||||
|
||||
```bash
|
||||
python detect.py --weights yolov5s.pt --source 0 # webcam
|
||||
img.jpg # image
|
||||
vid.mp4 # video
|
||||
screen # screenshot
|
||||
path/ # directory
|
||||
list.txt # list of images
|
||||
list.streams # list of streams
|
||||
'path/*.jpg' # glob
|
||||
'https://youtu.be/LNwODJXcvt4' # YouTube
|
||||
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>训练</summary>
|
||||
|
||||
下面的命令重现 YOLOv5 在 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) 数据集上的结果。 最新的 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 和 [数据集](https://github.com/ultralytics/yolov5/tree/master/data)
|
||||
将自动的从 YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下载。 YOLOv5n/s/m/l/x 在 V100 GPU 的训练时间为 1/2/4/6/8 天( [多GPU](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/) 训练速度更快)。 尽可能使用更大的 `--batch-size` ,或通过 `--batch-size -1` 实现 YOLOv5 [自动批处理](https://github.com/ultralytics/yolov5/pull/5092) 。下方显示的 batchsize 适用于 V100-16GB。
|
||||
|
||||
```bash
|
||||
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
|
||||
yolov5s 64
|
||||
yolov5m 40
|
||||
yolov5l 24
|
||||
yolov5x 16
|
||||
```
|
||||
|
||||
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
|
||||
|
||||
</details>
|
||||
|
||||
<details open>
|
||||
<summary>教程</summary>
|
||||
|
||||
- [自定义数据训练](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/) 🚀 **推荐**
|
||||
- [最佳训练效果的提示](https://docs.ultralytics.com/guides/model-training-tips/) ☘️
|
||||
- [多GPU训练](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/)
|
||||
- [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/) 🌟 **全新**
|
||||
- [TFLite, ONNX, CoreML, TensorRT 导出](https://docs.ultralytics.com/yolov5/tutorials/model_export/) 🚀
|
||||
- [NVIDIA Jetson 平台部署](https://docs.ultralytics.com/yolov5/tutorials/running_on_jetson_nano/) 🌟 **全新**
|
||||
- [测试时增强 (TTA)](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/)
|
||||
- [模型集成](https://docs.ultralytics.com/yolov5/tutorials/model_ensembling/)
|
||||
- [模型剪枝/稀疏化](https://docs.ultralytics.com/yolov5/tutorials/model_pruning_and_sparsity/)
|
||||
- [超参数进化](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution/)
|
||||
- [冻结层的迁移学习](https://docs.ultralytics.com/yolov5/tutorials/transfer_learning_with_frozen_layers/)
|
||||
- [架构概述](https://docs.ultralytics.com/yolov5/tutorials/architecture_description/) 🌟 **全新**
|
||||
- [使用 Ultralytics HUB 进行 YOLO 训练和部署](https://www.ultralytics.com/hub) 🚀 **推荐**
|
||||
- [ClearML 日志记录](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration/)
|
||||
- [与 Neural Magic 的 Deepsparse 集成的 YOLOv5](https://docs.ultralytics.com/yolov5/tutorials/neural_magic_pruning_quantization/)
|
||||
- [Comet 日志记录](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration/) 🌟 **全新**
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">集成</div>
|
||||
|
||||
我们与领先的 AI 平台的关键集成扩展了 Ultralytics 产品的功能,提升了数据集标注、训练、可视化和模型管理等任务。探索 Ultralytics 如何通过与 [W&B](https://docs.wandb.ai/guides/integrations/ultralytics/)、[Comet](https://bit.ly/yolov8-readme-comet)、[Roboflow](https://roboflow.com/?ref=ultralytics) 和 [OpenVINO](https://docs.ultralytics.com/integrations/openvino/) 的合作,优化您的 AI 工作流程。
|
||||
|
||||
<br>
|
||||
<a href="https://www.ultralytics.com/hub" target="_blank">
|
||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations"></a>
|
||||
<br>
|
||||
<br>
|
||||
|
||||
<div align="center">
|
||||
<a href="https://www.ultralytics.com/hub">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics HUB logo"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
|
||||
<a href="https://docs.wandb.ai/guides/integrations/ultralytics/">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="W&B logo"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
|
||||
<a href="https://bit.ly/yolov8-readme-comet">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" alt="Comet ML logo"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
|
||||
<a href="https://bit.ly/yolov5-neuralmagic">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="NeuralMagic logo"></a>
|
||||
</div>
|
||||
|
||||
| Ultralytics HUB 🚀 | W&B | Comet ⭐ 全新 | Neural Magic |
|
||||
| :----------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------: |
|
||||
| 简化 YOLO 工作流程:通过 [Ultralytics HUB](https://www.ultralytics.com/hub) 轻松标注、训练和部署。立即试用! | 使用 [Weights & Biases](https://docs.wandb.ai/guides/integrations/ultralytics/) 跟踪实验、超参数和结果 | 永久免费,[Comet](https://bit.ly/yolov5-readme-comet) 允许您保存 YOLO11 模型、恢复训练,并交互式地可视化和调试预测结果 | 使用 [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) 运行 YOLO11 推理,速度提升至 6 倍 |
|
||||
|
||||
## <div align="center">Ultralytics HUB</div>
|
||||
|
||||
[Ultralytics HUB](https://www.ultralytics.com/hub) 是我们的⭐**新的**用于可视化数据集、训练 YOLOv5 🚀 模型并以无缝体验部署到现实世界的无代码解决方案。现在开始 **免费** 使用他!
|
||||
|
||||
<a align="center" href="https://www.ultralytics.com/hub" target="_blank">
|
||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
|
||||
|
||||
## <div align="center">为什么选择 YOLOv5</div>
|
||||
|
||||
YOLOv5 超级容易上手,简单易学。我们优先考虑现实世界的结果。
|
||||
|
||||
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
|
||||
<details>
|
||||
<summary>YOLOv5-P5 640 图</summary>
|
||||
|
||||
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
|
||||
</details>
|
||||
<details>
|
||||
<summary>图表笔记</summary>
|
||||
|
||||
- **COCO AP val** 表示 mAP@0.5:0.95 指标,在 [COCO val2017](http://cocodataset.org) 数据集的 5000 张图像上测得, 图像包含 256 到 1536 各种推理大小。
|
||||
- **显卡推理速度** 为在 [COCO val2017](http://cocodataset.org) 数据集上的平均推理时间,使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100实例,batchsize 为 32 。
|
||||
- **EfficientDet** 数据来自 [google/automl](https://github.com/google/automl) , batchsize 为32。
|
||||
- **复现命令** 为 `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
|
||||
|
||||
</details>
|
||||
|
||||
### 预训练模型
|
||||
|
||||
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | 推理速度<br><sup>CPU b1<br>(ms) | 推理速度<br><sup>V100 b1<br>(ms) | 速度<br><sup>V100 b32<br>(ms) | 参数量<br><sup>(M) | FLOPs<br><sup>@640 (B) |
|
||||
| ---------------------------------------------------------------------------------------------- | --------------------- | -------------------- | ----------------- | --------------------------------- | ---------------------------------- | ------------------------------- | ------------------ | ---------------------- |
|
||||
| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** |
|
||||
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
|
||||
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
|
||||
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
|
||||
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
|
||||
| | | | | | | | | |
|
||||
| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 |
|
||||
| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 |
|
||||
| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
|
||||
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
|
||||
| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x6.pt)<br>+[TTA] | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- |
|
||||
|
||||
<details>
|
||||
<summary>笔记</summary>
|
||||
|
||||
- 所有模型都使用默认配置,训练 300 epochs。n和s模型使用 [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) ,其他模型都使用 [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml) 。
|
||||
- \*\*mAP<sup>val</sup>\*\*在单模型单尺度上计算,数据集使用 [COCO val2017](http://cocodataset.org) 。<br>复现命令 `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
|
||||
- **推理速度**在 COCO val 图像总体时间上进行平均得到,测试环境使用[AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/)实例。 NMS 时间 (大约 1 ms/img) 不包括在内。<br>复现命令 `python val.py --data coco.yaml --img 640 --task speed --batch 1`
|
||||
- **TTA** [测试时数据增强](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/) 包括反射和尺度变换。<br>复现命令 `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">实例分割模型 ⭐ 新</div>
|
||||
|
||||
我们新的 YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) 实例分割模型是世界上最快和最准确的模型,击败所有当前 [SOTA 基准](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco)。我们使它非常易于训练、验证和部署。更多细节请查看 [发行说明](https://github.com/ultralytics/yolov5/releases/v7.0) 或访问我们的 [YOLOv5 分割 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) 以快速入门。
|
||||
|
||||
<details>
|
||||
<summary>实例分割模型列表</summary>
|
||||
|
||||
<br>
|
||||
|
||||
<div align="center">
|
||||
<a align="center" href="https://www.ultralytics.com/yolo" target="_blank">
|
||||
<img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png"></a>
|
||||
</div>
|
||||
|
||||
我们使用 A100 GPU 在 COCO 上以 640 图像大小训练了 300 epochs 得到 YOLOv5 分割模型。我们将所有模型导出到 ONNX FP32 以进行 CPU 速度测试,并导出到 TensorRT FP16 以进行 GPU 速度测试。为了便于再现,我们在 Google [Colab Pro](https://colab.research.google.com/signup) 上进行了所有速度测试。
|
||||
|
||||
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 训练时长<br><sup>300 epochs<br>A100 GPU(小时) | 推理速度<br><sup>ONNX CPU<br>(ms) | 推理速度<br><sup>TRT A100<br>(ms) | 参数量<br><sup>(M) | FLOPs<br><sup>@640 (B) |
|
||||
| ------------------------------------------------------------------------------------------ | --------------------- | -------------------- | --------------------- | ----------------------------------------------- | ----------------------------------- | ----------------------------------- | ------------------ | ---------------------- |
|
||||
| [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** |
|
||||
| [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 |
|
||||
| [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 |
|
||||
| [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 |
|
||||
| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 |
|
||||
|
||||
- 所有模型使用 SGD 优化器训练, 都使用 `lr0=0.01` 和 `weight_decay=5e-5` 参数, 图像大小为 640 。<br>训练 log 可以查看 https://wandb.ai/glenn-jocher/YOLOv5_v70_official
|
||||
- **准确性**结果都在 COCO 数据集上,使用单模型单尺度测试得到。<br>复现命令 `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
|
||||
- **推理速度**是使用 100 张图像推理时间进行平均得到,测试环境使用 [Colab Pro](https://colab.research.google.com/signup) 上 A100 高 RAM 实例。结果仅表示推理速度(NMS 每张图像增加约 1 毫秒)。<br>复现命令 `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
|
||||
- **模型转换**到 FP32 的 ONNX 和 FP16 的 TensorRT 脚本为 `export.py`.<br>运行命令 `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>分割模型使用示例 <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
|
||||
|
||||
### 训练
|
||||
|
||||
YOLOv5分割训练支持自动下载 COCO128-seg 分割数据集,用户仅需在启动指令中包含 `--data coco128-seg.yaml` 参数。 若要手动下载,使用命令 `bash data/scripts/get_coco.sh --train --val --segments`, 在下载完毕后,使用命令 `python train.py --data coco.yaml` 开启训练。
|
||||
|
||||
```bash
|
||||
# 单 GPU
|
||||
python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
|
||||
|
||||
# 多 GPU, DDP 模式
|
||||
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
|
||||
```
|
||||
|
||||
### 验证
|
||||
|
||||
在 COCO 数据集上验证 YOLOv5s-seg mask mAP:
|
||||
|
||||
```bash
|
||||
bash data/scripts/get_coco.sh --val --segments # 下载 COCO val segments 数据集 (780MB, 5000 images)
|
||||
python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # 验证
|
||||
```
|
||||
|
||||
### 预测
|
||||
|
||||
使用预训练的 YOLOv5m-seg.pt 来预测 bus.jpg:
|
||||
|
||||
```bash
|
||||
python segment/predict.py --weights yolov5m-seg.pt --source data/images/bus.jpg
|
||||
```
|
||||
|
||||
```python
|
||||
model = torch.hub.load(
|
||||
"ultralytics/yolov5", "custom", "yolov5m-seg.pt"
|
||||
) # 从load from PyTorch Hub 加载模型 (WARNING: 推理暂未支持)
|
||||
```
|
||||
|
||||
|  |  |
|
||||
| ---------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- |
|
||||
|
||||
### 模型导出
|
||||
|
||||
将 YOLOv5s-seg 模型导出到 ONNX 和 TensorRT:
|
||||
|
||||
```bash
|
||||
python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">分类网络 ⭐ 新</div>
|
||||
|
||||
YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) 带来对分类模型训练、验证和部署的支持!详情请查看 [发行说明](https://github.com/ultralytics/yolov5/releases/v6.2) 或访问我们的 [YOLOv5 分类 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb) 以快速入门。
|
||||
|
||||
<details>
|
||||
<summary>分类网络模型</summary>
|
||||
|
||||
<br>
|
||||
|
||||
我们使用 4xA100 实例在 ImageNet 上训练了 90 个 epochs 得到 YOLOv5-cls 分类模型,我们训练了 ResNet 和 EfficientNet 模型以及相同的默认训练设置以进行比较。我们将所有模型导出到 ONNX FP32 以进行 CPU 速度测试,并导出到 TensorRT FP16 以进行 GPU 速度测试。为了便于重现,我们在 Google 上进行了所有速度测试 [Colab Pro](https://colab.research.google.com/signup) 。
|
||||
|
||||
| 模型 | 尺寸<br><sup>(像素) | acc<br><sup>top1 | acc<br><sup>top5 | 训练时长<br><sup>90 epochs<br>4xA100(小时) | 推理速度<br><sup>ONNX CPU<br>(ms) | 推理速度<br><sup>TensorRT V100<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>@640 (B) |
|
||||
| -------------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | -------------------------------------------- | ----------------------------------- | ---------------------------------------- | ---------------- | ---------------------- |
|
||||
| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** |
|
||||
| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 |
|
||||
| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 |
|
||||
| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 |
|
||||
| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 |
|
||||
| | | | | | | | | |
|
||||
| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 |
|
||||
| [Resnetzch](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 |
|
||||
| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 |
|
||||
| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 |
|
||||
| | | | | | | | | |
|
||||
| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 |
|
||||
| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 |
|
||||
| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 |
|
||||
| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 |
|
||||
|
||||
<details>
|
||||
<summary>Table Notes (点击以展开)</summary>
|
||||
|
||||
- 所有模型都使用 SGD 优化器训练 90 个 epochs,都使用 `lr0=0.001` 和 `weight_decay=5e-5` 参数, 图像大小为 224 ,且都使用默认设置。<br>训练 log 可以查看 https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2
|
||||
- **准确性**都在单模型单尺度上计算,数据集使用 [ImageNet-1k](https://www.image-net.org/index.php) 。<br>复现命令 `python classify/val.py --data ../datasets/imagenet --img 224`
|
||||
- **推理速度**是使用 100 个推理图像进行平均得到,测试环境使用谷歌 [Colab Pro](https://colab.research.google.com/signup) V100 高 RAM 实例。<br>复现命令 `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
|
||||
- **模型导出**到 FP32 的 ONNX 和 FP16 的 TensorRT 使用 `export.py` 。<br>复现命令 `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
|
||||
</details>
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>分类训练示例 <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
|
||||
|
||||
### 训练
|
||||
|
||||
YOLOv5 分类训练支持自动下载 MNIST、Fashion-MNIST、CIFAR10、CIFAR100、Imagenette、Imagewoof 和 ImageNet 数据集,命令中使用 `--data` 即可。 MNIST 示例 `--data mnist` 。
|
||||
|
||||
```bash
|
||||
# 单 GPU
|
||||
python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
|
||||
|
||||
# 多 GPU, DDP 模式
|
||||
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
|
||||
```
|
||||
|
||||
### 验证
|
||||
|
||||
在 ImageNet-1k 数据集上验证 YOLOv5m-cls 的准确性:
|
||||
|
||||
```bash
|
||||
bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
|
||||
python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate
|
||||
```
|
||||
|
||||
### 预测
|
||||
|
||||
使用预训练的 YOLOv5s-cls.pt 来预测 bus.jpg:
|
||||
|
||||
```bash
|
||||
python classify/predict.py --weights yolov5s-cls.pt --source data/images/bus.jpg
|
||||
```
|
||||
|
||||
```python
|
||||
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s-cls.pt") # load from PyTorch Hub
|
||||
```
|
||||
|
||||
### 模型导出
|
||||
|
||||
将一组经过训练的 YOLOv5s-cls、ResNet 和 EfficientNet 模型导出到 ONNX 和 TensorRT:
|
||||
|
||||
```bash
|
||||
python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">环境</div>
|
||||
|
||||
使用下面我们经过验证的环境,在几秒钟内开始使用 YOLOv5 。单击下面的图标了解详细信息。
|
||||
|
||||
<div align="center">
|
||||
<a href="https://bit.ly/yolov5-paperspace-notebook">
|
||||
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-gradient.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
||||
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
|
||||
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-colab-small.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
||||
<a href="https://www.kaggle.com/models/ultralytics/yolov5">
|
||||
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-kaggle-small.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
||||
<a href="https://hub.docker.com/r/ultralytics/yolov5">
|
||||
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-docker-small.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
||||
<a href="https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/">
|
||||
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-aws-small.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
|
||||
<a href="https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/">
|
||||
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-gcp-small.png" width="10%" /></a>
|
||||
</div>
|
||||
|
||||
## <div align="center">贡献</div>
|
||||
|
||||
我们喜欢您的意见或建议!我们希望尽可能简单和透明地为 YOLOv5 做出贡献。请看我们的 [投稿指南](https://docs.ultralytics.com/help/contributing/),并填写 [YOLOv5调查](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) 向我们发送您的体验反馈。感谢我们所有的贡献者!
|
||||
|
||||
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
|
||||
|
||||
<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" /></a>
|
||||
|
||||
## <div align="center">许可证</div>
|
||||
|
||||
Ultralytics 提供两种许可证选项以适应各种使用场景:
|
||||
|
||||
- **AGPL-3.0 许可证**:这个[OSI 批准](https://opensource.org/license)的开源许可证非常适合学生和爱好者,可以推动开放的协作和知识分享。请查看[LICENSE](https://github.com/ultralytics/yolov5/blob/master/LICENSE) 文件以了解更多细节。
|
||||
- **企业许可证**:专为商业用途设计,该许可证允许将 Ultralytics 的软件和 AI 模型无缝集成到商业产品和服务中,从而绕过 AGPL-3.0 的开源要求。如果您的场景涉及将我们的解决方案嵌入到商业产品中,请通过 [Ultralytics Licensing](https://www.ultralytics.com/license)与我们联系。
|
||||
|
||||
## <div align="center">联系方式</div>
|
||||
|
||||
对于 Ultralytics 的错误报告和功能请求,请访问 [GitHub Issues](https://github.com/ultralytics/yolov5/issues),并加入我们的 [Discord](https://discord.com/invite/ultralytics) 社区进行问题和讨论!
|
||||
|
||||
<br>
|
||||
<div align="center">
|
||||
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
|
||||
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
|
||||
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
|
||||
<a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
|
||||
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
|
||||
<a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="3%" alt="Ultralytics BiliBili"></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
|
||||
<a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
|
||||
</div>
|
||||
|
||||
[tta]: https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation
|
||||
@ -1,294 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Run YOLOv5 benchmarks on all supported export formats.
|
||||
|
||||
Format | `export.py --include` | Model
|
||||
--- | --- | ---
|
||||
PyTorch | - | yolov5s.pt
|
||||
TorchScript | `torchscript` | yolov5s.torchscript
|
||||
ONNX | `onnx` | yolov5s.onnx
|
||||
OpenVINO | `openvino` | yolov5s_openvino_model/
|
||||
TensorRT | `engine` | yolov5s.engine
|
||||
CoreML | `coreml` | yolov5s.mlpackage
|
||||
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
|
||||
TensorFlow GraphDef | `pb` | yolov5s.pb
|
||||
TensorFlow Lite | `tflite` | yolov5s.tflite
|
||||
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
|
||||
TensorFlow.js | `tfjs` | yolov5s_web_model/
|
||||
|
||||
Requirements:
|
||||
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
|
||||
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
|
||||
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
|
||||
|
||||
Usage:
|
||||
$ python benchmarks.py --weights yolov5s.pt --img 640
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import platform
|
||||
import sys
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import pandas as pd
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[0] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
||||
|
||||
import export
|
||||
from models.experimental import attempt_load
|
||||
from models.yolo import SegmentationModel
|
||||
from segment.val import run as val_seg
|
||||
from utils import notebook_init
|
||||
from utils.general import LOGGER, check_yaml, file_size, print_args
|
||||
from utils.torch_utils import select_device
|
||||
from val import run as val_det
|
||||
|
||||
|
||||
def run(
|
||||
weights=ROOT / "yolov5s.pt", # weights path
|
||||
imgsz=640, # inference size (pixels)
|
||||
batch_size=1, # batch size
|
||||
data=ROOT / "data/coco128.yaml", # dataset.yaml path
|
||||
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
half=False, # use FP16 half-precision inference
|
||||
test=False, # test exports only
|
||||
pt_only=False, # test PyTorch only
|
||||
hard_fail=False, # throw error on benchmark failure
|
||||
):
|
||||
"""
|
||||
Run YOLOv5 benchmarks on multiple export formats and log results for model performance evaluation.
|
||||
|
||||
Args:
|
||||
weights (Path | str): Path to the model weights file (default: ROOT / "yolov5s.pt").
|
||||
imgsz (int): Inference size in pixels (default: 640).
|
||||
batch_size (int): Batch size for inference (default: 1).
|
||||
data (Path | str): Path to the dataset.yaml file (default: ROOT / "data/coco128.yaml").
|
||||
device (str): CUDA device, e.g., '0' or '0,1,2,3' or 'cpu' (default: "").
|
||||
half (bool): Use FP16 half-precision inference (default: False).
|
||||
test (bool): Test export formats only (default: False).
|
||||
pt_only (bool): Test PyTorch format only (default: False).
|
||||
hard_fail (bool): Throw an error on benchmark failure if True (default: False).
|
||||
|
||||
Returns:
|
||||
None. Logs information about the benchmark results, including the format, size, mAP50-95, and inference time.
|
||||
|
||||
Notes:
|
||||
Supported export formats and models include PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML,
|
||||
TensorFlow SavedModel, TensorFlow GraphDef, TensorFlow Lite, and TensorFlow Edge TPU. Edge TPU and TF.js
|
||||
are unsupported.
|
||||
|
||||
Example:
|
||||
```python
|
||||
$ python benchmarks.py --weights yolov5s.pt --img 640
|
||||
```
|
||||
|
||||
Usage:
|
||||
Install required packages:
|
||||
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU support
|
||||
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU support
|
||||
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
|
||||
|
||||
Run benchmarks:
|
||||
$ python benchmarks.py --weights yolov5s.pt --img 640
|
||||
"""
|
||||
y, t = [], time.time()
|
||||
device = select_device(device)
|
||||
model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
|
||||
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
|
||||
try:
|
||||
assert i not in (9, 10), "inference not supported" # Edge TPU and TF.js are unsupported
|
||||
assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML
|
||||
if "cpu" in device.type:
|
||||
assert cpu, "inference not supported on CPU"
|
||||
if "cuda" in device.type:
|
||||
assert gpu, "inference not supported on GPU"
|
||||
|
||||
# Export
|
||||
if f == "-":
|
||||
w = weights # PyTorch format
|
||||
else:
|
||||
w = export.run(
|
||||
weights=weights, imgsz=[imgsz], include=[f], batch_size=batch_size, device=device, half=half
|
||||
)[-1] # all others
|
||||
assert suffix in str(w), "export failed"
|
||||
|
||||
# Validate
|
||||
if model_type == SegmentationModel:
|
||||
result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
|
||||
metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
|
||||
else: # DetectionModel:
|
||||
result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
|
||||
metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
|
||||
speed = result[2][1] # times (preprocess, inference, postprocess)
|
||||
y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
|
||||
except Exception as e:
|
||||
if hard_fail:
|
||||
assert type(e) is AssertionError, f"Benchmark --hard-fail for {name}: {e}"
|
||||
LOGGER.warning(f"WARNING ⚠️ Benchmark failure for {name}: {e}")
|
||||
y.append([name, None, None, None]) # mAP, t_inference
|
||||
if pt_only and i == 0:
|
||||
break # break after PyTorch
|
||||
|
||||
# Print results
|
||||
LOGGER.info("\n")
|
||||
parse_opt()
|
||||
notebook_init() # print system info
|
||||
c = ["Format", "Size (MB)", "mAP50-95", "Inference time (ms)"] if map else ["Format", "Export", "", ""]
|
||||
py = pd.DataFrame(y, columns=c)
|
||||
LOGGER.info(f"\nBenchmarks complete ({time.time() - t:.2f}s)")
|
||||
LOGGER.info(str(py if map else py.iloc[:, :2]))
|
||||
if hard_fail and isinstance(hard_fail, str):
|
||||
metrics = py["mAP50-95"].array # values to compare to floor
|
||||
floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
|
||||
assert all(x > floor for x in metrics if pd.notna(x)), f"HARD FAIL: mAP50-95 < floor {floor}"
|
||||
return py
|
||||
|
||||
|
||||
def test(
|
||||
weights=ROOT / "yolov5s.pt", # weights path
|
||||
imgsz=640, # inference size (pixels)
|
||||
batch_size=1, # batch size
|
||||
data=ROOT / "data/coco128.yaml", # dataset.yaml path
|
||||
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
half=False, # use FP16 half-precision inference
|
||||
test=False, # test exports only
|
||||
pt_only=False, # test PyTorch only
|
||||
hard_fail=False, # throw error on benchmark failure
|
||||
):
|
||||
"""
|
||||
Run YOLOv5 export tests for all supported formats and log the results, including export statuses.
|
||||
|
||||
Args:
|
||||
weights (Path | str): Path to the model weights file (.pt format). Default is 'ROOT / "yolov5s.pt"'.
|
||||
imgsz (int): Inference image size (in pixels). Default is 640.
|
||||
batch_size (int): Batch size for testing. Default is 1.
|
||||
data (Path | str): Path to the dataset configuration file (.yaml format). Default is 'ROOT / "data/coco128.yaml"'.
|
||||
device (str): Device for running the tests, can be 'cpu' or a specific CUDA device ('0', '0,1,2,3', etc.). Default is an empty string.
|
||||
half (bool): Use FP16 half-precision for inference if True. Default is False.
|
||||
test (bool): Test export formats only without running inference. Default is False.
|
||||
pt_only (bool): Test only the PyTorch model if True. Default is False.
|
||||
hard_fail (bool): Raise error on export or test failure if True. Default is False.
|
||||
|
||||
Returns:
|
||||
pd.DataFrame: DataFrame containing the results of the export tests, including format names and export statuses.
|
||||
|
||||
Examples:
|
||||
```python
|
||||
$ python benchmarks.py --weights yolov5s.pt --img 640
|
||||
```
|
||||
|
||||
Notes:
|
||||
Supported export formats and models include PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML, TensorFlow
|
||||
SavedModel, TensorFlow GraphDef, TensorFlow Lite, and TensorFlow Edge TPU. Edge TPU and TF.js are unsupported.
|
||||
|
||||
Usage:
|
||||
Install required packages:
|
||||
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU support
|
||||
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU support
|
||||
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
|
||||
Run export tests:
|
||||
$ python benchmarks.py --weights yolov5s.pt --img 640
|
||||
"""
|
||||
y, t = [], time.time()
|
||||
device = select_device(device)
|
||||
for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
|
||||
try:
|
||||
w = (
|
||||
weights
|
||||
if f == "-"
|
||||
else export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]
|
||||
) # weights
|
||||
assert suffix in str(w), "export failed"
|
||||
y.append([name, True])
|
||||
except Exception:
|
||||
y.append([name, False]) # mAP, t_inference
|
||||
|
||||
# Print results
|
||||
LOGGER.info("\n")
|
||||
parse_opt()
|
||||
notebook_init() # print system info
|
||||
py = pd.DataFrame(y, columns=["Format", "Export"])
|
||||
LOGGER.info(f"\nExports complete ({time.time() - t:.2f}s)")
|
||||
LOGGER.info(str(py))
|
||||
return py
|
||||
|
||||
|
||||
def parse_opt():
|
||||
"""
|
||||
Parses command-line arguments for YOLOv5 model inference configuration.
|
||||
|
||||
Args:
|
||||
weights (str): The path to the weights file. Defaults to 'ROOT / "yolov5s.pt"'.
|
||||
imgsz (int): Inference size in pixels. Defaults to 640.
|
||||
batch_size (int): Batch size. Defaults to 1.
|
||||
data (str): Path to the dataset YAML file. Defaults to 'ROOT / "data/coco128.yaml"'.
|
||||
device (str): CUDA device, e.g., '0' or '0,1,2,3' or 'cpu'. Defaults to an empty string (auto-select).
|
||||
half (bool): Use FP16 half-precision inference. This is a flag and defaults to False.
|
||||
test (bool): Test exports only. This is a flag and defaults to False.
|
||||
pt_only (bool): Test PyTorch only. This is a flag and defaults to False.
|
||||
hard_fail (bool | str): Throw an error on benchmark failure. Can be a boolean or a string representing a minimum
|
||||
metric floor, e.g., '0.29'. Defaults to False.
|
||||
|
||||
Returns:
|
||||
argparse.Namespace: Parsed command-line arguments encapsulated in an argparse Namespace object.
|
||||
|
||||
Notes:
|
||||
The function modifies the 'opt.data' by checking and validating the YAML path using 'check_yaml()'.
|
||||
The parsed arguments are printed for reference using 'print_args()'.
|
||||
"""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path")
|
||||
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)")
|
||||
parser.add_argument("--batch-size", type=int, default=1, help="batch size")
|
||||
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
|
||||
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
||||
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
|
||||
parser.add_argument("--test", action="store_true", help="test exports only")
|
||||
parser.add_argument("--pt-only", action="store_true", help="test PyTorch only")
|
||||
parser.add_argument("--hard-fail", nargs="?", const=True, default=False, help="Exception on error or < min metric")
|
||||
opt = parser.parse_args()
|
||||
opt.data = check_yaml(opt.data) # check YAML
|
||||
print_args(vars(opt))
|
||||
return opt
|
||||
|
||||
|
||||
def main(opt):
|
||||
"""
|
||||
Executes YOLOv5 benchmark tests or main training/inference routines based on the provided command-line arguments.
|
||||
|
||||
Args:
|
||||
opt (argparse.Namespace): Parsed command-line arguments including options for weights, image size, batch size, data
|
||||
configuration, device, and other flags for inference settings.
|
||||
|
||||
Returns:
|
||||
None: This function does not return any value. It leverages side-effects such as logging and running benchmarks.
|
||||
|
||||
Example:
|
||||
```python
|
||||
if __name__ == "__main__":
|
||||
opt = parse_opt()
|
||||
main(opt)
|
||||
```
|
||||
|
||||
Notes:
|
||||
- For a complete list of supported export formats and their respective requirements, refer to the
|
||||
[Ultralytics YOLOv5 Export Formats](https://github.com/ultralytics/yolov5#export-formats).
|
||||
- Ensure that you have installed all necessary dependencies by following the installation instructions detailed in
|
||||
the [main repository](https://github.com/ultralytics/yolov5#installation).
|
||||
|
||||
```shell
|
||||
# Running benchmarks on default weights and image size
|
||||
$ python benchmarks.py --weights yolov5s.pt --img 640
|
||||
```
|
||||
"""
|
||||
test(**vars(opt)) if opt.test else run(**vars(opt))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
opt = parse_opt()
|
||||
main(opt)
|
||||
@ -1,242 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
|
||||
|
||||
Usage - sources:
|
||||
$ python classify/predict.py --weights yolov5s-cls.pt --source 0 # webcam
|
||||
img.jpg # image
|
||||
vid.mp4 # video
|
||||
screen # screenshot
|
||||
path/ # directory
|
||||
list.txt # list of images
|
||||
list.streams # list of streams
|
||||
'path/*.jpg' # glob
|
||||
'https://youtu.be/LNwODJXcvt4' # YouTube
|
||||
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
||||
|
||||
Usage - formats:
|
||||
$ python classify/predict.py --weights yolov5s-cls.pt # PyTorch
|
||||
yolov5s-cls.torchscript # TorchScript
|
||||
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
||||
yolov5s-cls_openvino_model # OpenVINO
|
||||
yolov5s-cls.engine # TensorRT
|
||||
yolov5s-cls.mlmodel # CoreML (macOS-only)
|
||||
yolov5s-cls_saved_model # TensorFlow SavedModel
|
||||
yolov5s-cls.pb # TensorFlow GraphDef
|
||||
yolov5s-cls.tflite # TensorFlow Lite
|
||||
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
|
||||
yolov5s-cls_paddle_model # PaddlePaddle
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import platform
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[1] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||
|
||||
from ultralytics.utils.plotting import Annotator
|
||||
|
||||
from models.common import DetectMultiBackend
|
||||
from utils.augmentations import classify_transforms
|
||||
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
|
||||
from utils.general import (
|
||||
LOGGER,
|
||||
Profile,
|
||||
check_file,
|
||||
check_img_size,
|
||||
check_imshow,
|
||||
check_requirements,
|
||||
colorstr,
|
||||
cv2,
|
||||
increment_path,
|
||||
print_args,
|
||||
strip_optimizer,
|
||||
)
|
||||
from utils.torch_utils import select_device, smart_inference_mode
|
||||
|
||||
|
||||
@smart_inference_mode()
|
||||
def run(
|
||||
weights=ROOT / "yolov5s-cls.pt", # model.pt path(s)
|
||||
source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam)
|
||||
data=ROOT / "data/coco128.yaml", # dataset.yaml path
|
||||
imgsz=(224, 224), # inference size (height, width)
|
||||
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
view_img=False, # show results
|
||||
save_txt=False, # save results to *.txt
|
||||
nosave=False, # do not save images/videos
|
||||
augment=False, # augmented inference
|
||||
visualize=False, # visualize features
|
||||
update=False, # update all models
|
||||
project=ROOT / "runs/predict-cls", # save results to project/name
|
||||
name="exp", # save results to project/name
|
||||
exist_ok=False, # existing project/name ok, do not increment
|
||||
half=False, # use FP16 half-precision inference
|
||||
dnn=False, # use OpenCV DNN for ONNX inference
|
||||
vid_stride=1, # video frame-rate stride
|
||||
):
|
||||
"""Conducts YOLOv5 classification inference on diverse input sources and saves results."""
|
||||
source = str(source)
|
||||
save_img = not nosave and not source.endswith(".txt") # save inference images
|
||||
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
||||
is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
|
||||
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
|
||||
screenshot = source.lower().startswith("screen")
|
||||
if is_url and is_file:
|
||||
source = check_file(source) # download
|
||||
|
||||
# Directories
|
||||
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
||||
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
||||
|
||||
# Load model
|
||||
device = select_device(device)
|
||||
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
||||
stride, names, pt = model.stride, model.names, model.pt
|
||||
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||
|
||||
# Dataloader
|
||||
bs = 1 # batch_size
|
||||
if webcam:
|
||||
view_img = check_imshow(warn=True)
|
||||
dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
|
||||
bs = len(dataset)
|
||||
elif screenshot:
|
||||
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
||||
else:
|
||||
dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
|
||||
vid_path, vid_writer = [None] * bs, [None] * bs
|
||||
|
||||
# Run inference
|
||||
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
|
||||
seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
|
||||
for path, im, im0s, vid_cap, s in dataset:
|
||||
with dt[0]:
|
||||
im = torch.Tensor(im).to(model.device)
|
||||
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
||||
if len(im.shape) == 3:
|
||||
im = im[None] # expand for batch dim
|
||||
|
||||
# Inference
|
||||
with dt[1]:
|
||||
results = model(im)
|
||||
|
||||
# Post-process
|
||||
with dt[2]:
|
||||
pred = F.softmax(results, dim=1) # probabilities
|
||||
|
||||
# Process predictions
|
||||
for i, prob in enumerate(pred): # per image
|
||||
seen += 1
|
||||
if webcam: # batch_size >= 1
|
||||
p, im0, frame = path[i], im0s[i].copy(), dataset.count
|
||||
s += f"{i}: "
|
||||
else:
|
||||
p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
|
||||
|
||||
p = Path(p) # to Path
|
||||
save_path = str(save_dir / p.name) # im.jpg
|
||||
txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt
|
||||
|
||||
s += "{:g}x{:g} ".format(*im.shape[2:]) # print string
|
||||
annotator = Annotator(im0, example=str(names), pil=True)
|
||||
|
||||
# Print results
|
||||
top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
|
||||
s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, "
|
||||
|
||||
# Write results
|
||||
text = "\n".join(f"{prob[j]:.2f} {names[j]}" for j in top5i)
|
||||
if save_img or view_img: # Add bbox to image
|
||||
annotator.text([32, 32], text, txt_color=(255, 255, 255))
|
||||
if save_txt: # Write to file
|
||||
with open(f"{txt_path}.txt", "a") as f:
|
||||
f.write(text + "\n")
|
||||
|
||||
# Stream results
|
||||
im0 = annotator.result()
|
||||
if view_img:
|
||||
if platform.system() == "Linux" and p not in windows:
|
||||
windows.append(p)
|
||||
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
||||
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
||||
cv2.imshow(str(p), im0)
|
||||
cv2.waitKey(1) # 1 millisecond
|
||||
|
||||
# Save results (image with detections)
|
||||
if save_img:
|
||||
if dataset.mode == "image":
|
||||
cv2.imwrite(save_path, im0)
|
||||
else: # 'video' or 'stream'
|
||||
if vid_path[i] != save_path: # new video
|
||||
vid_path[i] = save_path
|
||||
if isinstance(vid_writer[i], cv2.VideoWriter):
|
||||
vid_writer[i].release() # release previous video writer
|
||||
if vid_cap: # video
|
||||
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
||||
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
else: # stream
|
||||
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
||||
save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos
|
||||
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
|
||||
vid_writer[i].write(im0)
|
||||
|
||||
# Print time (inference-only)
|
||||
LOGGER.info(f"{s}{dt[1].dt * 1E3:.1f}ms")
|
||||
|
||||
# Print results
|
||||
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
|
||||
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
|
||||
if save_txt or save_img:
|
||||
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
|
||||
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
||||
if update:
|
||||
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
|
||||
|
||||
|
||||
def parse_opt():
|
||||
"""Parses command line arguments for YOLOv5 inference settings including model, source, device, and image size."""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-cls.pt", help="model path(s)")
|
||||
parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
|
||||
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
|
||||
parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[224], help="inference size h,w")
|
||||
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
||||
parser.add_argument("--view-img", action="store_true", help="show results")
|
||||
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
|
||||
parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
|
||||
parser.add_argument("--augment", action="store_true", help="augmented inference")
|
||||
parser.add_argument("--visualize", action="store_true", help="visualize features")
|
||||
parser.add_argument("--update", action="store_true", help="update all models")
|
||||
parser.add_argument("--project", default=ROOT / "runs/predict-cls", help="save results to project/name")
|
||||
parser.add_argument("--name", default="exp", help="save results to project/name")
|
||||
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
|
||||
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
|
||||
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
|
||||
parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
|
||||
opt = parser.parse_args()
|
||||
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
||||
print_args(vars(opt))
|
||||
return opt
|
||||
|
||||
|
||||
def main(opt):
|
||||
"""Executes YOLOv5 model inference with options for ONNX DNN and video frame-rate stride adjustments."""
|
||||
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
|
||||
run(**vars(opt))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
opt = parse_opt()
|
||||
main(opt)
|
||||
# 裁切 颜色 亮度 旋转 复制粘贴 对应label位置 改变
|
||||
@ -1,382 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Train a YOLOv5 classifier model on a classification dataset.
|
||||
|
||||
Usage - Single-GPU training:
|
||||
$ python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224
|
||||
|
||||
Usage - Multi-GPU DDP training:
|
||||
$ python -m torch.distributed.run --nproc_per_node 4 --master_port 2022 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
|
||||
|
||||
Datasets: --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/data'
|
||||
YOLOv5-cls models: --model yolov5n-cls.pt, yolov5s-cls.pt, yolov5m-cls.pt, yolov5l-cls.pt, yolov5x-cls.pt
|
||||
Torchvision models: --model resnet50, efficientnet_b0, etc. See https://pytorch.org/vision/stable/models.html
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
from copy import deepcopy
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.hub as hub
|
||||
import torch.optim.lr_scheduler as lr_scheduler
|
||||
import torchvision
|
||||
from torch.cuda import amp
|
||||
from tqdm import tqdm
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[1] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||
|
||||
from classify import val as validate
|
||||
from models.experimental import attempt_load
|
||||
from models.yolo import ClassificationModel, DetectionModel
|
||||
from utils.dataloaders import create_classification_dataloader
|
||||
from utils.general import (
|
||||
DATASETS_DIR,
|
||||
LOGGER,
|
||||
TQDM_BAR_FORMAT,
|
||||
WorkingDirectory,
|
||||
check_git_info,
|
||||
check_git_status,
|
||||
check_requirements,
|
||||
colorstr,
|
||||
download,
|
||||
increment_path,
|
||||
init_seeds,
|
||||
print_args,
|
||||
yaml_save,
|
||||
)
|
||||
from utils.loggers import GenericLogger
|
||||
from utils.plots import imshow_cls
|
||||
from utils.torch_utils import (
|
||||
ModelEMA,
|
||||
de_parallel,
|
||||
model_info,
|
||||
reshape_classifier_output,
|
||||
select_device,
|
||||
smart_DDP,
|
||||
smart_optimizer,
|
||||
smartCrossEntropyLoss,
|
||||
torch_distributed_zero_first,
|
||||
)
|
||||
|
||||
LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
||||
RANK = int(os.getenv("RANK", -1))
|
||||
WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
|
||||
GIT_INFO = check_git_info()
|
||||
|
||||
|
||||
def train(opt, device):
|
||||
"""Trains a YOLOv5 model, managing datasets, model optimization, logging, and saving checkpoints."""
|
||||
init_seeds(opt.seed + 1 + RANK, deterministic=True)
|
||||
save_dir, data, bs, epochs, nw, imgsz, pretrained = (
|
||||
opt.save_dir,
|
||||
Path(opt.data),
|
||||
opt.batch_size,
|
||||
opt.epochs,
|
||||
min(os.cpu_count() - 1, opt.workers),
|
||||
opt.imgsz,
|
||||
str(opt.pretrained).lower() == "true",
|
||||
)
|
||||
cuda = device.type != "cpu"
|
||||
|
||||
# Directories
|
||||
wdir = save_dir / "weights"
|
||||
wdir.mkdir(parents=True, exist_ok=True) # make dir
|
||||
last, best = wdir / "last.pt", wdir / "best.pt"
|
||||
|
||||
# Save run settings
|
||||
yaml_save(save_dir / "opt.yaml", vars(opt))
|
||||
|
||||
# Logger
|
||||
logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None
|
||||
|
||||
# Download Dataset
|
||||
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
|
||||
data_dir = data if data.is_dir() else (DATASETS_DIR / data)
|
||||
if not data_dir.is_dir():
|
||||
LOGGER.info(f"\nDataset not found ⚠️, missing path {data_dir}, attempting download...")
|
||||
t = time.time()
|
||||
if str(data) == "imagenet":
|
||||
subprocess.run(["bash", str(ROOT / "data/scripts/get_imagenet.sh")], shell=True, check=True)
|
||||
else:
|
||||
url = f"https://github.com/ultralytics/assets/releases/download/v0.0.0/{data}.zip"
|
||||
download(url, dir=data_dir.parent)
|
||||
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
|
||||
LOGGER.info(s)
|
||||
|
||||
# Dataloaders
|
||||
nc = len([x for x in (data_dir / "train").glob("*") if x.is_dir()]) # number of classes
|
||||
trainloader = create_classification_dataloader(
|
||||
path=data_dir / "train",
|
||||
imgsz=imgsz,
|
||||
batch_size=bs // WORLD_SIZE,
|
||||
augment=True,
|
||||
cache=opt.cache,
|
||||
rank=LOCAL_RANK,
|
||||
workers=nw,
|
||||
)
|
||||
|
||||
test_dir = data_dir / "test" if (data_dir / "test").exists() else data_dir / "val" # data/test or data/val
|
||||
if RANK in {-1, 0}:
|
||||
testloader = create_classification_dataloader(
|
||||
path=test_dir,
|
||||
imgsz=imgsz,
|
||||
batch_size=bs // WORLD_SIZE * 2,
|
||||
augment=False,
|
||||
cache=opt.cache,
|
||||
rank=-1,
|
||||
workers=nw,
|
||||
)
|
||||
|
||||
# Model
|
||||
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
|
||||
if Path(opt.model).is_file() or opt.model.endswith(".pt"):
|
||||
model = attempt_load(opt.model, device="cpu", fuse=False)
|
||||
elif opt.model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0
|
||||
model = torchvision.models.__dict__[opt.model](weights="IMAGENET1K_V1" if pretrained else None)
|
||||
else:
|
||||
m = hub.list("ultralytics/yolov5") # + hub.list('pytorch/vision') # models
|
||||
raise ModuleNotFoundError(f"--model {opt.model} not found. Available models are: \n" + "\n".join(m))
|
||||
if isinstance(model, DetectionModel):
|
||||
LOGGER.warning("WARNING ⚠️ pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'")
|
||||
model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10) # convert to classification model
|
||||
reshape_classifier_output(model, nc) # update class count
|
||||
for m in model.modules():
|
||||
if not pretrained and hasattr(m, "reset_parameters"):
|
||||
m.reset_parameters()
|
||||
if isinstance(m, torch.nn.Dropout) and opt.dropout is not None:
|
||||
m.p = opt.dropout # set dropout
|
||||
for p in model.parameters():
|
||||
p.requires_grad = True # for training
|
||||
model = model.to(device)
|
||||
|
||||
# Info
|
||||
if RANK in {-1, 0}:
|
||||
model.names = trainloader.dataset.classes # attach class names
|
||||
model.transforms = testloader.dataset.torch_transforms # attach inference transforms
|
||||
model_info(model)
|
||||
if opt.verbose:
|
||||
LOGGER.info(model)
|
||||
images, labels = next(iter(trainloader))
|
||||
file = imshow_cls(images[:25], labels[:25], names=model.names, f=save_dir / "train_images.jpg")
|
||||
logger.log_images(file, name="Train Examples")
|
||||
logger.log_graph(model, imgsz) # log model
|
||||
|
||||
# Optimizer
|
||||
optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=opt.decay)
|
||||
|
||||
# Scheduler
|
||||
lrf = 0.01 # final lr (fraction of lr0)
|
||||
|
||||
# lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf # cosine
|
||||
def lf(x):
|
||||
"""Linear learning rate scheduler function, scaling learning rate from initial value to `lrf` over `epochs`."""
|
||||
return (1 - x / epochs) * (1 - lrf) + lrf # linear
|
||||
|
||||
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
||||
# scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1,
|
||||
# final_div_factor=1 / 25 / lrf)
|
||||
|
||||
# EMA
|
||||
ema = ModelEMA(model) if RANK in {-1, 0} else None
|
||||
|
||||
# DDP mode
|
||||
if cuda and RANK != -1:
|
||||
model = smart_DDP(model)
|
||||
|
||||
# Train
|
||||
t0 = time.time()
|
||||
criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing) # loss function
|
||||
best_fitness = 0.0
|
||||
scaler = amp.GradScaler(enabled=cuda)
|
||||
val = test_dir.stem # 'val' or 'test'
|
||||
LOGGER.info(
|
||||
f'Image sizes {imgsz} train, {imgsz} test\n'
|
||||
f'Using {nw * WORLD_SIZE} dataloader workers\n'
|
||||
f"Logging results to {colorstr('bold', save_dir)}\n"
|
||||
f'Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n'
|
||||
f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}"
|
||||
)
|
||||
for epoch in range(epochs): # loop over the dataset multiple times
|
||||
tloss, vloss, fitness = 0.0, 0.0, 0.0 # train loss, val loss, fitness
|
||||
model.train()
|
||||
if RANK != -1:
|
||||
trainloader.sampler.set_epoch(epoch)
|
||||
pbar = enumerate(trainloader)
|
||||
if RANK in {-1, 0}:
|
||||
pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format=TQDM_BAR_FORMAT)
|
||||
for i, (images, labels) in pbar: # progress bar
|
||||
images, labels = images.to(device, non_blocking=True), labels.to(device)
|
||||
|
||||
# Forward
|
||||
with amp.autocast(enabled=cuda): # stability issues when enabled
|
||||
loss = criterion(model(images), labels)
|
||||
|
||||
# Backward
|
||||
scaler.scale(loss).backward()
|
||||
|
||||
# Optimize
|
||||
scaler.unscale_(optimizer) # unscale gradients
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
optimizer.zero_grad()
|
||||
if ema:
|
||||
ema.update(model)
|
||||
|
||||
if RANK in {-1, 0}:
|
||||
# Print
|
||||
tloss = (tloss * i + loss.item()) / (i + 1) # update mean losses
|
||||
mem = "%.3gG" % (torch.cuda.memory_reserved() / 1e9 if torch.cuda.is_available() else 0) # (GB)
|
||||
pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + " " * 36
|
||||
|
||||
# Test
|
||||
if i == len(pbar) - 1: # last batch
|
||||
top1, top5, vloss = validate.run(
|
||||
model=ema.ema, dataloader=testloader, criterion=criterion, pbar=pbar
|
||||
) # test accuracy, loss
|
||||
fitness = top1 # define fitness as top1 accuracy
|
||||
|
||||
# Scheduler
|
||||
scheduler.step()
|
||||
|
||||
# Log metrics
|
||||
if RANK in {-1, 0}:
|
||||
# Best fitness
|
||||
if fitness > best_fitness:
|
||||
best_fitness = fitness
|
||||
|
||||
# Log
|
||||
metrics = {
|
||||
"train/loss": tloss,
|
||||
f"{val}/loss": vloss,
|
||||
"metrics/accuracy_top1": top1,
|
||||
"metrics/accuracy_top5": top5,
|
||||
"lr/0": optimizer.param_groups[0]["lr"],
|
||||
} # learning rate
|
||||
logger.log_metrics(metrics, epoch)
|
||||
|
||||
# Save model
|
||||
final_epoch = epoch + 1 == epochs
|
||||
if (not opt.nosave) or final_epoch:
|
||||
ckpt = {
|
||||
"epoch": epoch,
|
||||
"best_fitness": best_fitness,
|
||||
"model": deepcopy(ema.ema).half(), # deepcopy(de_parallel(model)).half(),
|
||||
"ema": None, # deepcopy(ema.ema).half(),
|
||||
"updates": ema.updates,
|
||||
"optimizer": None, # optimizer.state_dict(),
|
||||
"opt": vars(opt),
|
||||
"git": GIT_INFO, # {remote, branch, commit} if a git repo
|
||||
"date": datetime.now().isoformat(),
|
||||
}
|
||||
|
||||
# Save last, best and delete
|
||||
torch.save(ckpt, last)
|
||||
if best_fitness == fitness:
|
||||
torch.save(ckpt, best)
|
||||
del ckpt
|
||||
|
||||
# Train complete
|
||||
if RANK in {-1, 0} and final_epoch:
|
||||
LOGGER.info(
|
||||
f'\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)'
|
||||
f"\nResults saved to {colorstr('bold', save_dir)}"
|
||||
f'\nPredict: python classify/predict.py --weights {best} --source im.jpg'
|
||||
f'\nValidate: python classify/val.py --weights {best} --data {data_dir}'
|
||||
f'\nExport: python export.py --weights {best} --include onnx'
|
||||
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')"
|
||||
f'\nVisualize: https://netron.app\n'
|
||||
)
|
||||
|
||||
# Plot examples
|
||||
images, labels = (x[:25] for x in next(iter(testloader))) # first 25 images and labels
|
||||
pred = torch.max(ema.ema(images.to(device)), 1)[1]
|
||||
file = imshow_cls(images, labels, pred, de_parallel(model).names, verbose=False, f=save_dir / "test_images.jpg")
|
||||
|
||||
# Log results
|
||||
meta = {"epochs": epochs, "top1_acc": best_fitness, "date": datetime.now().isoformat()}
|
||||
logger.log_images(file, name="Test Examples (true-predicted)", epoch=epoch)
|
||||
logger.log_model(best, epochs, metadata=meta)
|
||||
|
||||
|
||||
def parse_opt(known=False):
|
||||
"""Parses command line arguments for YOLOv5 training including model path, dataset, epochs, and more, returning
|
||||
parsed arguments.
|
||||
"""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model", type=str, default="yolov5s-cls.pt", help="initial weights path")
|
||||
parser.add_argument("--data", type=str, default="imagenette160", help="cifar10, cifar100, mnist, imagenet, ...")
|
||||
parser.add_argument("--epochs", type=int, default=10, help="total training epochs")
|
||||
parser.add_argument("--batch-size", type=int, default=64, help="total batch size for all GPUs")
|
||||
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=224, help="train, val image size (pixels)")
|
||||
parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
|
||||
parser.add_argument("--cache", type=str, nargs="?", const="ram", help='--cache images in "ram" (default) or "disk"')
|
||||
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
||||
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
|
||||
parser.add_argument("--project", default=ROOT / "runs/train-cls", help="save to project/name")
|
||||
parser.add_argument("--name", default="exp", help="save to project/name")
|
||||
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
|
||||
parser.add_argument("--pretrained", nargs="?", const=True, default=True, help="start from i.e. --pretrained False")
|
||||
parser.add_argument("--optimizer", choices=["SGD", "Adam", "AdamW", "RMSProp"], default="Adam", help="optimizer")
|
||||
parser.add_argument("--lr0", type=float, default=0.001, help="initial learning rate")
|
||||
parser.add_argument("--decay", type=float, default=5e-5, help="weight decay")
|
||||
parser.add_argument("--label-smoothing", type=float, default=0.1, help="Label smoothing epsilon")
|
||||
parser.add_argument("--cutoff", type=int, default=None, help="Model layer cutoff index for Classify() head")
|
||||
parser.add_argument("--dropout", type=float, default=None, help="Dropout (fraction)")
|
||||
parser.add_argument("--verbose", action="store_true", help="Verbose mode")
|
||||
parser.add_argument("--seed", type=int, default=0, help="Global training seed")
|
||||
parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")
|
||||
return parser.parse_known_args()[0] if known else parser.parse_args()
|
||||
|
||||
|
||||
def main(opt):
|
||||
"""Executes YOLOv5 training with given options, handling device setup and DDP mode; includes pre-training checks."""
|
||||
if RANK in {-1, 0}:
|
||||
print_args(vars(opt))
|
||||
check_git_status()
|
||||
check_requirements(ROOT / "requirements.txt")
|
||||
|
||||
# DDP mode
|
||||
device = select_device(opt.device, batch_size=opt.batch_size)
|
||||
if LOCAL_RANK != -1:
|
||||
assert opt.batch_size != -1, "AutoBatch is coming soon for classification, please pass a valid --batch-size"
|
||||
assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE"
|
||||
assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command"
|
||||
torch.cuda.set_device(LOCAL_RANK)
|
||||
device = torch.device("cuda", LOCAL_RANK)
|
||||
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
|
||||
|
||||
# Parameters
|
||||
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
|
||||
|
||||
# Train
|
||||
train(opt, device)
|
||||
|
||||
|
||||
def run(**kwargs):
|
||||
"""
|
||||
Executes YOLOv5 model training or inference with specified parameters, returning updated options.
|
||||
|
||||
Example: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m')
|
||||
"""
|
||||
opt = parse_opt(True)
|
||||
for k, v in kwargs.items():
|
||||
setattr(opt, k, v)
|
||||
main(opt)
|
||||
return opt
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
opt = parse_opt()
|
||||
main(opt)
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,178 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Validate a trained YOLOv5 classification model on a classification dataset.
|
||||
|
||||
Usage:
|
||||
$ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
|
||||
$ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet
|
||||
|
||||
Usage - formats:
|
||||
$ python classify/val.py --weights yolov5s-cls.pt # PyTorch
|
||||
yolov5s-cls.torchscript # TorchScript
|
||||
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
||||
yolov5s-cls_openvino_model # OpenVINO
|
||||
yolov5s-cls.engine # TensorRT
|
||||
yolov5s-cls.mlmodel # CoreML (macOS-only)
|
||||
yolov5s-cls_saved_model # TensorFlow SavedModel
|
||||
yolov5s-cls.pb # TensorFlow GraphDef
|
||||
yolov5s-cls.tflite # TensorFlow Lite
|
||||
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
|
||||
yolov5s-cls_paddle_model # PaddlePaddle
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[1] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||
|
||||
from models.common import DetectMultiBackend
|
||||
from utils.dataloaders import create_classification_dataloader
|
||||
from utils.general import (
|
||||
LOGGER,
|
||||
TQDM_BAR_FORMAT,
|
||||
Profile,
|
||||
check_img_size,
|
||||
check_requirements,
|
||||
colorstr,
|
||||
increment_path,
|
||||
print_args,
|
||||
)
|
||||
from utils.torch_utils import select_device, smart_inference_mode
|
||||
|
||||
|
||||
@smart_inference_mode()
|
||||
def run(
|
||||
data=ROOT / "../datasets/mnist", # dataset dir
|
||||
weights=ROOT / "yolov5s-cls.pt", # model.pt path(s)
|
||||
batch_size=128, # batch size
|
||||
imgsz=224, # inference size (pixels)
|
||||
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
workers=8, # max dataloader workers (per RANK in DDP mode)
|
||||
verbose=False, # verbose output
|
||||
project=ROOT / "runs/val-cls", # save to project/name
|
||||
name="exp", # save to project/name
|
||||
exist_ok=False, # existing project/name ok, do not increment
|
||||
half=False, # use FP16 half-precision inference
|
||||
dnn=False, # use OpenCV DNN for ONNX inference
|
||||
model=None,
|
||||
dataloader=None,
|
||||
criterion=None,
|
||||
pbar=None,
|
||||
):
|
||||
"""Validates a YOLOv5 classification model on a dataset, computing metrics like top1 and top5 accuracy."""
|
||||
# Initialize/load model and set device
|
||||
training = model is not None
|
||||
if training: # called by train.py
|
||||
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
|
||||
half &= device.type != "cpu" # half precision only supported on CUDA
|
||||
model.half() if half else model.float()
|
||||
else: # called directly
|
||||
device = select_device(device, batch_size=batch_size)
|
||||
|
||||
# Directories
|
||||
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
||||
save_dir.mkdir(parents=True, exist_ok=True) # make dir
|
||||
|
||||
# Load model
|
||||
model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
|
||||
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
||||
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||
half = model.fp16 # FP16 supported on limited backends with CUDA
|
||||
if engine:
|
||||
batch_size = model.batch_size
|
||||
else:
|
||||
device = model.device
|
||||
if not (pt or jit):
|
||||
batch_size = 1 # export.py models default to batch-size 1
|
||||
LOGGER.info(f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models")
|
||||
|
||||
# Dataloader
|
||||
data = Path(data)
|
||||
test_dir = data / "test" if (data / "test").exists() else data / "val" # data/test or data/val
|
||||
dataloader = create_classification_dataloader(
|
||||
path=test_dir, imgsz=imgsz, batch_size=batch_size, augment=False, rank=-1, workers=workers
|
||||
)
|
||||
|
||||
model.eval()
|
||||
pred, targets, loss, dt = [], [], 0, (Profile(device=device), Profile(device=device), Profile(device=device))
|
||||
n = len(dataloader) # number of batches
|
||||
action = "validating" if dataloader.dataset.root.stem == "val" else "testing"
|
||||
desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
|
||||
bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
|
||||
with torch.cuda.amp.autocast(enabled=device.type != "cpu"):
|
||||
for images, labels in bar:
|
||||
with dt[0]:
|
||||
images, labels = images.to(device, non_blocking=True), labels.to(device)
|
||||
|
||||
with dt[1]:
|
||||
y = model(images)
|
||||
|
||||
with dt[2]:
|
||||
pred.append(y.argsort(1, descending=True)[:, :5])
|
||||
targets.append(labels)
|
||||
if criterion:
|
||||
loss += criterion(y, labels)
|
||||
|
||||
loss /= n
|
||||
pred, targets = torch.cat(pred), torch.cat(targets)
|
||||
correct = (targets[:, None] == pred).float()
|
||||
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
|
||||
top1, top5 = acc.mean(0).tolist()
|
||||
|
||||
if pbar:
|
||||
pbar.desc = f"{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}"
|
||||
if verbose: # all classes
|
||||
LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}")
|
||||
LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}")
|
||||
for i, c in model.names.items():
|
||||
acc_i = acc[targets == i]
|
||||
top1i, top5i = acc_i.mean(0).tolist()
|
||||
LOGGER.info(f"{c:>24}{acc_i.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}")
|
||||
|
||||
# Print results
|
||||
t = tuple(x.t / len(dataloader.dataset.samples) * 1e3 for x in dt) # speeds per image
|
||||
shape = (1, 3, imgsz, imgsz)
|
||||
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}" % t)
|
||||
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
|
||||
|
||||
return top1, top5, loss
|
||||
|
||||
|
||||
def parse_opt():
|
||||
"""Parses and returns command line arguments for YOLOv5 model evaluation and inference settings."""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--data", type=str, default=ROOT / "../datasets/mnist", help="dataset path")
|
||||
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-cls.pt", help="model.pt path(s)")
|
||||
parser.add_argument("--batch-size", type=int, default=128, help="batch size")
|
||||
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=224, help="inference size (pixels)")
|
||||
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
||||
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
|
||||
parser.add_argument("--verbose", nargs="?", const=True, default=True, help="verbose output")
|
||||
parser.add_argument("--project", default=ROOT / "runs/val-cls", help="save to project/name")
|
||||
parser.add_argument("--name", default="exp", help="save to project/name")
|
||||
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
|
||||
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
|
||||
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
|
||||
opt = parser.parse_args()
|
||||
print_args(vars(opt))
|
||||
return opt
|
||||
|
||||
|
||||
def main(opt):
|
||||
"""Executes the YOLOv5 model prediction workflow, handling argument parsing and requirement checks."""
|
||||
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
|
||||
run(**vars(opt))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
opt = parse_opt()
|
||||
main(opt)
|
||||
@ -1,510 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""
|
||||
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5.
|
||||
|
||||
Usage:
|
||||
import torch
|
||||
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # official model
|
||||
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') # from branch
|
||||
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') # custom/local model
|
||||
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') # local repo
|
||||
"""
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
||||
"""
|
||||
Creates or loads a YOLOv5 model, with options for pretrained weights and model customization.
|
||||
|
||||
Args:
|
||||
name (str): Model name (e.g., 'yolov5s') or path to the model checkpoint (e.g., 'path/to/best.pt').
|
||||
pretrained (bool, optional): If True, loads pretrained weights into the model. Defaults to True.
|
||||
channels (int, optional): Number of input channels the model expects. Defaults to 3.
|
||||
classes (int, optional): Number of classes the model is expected to detect. Defaults to 80.
|
||||
autoshape (bool, optional): If True, applies the YOLOv5 .autoshape() wrapper for various input formats. Defaults to True.
|
||||
verbose (bool, optional): If True, prints detailed information during the model creation/loading process. Defaults to True.
|
||||
device (str | torch.device | None, optional): Device to use for model parameters (e.g., 'cpu', 'cuda'). If None, selects
|
||||
the best available device. Defaults to None.
|
||||
|
||||
Returns:
|
||||
(DetectMultiBackend | AutoShape): The loaded YOLOv5 model, potentially wrapped with AutoShape if specified.
|
||||
|
||||
Examples:
|
||||
```python
|
||||
import torch
|
||||
from ultralytics import _create
|
||||
|
||||
# Load an official YOLOv5s model with pretrained weights
|
||||
model = _create('yolov5s')
|
||||
|
||||
# Load a custom model from a local checkpoint
|
||||
model = _create('path/to/custom_model.pt', pretrained=False)
|
||||
|
||||
# Load a model with specific input channels and classes
|
||||
model = _create('yolov5s', channels=1, classes=10)
|
||||
```
|
||||
|
||||
Notes:
|
||||
For more information on model loading and customization, visit the
|
||||
[YOLOv5 PyTorch Hub Documentation](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading).
|
||||
"""
|
||||
from pathlib import Path
|
||||
|
||||
from models.common import AutoShape, DetectMultiBackend
|
||||
from models.experimental import attempt_load
|
||||
from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
|
||||
from utils.downloads import attempt_download
|
||||
from utils.general import LOGGER, ROOT, check_requirements, intersect_dicts, logging
|
||||
from utils.torch_utils import select_device
|
||||
|
||||
if not verbose:
|
||||
LOGGER.setLevel(logging.WARNING)
|
||||
check_requirements(ROOT / "requirements.txt", exclude=("opencv-python", "tensorboard", "thop"))
|
||||
name = Path(name)
|
||||
path = name.with_suffix(".pt") if name.suffix == "" and not name.is_dir() else name # checkpoint path
|
||||
try:
|
||||
device = select_device(device)
|
||||
if pretrained and channels == 3 and classes == 80:
|
||||
try:
|
||||
model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
|
||||
if autoshape:
|
||||
if model.pt and isinstance(model.model, ClassificationModel):
|
||||
LOGGER.warning(
|
||||
"WARNING ⚠️ YOLOv5 ClassificationModel is not yet AutoShape compatible. "
|
||||
"You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224)."
|
||||
)
|
||||
elif model.pt and isinstance(model.model, SegmentationModel):
|
||||
LOGGER.warning(
|
||||
"WARNING ⚠️ YOLOv5 SegmentationModel is not yet AutoShape compatible. "
|
||||
"You will not be able to run inference with this model."
|
||||
)
|
||||
else:
|
||||
model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
|
||||
except Exception:
|
||||
model = attempt_load(path, device=device, fuse=False) # arbitrary model
|
||||
else:
|
||||
cfg = list((Path(__file__).parent / "models").rglob(f"{path.stem}.yaml"))[0] # model.yaml path
|
||||
model = DetectionModel(cfg, channels, classes) # create model
|
||||
if pretrained:
|
||||
ckpt = torch.load(attempt_download(path), map_location=device) # load
|
||||
csd = ckpt["model"].float().state_dict() # checkpoint state_dict as FP32
|
||||
csd = intersect_dicts(csd, model.state_dict(), exclude=["anchors"]) # intersect
|
||||
model.load_state_dict(csd, strict=False) # load
|
||||
if len(ckpt["model"].names) == classes:
|
||||
model.names = ckpt["model"].names # set class names attribute
|
||||
if not verbose:
|
||||
LOGGER.setLevel(logging.INFO) # reset to default
|
||||
return model.to(device)
|
||||
|
||||
except Exception as e:
|
||||
help_url = "https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading"
|
||||
s = f"{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help."
|
||||
raise Exception(s) from e
|
||||
|
||||
|
||||
def custom(path="path/to/model.pt", autoshape=True, _verbose=True, device=None):
|
||||
"""
|
||||
Loads a custom or local YOLOv5 model from a given path with optional autoshaping and device specification.
|
||||
|
||||
Args:
|
||||
path (str): Path to the custom model file (e.g., 'path/to/model.pt').
|
||||
autoshape (bool): Apply YOLOv5 .autoshape() wrapper to model if True, enabling compatibility with various input
|
||||
types (default is True).
|
||||
_verbose (bool): If True, prints all informational messages to the screen; otherwise, operates silently
|
||||
(default is True).
|
||||
device (str | torch.device | None): Device to load the model on, e.g., 'cpu', 'cuda', torch.device('cuda:0'), etc.
|
||||
(default is None, which automatically selects the best available device).
|
||||
|
||||
Returns:
|
||||
torch.nn.Module: A YOLOv5 model loaded with the specified parameters.
|
||||
|
||||
Notes:
|
||||
For more details on loading models from PyTorch Hub:
|
||||
https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading
|
||||
|
||||
Examples:
|
||||
```python
|
||||
# Load model from a given path with autoshape enabled on the best available device
|
||||
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt')
|
||||
|
||||
# Load model from a local path without autoshape on the CPU device
|
||||
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local', autoshape=False, device='cpu')
|
||||
```
|
||||
"""
|
||||
return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
|
||||
|
||||
|
||||
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||
"""
|
||||
Instantiates the YOLOv5-nano model with options for pretraining, input channels, class count, autoshaping,
|
||||
verbosity, and device.
|
||||
|
||||
Args:
|
||||
pretrained (bool): If True, loads pretrained weights into the model. Defaults to True.
|
||||
channels (int): Number of input channels for the model. Defaults to 3.
|
||||
classes (int): Number of classes for object detection. Defaults to 80.
|
||||
autoshape (bool): If True, applies the YOLOv5 .autoshape() wrapper to the model for various formats (file/URI/PIL/
|
||||
cv2/np) and non-maximum suppression (NMS) during inference. Defaults to True.
|
||||
_verbose (bool): If True, prints detailed information to the screen. Defaults to True.
|
||||
device (str | torch.device | None): Specifies the device to use for model computation. If None, uses the best device
|
||||
available (i.e., GPU if available, otherwise CPU). Defaults to None.
|
||||
|
||||
Returns:
|
||||
DetectionModel | ClassificationModel | SegmentationModel: The instantiated YOLOv5-nano model, potentially with
|
||||
pretrained weights and autoshaping applied.
|
||||
|
||||
Notes:
|
||||
For further details on loading models from PyTorch Hub, refer to [PyTorch Hub models](https://pytorch.org/hub/
|
||||
ultralytics_yolov5).
|
||||
|
||||
Examples:
|
||||
```python
|
||||
import torch
|
||||
from ultralytics import yolov5n
|
||||
|
||||
# Load the YOLOv5-nano model with defaults
|
||||
model = yolov5n()
|
||||
|
||||
# Load the YOLOv5-nano model with a specific device
|
||||
model = yolov5n(device='cuda')
|
||||
```
|
||||
"""
|
||||
return _create("yolov5n", pretrained, channels, classes, autoshape, _verbose, device)
|
||||
|
||||
|
||||
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||
"""
|
||||
Create a YOLOv5-small (yolov5s) model with options for pretraining, input channels, class count, autoshaping,
|
||||
verbosity, and device configuration.
|
||||
|
||||
Args:
|
||||
pretrained (bool, optional): Flag to load pretrained weights into the model. Defaults to True.
|
||||
channels (int, optional): Number of input channels. Defaults to 3.
|
||||
classes (int, optional): Number of model classes. Defaults to 80.
|
||||
autoshape (bool, optional): Whether to wrap the model with YOLOv5's .autoshape() for handling various input formats.
|
||||
Defaults to True.
|
||||
_verbose (bool, optional): Flag to print detailed information regarding model loading. Defaults to True.
|
||||
device (str | torch.device | None, optional): Device to use for model computation, can be 'cpu', 'cuda', or
|
||||
torch.device instances. If None, automatically selects the best available device. Defaults to None.
|
||||
|
||||
Returns:
|
||||
torch.nn.Module: The YOLOv5-small model configured and loaded according to the specified parameters.
|
||||
|
||||
Example:
|
||||
```python
|
||||
import torch
|
||||
|
||||
# Load the official YOLOv5-small model with pretrained weights
|
||||
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
|
||||
|
||||
# Load the YOLOv5-small model from a specific branch
|
||||
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s')
|
||||
|
||||
# Load a custom YOLOv5-small model from a local checkpoint
|
||||
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt')
|
||||
|
||||
# Load a local YOLOv5-small model specifying source as local repository
|
||||
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local')
|
||||
```
|
||||
|
||||
Notes:
|
||||
For more details on model loading and customization, visit
|
||||
the [YOLOv5 PyTorch Hub Documentation](https://pytorch.org/hub/ultralytics_yolov5).
|
||||
"""
|
||||
return _create("yolov5s", pretrained, channels, classes, autoshape, _verbose, device)
|
||||
|
||||
|
||||
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||
"""
|
||||
Instantiates the YOLOv5-medium model with customizable pretraining, channel count, class count, autoshaping,
|
||||
verbosity, and device.
|
||||
|
||||
Args:
|
||||
pretrained (bool, optional): Whether to load pretrained weights into the model. Default is True.
|
||||
channels (int, optional): Number of input channels. Default is 3.
|
||||
classes (int, optional): Number of model classes. Default is 80.
|
||||
autoshape (bool, optional): Apply YOLOv5 .autoshape() wrapper to the model for handling various input formats.
|
||||
Default is True.
|
||||
_verbose (bool, optional): Whether to print detailed information to the screen. Default is True.
|
||||
device (str | torch.device | None, optional): Device specification to use for model parameters (e.g., 'cpu', 'cuda').
|
||||
Default is None.
|
||||
|
||||
Returns:
|
||||
torch.nn.Module: The instantiated YOLOv5-medium model.
|
||||
|
||||
Usage Example:
|
||||
```python
|
||||
import torch
|
||||
|
||||
model = torch.hub.load('ultralytics/yolov5', 'yolov5m') # Load YOLOv5-medium from Ultralytics repository
|
||||
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5m') # Load from the master branch
|
||||
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5m.pt') # Load a custom/local YOLOv5-medium model
|
||||
model = torch.hub.load('.', 'custom', 'yolov5m.pt', source='local') # Load from a local repository
|
||||
```
|
||||
|
||||
For more information, visit https://pytorch.org/hub/ultralytics_yolov5.
|
||||
"""
|
||||
return _create("yolov5m", pretrained, channels, classes, autoshape, _verbose, device)
|
||||
|
||||
|
||||
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||
"""
|
||||
Creates YOLOv5-large model with options for pretraining, channels, classes, autoshaping, verbosity, and device
|
||||
selection.
|
||||
|
||||
Args:
|
||||
pretrained (bool): Load pretrained weights into the model. Default is True.
|
||||
channels (int): Number of input channels. Default is 3.
|
||||
classes (int): Number of model classes. Default is 80.
|
||||
autoshape (bool): Apply YOLOv5 .autoshape() wrapper to model. Default is True.
|
||||
_verbose (bool): Print all information to screen. Default is True.
|
||||
device (str | torch.device | None): Device to use for model parameters, e.g., 'cpu', 'cuda', or a torch.device instance.
|
||||
Default is None.
|
||||
|
||||
Returns:
|
||||
YOLOv5 model (torch.nn.Module): The YOLOv5-large model instantiated with specified configurations and possibly
|
||||
pretrained weights.
|
||||
|
||||
Examples:
|
||||
```python
|
||||
import torch
|
||||
model = torch.hub.load('ultralytics/yolov5', 'yolov5l')
|
||||
```
|
||||
|
||||
Notes:
|
||||
For additional details, refer to the PyTorch Hub models documentation:
|
||||
https://pytorch.org/hub/ultralytics_yolov5
|
||||
"""
|
||||
return _create("yolov5l", pretrained, channels, classes, autoshape, _verbose, device)
|
||||
|
||||
|
||||
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||
"""
|
||||
Perform object detection using the YOLOv5-xlarge model with options for pretraining, input channels, class count,
|
||||
autoshaping, verbosity, and device specification.
|
||||
|
||||
Args:
|
||||
pretrained (bool): If True, loads pretrained weights into the model. Defaults to True.
|
||||
channels (int): Number of input channels for the model. Defaults to 3.
|
||||
classes (int): Number of model classes for object detection. Defaults to 80.
|
||||
autoshape (bool): If True, applies the YOLOv5 .autoshape() wrapper for handling different input formats. Defaults to
|
||||
True.
|
||||
_verbose (bool): If True, prints detailed information during model loading. Defaults to True.
|
||||
device (str | torch.device | None): Device specification for computing the model, e.g., 'cpu', 'cuda:0', torch.device('cuda').
|
||||
Defaults to None.
|
||||
|
||||
Returns:
|
||||
torch.nn.Module: The YOLOv5-xlarge model loaded with the specified parameters, optionally with pretrained weights and
|
||||
autoshaping applied.
|
||||
|
||||
Example:
|
||||
```python
|
||||
import torch
|
||||
model = torch.hub.load('ultralytics/yolov5', 'yolov5x')
|
||||
```
|
||||
|
||||
For additional details, refer to the official YOLOv5 PyTorch Hub models documentation:
|
||||
https://pytorch.org/hub/ultralytics_yolov5
|
||||
"""
|
||||
return _create("yolov5x", pretrained, channels, classes, autoshape, _verbose, device)
|
||||
|
||||
|
||||
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||
"""
|
||||
Creates YOLOv5-nano-P6 model with options for pretraining, channels, classes, autoshaping, verbosity, and device.
|
||||
|
||||
Args:
|
||||
pretrained (bool, optional): If True, loads pretrained weights into the model. Default is True.
|
||||
channels (int, optional): Number of input channels. Default is 3.
|
||||
classes (int, optional): Number of model classes. Default is 80.
|
||||
autoshape (bool, optional): If True, applies the YOLOv5 .autoshape() wrapper to the model. Default is True.
|
||||
_verbose (bool, optional): If True, prints all information to screen. Default is True.
|
||||
device (str | torch.device | None, optional): Device to use for model parameters. Can be 'cpu', 'cuda', or None.
|
||||
Default is None.
|
||||
|
||||
Returns:
|
||||
torch.nn.Module: YOLOv5-nano-P6 model loaded with the specified configurations.
|
||||
|
||||
Example:
|
||||
```python
|
||||
import torch
|
||||
model = yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device='cuda')
|
||||
```
|
||||
|
||||
Notes:
|
||||
For more information on PyTorch Hub models, visit: https://pytorch.org/hub/ultralytics_yolov5
|
||||
"""
|
||||
return _create("yolov5n6", pretrained, channels, classes, autoshape, _verbose, device)
|
||||
|
||||
|
||||
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||
"""
|
||||
Instantiate the YOLOv5-small-P6 model with options for pretraining, input channels, number of classes, autoshaping,
|
||||
verbosity, and device selection.
|
||||
|
||||
Args:
|
||||
pretrained (bool): If True, loads pretrained weights. Default is True.
|
||||
channels (int): Number of input channels. Default is 3.
|
||||
classes (int): Number of object detection classes. Default is 80.
|
||||
autoshape (bool): If True, applies YOLOv5 .autoshape() wrapper to the model, allowing for varied input formats.
|
||||
Default is True.
|
||||
_verbose (bool): If True, prints detailed information during model loading. Default is True.
|
||||
device (str | torch.device | None): Device specification for model parameters (e.g., 'cpu', 'cuda', or torch.device).
|
||||
Default is None, which selects an available device automatically.
|
||||
|
||||
Returns:
|
||||
torch.nn.Module: The YOLOv5-small-P6 model instance.
|
||||
|
||||
Usage:
|
||||
```python
|
||||
import torch
|
||||
|
||||
model = torch.hub.load('ultralytics/yolov5', 'yolov5s6')
|
||||
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s6') # load from a specific branch
|
||||
model = torch.hub.load('ultralytics/yolov5', 'custom', 'path/to/yolov5s6.pt') # custom/local model
|
||||
model = torch.hub.load('.', 'custom', 'path/to/yolov5s6.pt', source='local') # local repo model
|
||||
```
|
||||
|
||||
Notes:
|
||||
- For more information, refer to the PyTorch Hub models documentation at https://pytorch.org/hub/ultralytics_yolov5
|
||||
|
||||
Raises:
|
||||
Exception: If there is an error during model creation or loading, with a suggestion to visit the YOLOv5
|
||||
tutorials for help.
|
||||
"""
|
||||
return _create("yolov5s6", pretrained, channels, classes, autoshape, _verbose, device)
|
||||
|
||||
|
||||
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||
"""
|
||||
Create YOLOv5-medium-P6 model with options for pretraining, channel count, class count, autoshaping, verbosity, and
|
||||
device.
|
||||
|
||||
Args:
|
||||
pretrained (bool): If True, loads pretrained weights. Default is True.
|
||||
channels (int): Number of input channels. Default is 3.
|
||||
classes (int): Number of model classes. Default is 80.
|
||||
autoshape (bool): Apply YOLOv5 .autoshape() wrapper to the model for file/URI/PIL/cv2/np inputs and NMS.
|
||||
Default is True.
|
||||
_verbose (bool): If True, prints detailed information to the screen. Default is True.
|
||||
device (str | torch.device | None): Device to use for model parameters. Default is None, which uses the
|
||||
best available device.
|
||||
|
||||
Returns:
|
||||
torch.nn.Module: The YOLOv5-medium-P6 model.
|
||||
|
||||
Refer to the PyTorch Hub models documentation: https://pytorch.org/hub/ultralytics_yolov5 for additional details.
|
||||
|
||||
Example:
|
||||
```python
|
||||
import torch
|
||||
|
||||
# Load YOLOv5-medium-P6 model
|
||||
model = torch.hub.load('ultralytics/yolov5', 'yolov5m6')
|
||||
```
|
||||
|
||||
Notes:
|
||||
- The model can be loaded with pre-trained weights for better performance on specific tasks.
|
||||
- The autoshape feature simplifies input handling by allowing various popular data formats.
|
||||
"""
|
||||
return _create("yolov5m6", pretrained, channels, classes, autoshape, _verbose, device)
|
||||
|
||||
|
||||
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||
"""
|
||||
Instantiate the YOLOv5-large-P6 model with options for pretraining, channel and class counts, autoshaping,
|
||||
verbosity, and device selection.
|
||||
|
||||
Args:
|
||||
pretrained (bool, optional): If True, load pretrained weights into the model. Default is True.
|
||||
channels (int, optional): Number of input channels. Default is 3.
|
||||
classes (int, optional): Number of model classes. Default is 80.
|
||||
autoshape (bool, optional): If True, apply YOLOv5 .autoshape() wrapper to the model for input flexibility. Default is True.
|
||||
_verbose (bool, optional): If True, print all information to the screen. Default is True.
|
||||
device (str | torch.device | None, optional): Device to use for model parameters, e.g., 'cpu', 'cuda', or torch.device.
|
||||
If None, automatically selects the best available device. Default is None.
|
||||
|
||||
Returns:
|
||||
torch.nn.Module: The instantiated YOLOv5-large-P6 model.
|
||||
|
||||
Example:
|
||||
```python
|
||||
import torch
|
||||
model = torch.hub.load('ultralytics/yolov5', 'yolov5l6') # official model
|
||||
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5l6') # from specific branch
|
||||
model = torch.hub.load('ultralytics/yolov5', 'custom', 'path/to/yolov5l6.pt') # custom/local model
|
||||
model = torch.hub.load('.', 'custom', 'path/to/yolov5l6.pt', source='local') # local repository
|
||||
```
|
||||
|
||||
Note:
|
||||
Refer to [PyTorch Hub Documentation](https://pytorch.org/hub/ultralytics_yolov5) for additional usage instructions.
|
||||
"""
|
||||
return _create("yolov5l6", pretrained, channels, classes, autoshape, _verbose, device)
|
||||
|
||||
|
||||
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
|
||||
"""
|
||||
Creates the YOLOv5-xlarge-P6 model with options for pretraining, number of input channels, class count, autoshaping,
|
||||
verbosity, and device selection.
|
||||
|
||||
Args:
|
||||
pretrained (bool): If True, loads pretrained weights into the model. Default is True.
|
||||
channels (int): Number of input channels. Default is 3.
|
||||
classes (int): Number of model classes. Default is 80.
|
||||
autoshape (bool): If True, applies YOLOv5 .autoshape() wrapper to the model. Default is True.
|
||||
_verbose (bool): If True, prints all information to the screen. Default is True.
|
||||
device (str | torch.device | None): Device to use for model parameters, can be a string, torch.device object, or
|
||||
None for default device selection. Default is None.
|
||||
|
||||
Returns:
|
||||
torch.nn.Module: The instantiated YOLOv5-xlarge-P6 model.
|
||||
|
||||
Example:
|
||||
```python
|
||||
import torch
|
||||
model = torch.hub.load('ultralytics/yolov5', 'yolov5x6') # load the YOLOv5-xlarge-P6 model
|
||||
```
|
||||
|
||||
Note:
|
||||
For more information on YOLOv5 models, visit the official documentation:
|
||||
https://docs.ultralytics.com/yolov5
|
||||
"""
|
||||
return _create("yolov5x6", pretrained, channels, classes, autoshape, _verbose, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from utils.general import cv2, print_args
|
||||
|
||||
# Argparser
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model", type=str, default="yolov5s", help="model name")
|
||||
opt = parser.parse_args()
|
||||
print_args(vars(opt))
|
||||
|
||||
# Model
|
||||
model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
|
||||
# model = custom(path='path/to/model.pt') # custom
|
||||
|
||||
# Images
|
||||
imgs = [
|
||||
"data/images/zidane.jpg", # filename
|
||||
Path("data/images/zidane.jpg"), # Path
|
||||
"https://ultralytics.com/images/zidane.jpg", # URI
|
||||
cv2.imread("data/images/bus.jpg")[:, :, ::-1], # OpenCV
|
||||
Image.open("data/images/bus.jpg"), # PIL
|
||||
np.zeros((320, 640, 3)),
|
||||
] # numpy
|
||||
|
||||
# Inference
|
||||
results = model(imgs, size=320) # batched inference
|
||||
|
||||
# Results
|
||||
results.print()
|
||||
results.save()
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,130 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""Experimental modules."""
|
||||
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from utils.downloads import attempt_download
|
||||
|
||||
|
||||
class Sum(nn.Module):
|
||||
"""Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070."""
|
||||
|
||||
def __init__(self, n, weight=False):
|
||||
"""Initializes a module to sum outputs of layers with number of inputs `n` and optional weighting, supporting 2+
|
||||
inputs.
|
||||
"""
|
||||
super().__init__()
|
||||
self.weight = weight # apply weights boolean
|
||||
self.iter = range(n - 1) # iter object
|
||||
if weight:
|
||||
self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
|
||||
|
||||
def forward(self, x):
|
||||
"""Processes input through a customizable weighted sum of `n` inputs, optionally applying learned weights."""
|
||||
y = x[0] # no weight
|
||||
if self.weight:
|
||||
w = torch.sigmoid(self.w) * 2
|
||||
for i in self.iter:
|
||||
y = y + x[i + 1] * w[i]
|
||||
else:
|
||||
for i in self.iter:
|
||||
y = y + x[i + 1]
|
||||
return y
|
||||
|
||||
|
||||
class MixConv2d(nn.Module):
|
||||
"""Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595."""
|
||||
|
||||
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
|
||||
"""Initializes MixConv2d with mixed depth-wise convolutional layers, taking input and output channels (c1, c2),
|
||||
kernel sizes (k), stride (s), and channel distribution strategy (equal_ch).
|
||||
"""
|
||||
super().__init__()
|
||||
n = len(k) # number of convolutions
|
||||
if equal_ch: # equal c_ per group
|
||||
i = torch.linspace(0, n - 1e-6, c2).floor() # c2 indices
|
||||
c_ = [(i == g).sum() for g in range(n)] # intermediate channels
|
||||
else: # equal weight.numel() per group
|
||||
b = [c2] + [0] * n
|
||||
a = np.eye(n + 1, n, k=-1)
|
||||
a -= np.roll(a, 1, axis=1)
|
||||
a *= np.array(k) ** 2
|
||||
a[0] = 1
|
||||
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
|
||||
|
||||
self.m = nn.ModuleList(
|
||||
[nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)]
|
||||
)
|
||||
self.bn = nn.BatchNorm2d(c2)
|
||||
self.act = nn.SiLU()
|
||||
|
||||
def forward(self, x):
|
||||
"""Performs forward pass by applying SiLU activation on batch-normalized concatenated convolutional layer
|
||||
outputs.
|
||||
"""
|
||||
return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
|
||||
|
||||
|
||||
class Ensemble(nn.ModuleList):
|
||||
"""Ensemble of models."""
|
||||
|
||||
def __init__(self):
|
||||
"""Initializes an ensemble of models to be used for aggregated predictions."""
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x, augment=False, profile=False, visualize=False):
|
||||
"""Performs forward pass aggregating outputs from an ensemble of models.."""
|
||||
y = [module(x, augment, profile, visualize)[0] for module in self]
|
||||
# y = torch.stack(y).max(0)[0] # max ensemble
|
||||
# y = torch.stack(y).mean(0) # mean ensemble
|
||||
y = torch.cat(y, 1) # nms ensemble
|
||||
return y, None # inference, train output
|
||||
|
||||
|
||||
def attempt_load(weights, device=None, inplace=True, fuse=True):
|
||||
"""
|
||||
Loads and fuses an ensemble or single YOLOv5 model from weights, handling device placement and model adjustments.
|
||||
|
||||
Example inputs: weights=[a,b,c] or a single model weights=[a] or weights=a.
|
||||
"""
|
||||
from models.yolo import Detect, Model
|
||||
|
||||
model = Ensemble()
|
||||
for w in weights if isinstance(weights, list) else [weights]:
|
||||
ckpt = torch.load(attempt_download(w), map_location="cpu") # load
|
||||
ckpt = (ckpt.get("ema") or ckpt["model"]).to(device).float() # FP32 model
|
||||
|
||||
# Model compatibility updates
|
||||
if not hasattr(ckpt, "stride"):
|
||||
ckpt.stride = torch.tensor([32.0])
|
||||
if hasattr(ckpt, "names") and isinstance(ckpt.names, (list, tuple)):
|
||||
ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
|
||||
|
||||
model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, "fuse") else ckpt.eval()) # model in eval mode
|
||||
|
||||
# Module updates
|
||||
for m in model.modules():
|
||||
t = type(m)
|
||||
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
|
||||
m.inplace = inplace
|
||||
if t is Detect and not isinstance(m.anchor_grid, list):
|
||||
delattr(m, "anchor_grid")
|
||||
setattr(m, "anchor_grid", [torch.zeros(1)] * m.nl)
|
||||
elif t is nn.Upsample and not hasattr(m, "recompute_scale_factor"):
|
||||
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
||||
|
||||
# Return model
|
||||
if len(model) == 1:
|
||||
return model[-1]
|
||||
|
||||
# Return detection ensemble
|
||||
print(f"Ensemble created with {weights}\n")
|
||||
for k in "names", "nc", "yaml":
|
||||
setattr(model, k, getattr(model[0], k))
|
||||
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
|
||||
assert all(model[0].nc == m.nc for m in model), f"Models have different class counts: {[m.nc for m in model]}"
|
||||
return model
|
||||
@ -1,56 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
# Default anchors for COCO data
|
||||
|
||||
# P5 -------------------------------------------------------------------------------------------------------------------
|
||||
# P5-640:
|
||||
anchors_p5_640:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# P6 -------------------------------------------------------------------------------------------------------------------
|
||||
# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
|
||||
anchors_p6_640:
|
||||
- [9, 11, 21, 19, 17, 41] # P3/8
|
||||
- [43, 32, 39, 70, 86, 64] # P4/16
|
||||
- [65, 131, 134, 130, 120, 265] # P5/32
|
||||
- [282, 180, 247, 354, 512, 387] # P6/64
|
||||
|
||||
# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
|
||||
anchors_p6_1280:
|
||||
- [19, 27, 44, 40, 38, 94] # P3/8
|
||||
- [96, 68, 86, 152, 180, 137] # P4/16
|
||||
- [140, 301, 303, 264, 238, 542] # P5/32
|
||||
- [436, 615, 739, 380, 925, 792] # P6/64
|
||||
|
||||
# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
|
||||
anchors_p6_1920:
|
||||
- [28, 41, 67, 59, 57, 141] # P3/8
|
||||
- [144, 103, 129, 227, 270, 205] # P4/16
|
||||
- [209, 452, 455, 396, 358, 812] # P5/32
|
||||
- [653, 922, 1109, 570, 1387, 1187] # P6/64
|
||||
|
||||
# P7 -------------------------------------------------------------------------------------------------------------------
|
||||
# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
|
||||
anchors_p7_640:
|
||||
- [11, 11, 13, 30, 29, 20] # P3/8
|
||||
- [30, 46, 61, 38, 39, 92] # P4/16
|
||||
- [78, 80, 146, 66, 79, 163] # P5/32
|
||||
- [149, 150, 321, 143, 157, 303] # P6/64
|
||||
- [257, 402, 359, 290, 524, 372] # P7/128
|
||||
|
||||
# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
|
||||
anchors_p7_1280:
|
||||
- [19, 22, 54, 36, 32, 77] # P3/8
|
||||
- [70, 83, 138, 71, 75, 173] # P4/16
|
||||
- [165, 159, 148, 334, 375, 151] # P5/32
|
||||
- [334, 317, 251, 626, 499, 474] # P6/64
|
||||
- [750, 326, 534, 814, 1079, 818] # P7/128
|
||||
|
||||
# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
|
||||
anchors_p7_1920:
|
||||
- [29, 34, 81, 55, 47, 115] # P3/8
|
||||
- [105, 124, 207, 107, 113, 259] # P4/16
|
||||
- [247, 238, 222, 500, 563, 227] # P5/32
|
||||
- [501, 476, 376, 939, 749, 711] # P6/64
|
||||
- [1126, 489, 801, 1222, 1618, 1227] # P7/128
|
||||
@ -1,52 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# darknet53 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [32, 3, 1]], # 0
|
||||
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
||||
[-1, 1, Bottleneck, [64]],
|
||||
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
||||
[-1, 2, Bottleneck, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
||||
[-1, 8, Bottleneck, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
||||
[-1, 8, Bottleneck, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
||||
[-1, 4, Bottleneck, [1024]], # 10
|
||||
]
|
||||
|
||||
# YOLOv3-SPP head
|
||||
head: [
|
||||
[-1, 1, Bottleneck, [1024, False]],
|
||||
[-1, 1, SPP, [512, [5, 9, 13]]],
|
||||
[-1, 1, Conv, [1024, 3, 1]],
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
||||
|
||||
[-2, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 1, Bottleneck, [512, False]],
|
||||
[-1, 1, Bottleneck, [512, False]],
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
||||
|
||||
[-2, 1, Conv, [128, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 1, Bottleneck, [256, False]],
|
||||
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
||||
|
||||
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -1,42 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 14, 23, 27, 37, 58] # P4/16
|
||||
- [81, 82, 135, 169, 344, 319] # P5/32
|
||||
|
||||
# YOLOv3-tiny backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [16, 3, 1]], # 0
|
||||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
|
||||
[-1, 1, Conv, [32, 3, 1]],
|
||||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
|
||||
[-1, 1, Conv, [64, 3, 1]],
|
||||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
|
||||
[-1, 1, Conv, [128, 3, 1]],
|
||||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
|
||||
[-1, 1, Conv, [256, 3, 1]],
|
||||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
|
||||
[-1, 1, Conv, [512, 3, 1]],
|
||||
[-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
|
||||
[-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
|
||||
]
|
||||
|
||||
# YOLOv3-tiny head
|
||||
head: [
|
||||
[-1, 1, Conv, [1024, 3, 1]],
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
|
||||
|
||||
[-2, 1, Conv, [128, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
|
||||
|
||||
[[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
|
||||
]
|
||||
@ -1,52 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# darknet53 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [32, 3, 1]], # 0
|
||||
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
||||
[-1, 1, Bottleneck, [64]],
|
||||
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
||||
[-1, 2, Bottleneck, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
||||
[-1, 8, Bottleneck, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
||||
[-1, 8, Bottleneck, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
||||
[-1, 4, Bottleneck, [1024]], # 10
|
||||
]
|
||||
|
||||
# YOLOv3 head
|
||||
head: [
|
||||
[-1, 1, Bottleneck, [1024, False]],
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, Conv, [1024, 3, 1]],
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
||||
|
||||
[-2, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 1, Bottleneck, [512, False]],
|
||||
[-1, 1, Bottleneck, [512, False]],
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
||||
|
||||
[-2, 1, Conv, [128, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 1, Bottleneck, [256, False]],
|
||||
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
||||
|
||||
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -1,49 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 BiFPN head
|
||||
head: [
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14, 6], 1, Concat, [1]], # cat P4 <--- BiFPN change
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -1,43 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 FPN head
|
||||
head: [
|
||||
[-1, 3, C3, [1024, False]], # 10 (P5/32-large)
|
||||
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 3, C3, [512, False]], # 14 (P4/16-medium)
|
||||
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 3, C3, [256, False]], # 18 (P3/8-small)
|
||||
|
||||
[[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -1,55 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
|
||||
head: [
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [128, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 2], 1, Concat, [1]], # cat backbone P2
|
||||
[-1, 1, C3, [128, False]], # 21 (P2/4-xsmall)
|
||||
|
||||
[-1, 1, Conv, [128, 3, 2]],
|
||||
[[-1, 18], 1, Concat, [1]], # cat head P3
|
||||
[-1, 3, C3, [256, False]], # 24 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 27 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 30 (P5/32-large)
|
||||
|
||||
[[21, 24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5)
|
||||
]
|
||||
@ -1,42 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 0.33 # model depth multiple
|
||||
width_multiple: 0.50 # layer channel multiple
|
||||
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head with (P3, P4) outputs
|
||||
head: [
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[[17, 20], 1, Detect, [nc, anchors]], # Detect(P3, P4)
|
||||
]
|
||||
@ -1,57 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [768]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 11
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs
|
||||
head: [
|
||||
[-1, 1, Conv, [768, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
||||
[-1, 3, C3, [768, False]], # 15
|
||||
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 19
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 20], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 16], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
||||
|
||||
[-1, 1, Conv, [768, 3, 2]],
|
||||
[[-1, 12], 1, Concat, [1]], # cat head P6
|
||||
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
||||
|
||||
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
||||
]
|
||||
@ -1,68 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [768]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, Conv, [1280, 3, 2]], # 11-P7/128
|
||||
[-1, 3, C3, [1280]],
|
||||
[-1, 1, SPPF, [1280, 5]], # 13
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs
|
||||
head: [
|
||||
[-1, 1, Conv, [1024, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat backbone P6
|
||||
[-1, 3, C3, [1024, False]], # 17
|
||||
|
||||
[-1, 1, Conv, [768, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
||||
[-1, 3, C3, [768, False]], # 21
|
||||
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 25
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 29 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 26], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 32 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 22], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [768, False]], # 35 (P5/32-large)
|
||||
|
||||
[-1, 1, Conv, [768, 3, 2]],
|
||||
[[-1, 18], 1, Concat, [1]], # cat head P6
|
||||
[-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge)
|
||||
|
||||
[-1, 1, Conv, [1024, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P7
|
||||
[-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge)
|
||||
|
||||
[[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7)
|
||||
]
|
||||
@ -1,49 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 PANet head
|
||||
head: [
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -1,61 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
anchors:
|
||||
- [19, 27, 44, 40, 38, 94] # P3/8
|
||||
- [96, 68, 86, 152, 180, 137] # P4/16
|
||||
- [140, 301, 303, 264, 238, 542] # P5/32
|
||||
- [436, 615, 739, 380, 925, 792] # P6/64
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [768]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 11
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head: [
|
||||
[-1, 1, Conv, [768, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
||||
[-1, 3, C3, [768, False]], # 15
|
||||
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 19
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 20], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 16], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
||||
|
||||
[-1, 1, Conv, [768, 3, 2]],
|
||||
[[-1, 12], 1, Concat, [1]], # cat head P6
|
||||
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
||||
|
||||
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
||||
]
|
||||
@ -1,61 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 0.67 # model depth multiple
|
||||
width_multiple: 0.75 # layer channel multiple
|
||||
anchors:
|
||||
- [19, 27, 44, 40, 38, 94] # P3/8
|
||||
- [96, 68, 86, 152, 180, 137] # P4/16
|
||||
- [140, 301, 303, 264, 238, 542] # P5/32
|
||||
- [436, 615, 739, 380, 925, 792] # P6/64
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [768]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 11
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head: [
|
||||
[-1, 1, Conv, [768, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
||||
[-1, 3, C3, [768, False]], # 15
|
||||
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 19
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 20], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 16], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
||||
|
||||
[-1, 1, Conv, [768, 3, 2]],
|
||||
[[-1, 12], 1, Concat, [1]], # cat head P6
|
||||
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
||||
|
||||
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
||||
]
|
||||
@ -1,61 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 0.33 # model depth multiple
|
||||
width_multiple: 0.25 # layer channel multiple
|
||||
anchors:
|
||||
- [19, 27, 44, 40, 38, 94] # P3/8
|
||||
- [96, 68, 86, 152, 180, 137] # P4/16
|
||||
- [140, 301, 303, 264, 238, 542] # P5/32
|
||||
- [436, 615, 739, 380, 925, 792] # P6/64
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [768]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 11
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head: [
|
||||
[-1, 1, Conv, [768, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
||||
[-1, 3, C3, [768, False]], # 15
|
||||
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 19
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 20], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 16], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
||||
|
||||
[-1, 1, Conv, [768, 3, 2]],
|
||||
[[-1, 12], 1, Concat, [1]], # cat head P6
|
||||
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
||||
|
||||
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
||||
]
|
||||
@ -1,50 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
activation: nn.LeakyReLU(0.1) # <----- Conv() activation used throughout entire YOLOv5 model
|
||||
depth_multiple: 0.33 # model depth multiple
|
||||
width_multiple: 0.50 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head: [
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -1,49 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 0.33 # model depth multiple
|
||||
width_multiple: 0.50 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, GhostConv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3Ghost, [128]],
|
||||
[-1, 1, GhostConv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3Ghost, [256]],
|
||||
[-1, 1, GhostConv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3Ghost, [512]],
|
||||
[-1, 1, GhostConv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3Ghost, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head: [
|
||||
[-1, 1, GhostConv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3Ghost, [512, False]], # 13
|
||||
|
||||
[-1, 1, GhostConv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3Ghost, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, GhostConv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3Ghost, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, GhostConv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3Ghost, [1024, False]], # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -1,49 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 0.33 # model depth multiple
|
||||
width_multiple: 0.50 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3TR, [1024]], # 9 <--- C3TR() Transformer module
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head: [
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -1,61 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 0.33 # model depth multiple
|
||||
width_multiple: 0.50 # layer channel multiple
|
||||
anchors:
|
||||
- [19, 27, 44, 40, 38, 94] # P3/8
|
||||
- [96, 68, 86, 152, 180, 137] # P4/16
|
||||
- [140, 301, 303, 264, 238, 542] # P5/32
|
||||
- [436, 615, 739, 380, 925, 792] # P6/64
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [768]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 11
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head: [
|
||||
[-1, 1, Conv, [768, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
||||
[-1, 3, C3, [768, False]], # 15
|
||||
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 19
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 20], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 16], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
||||
|
||||
[-1, 1, Conv, [768, 3, 2]],
|
||||
[[-1, 12], 1, Concat, [1]], # cat head P6
|
||||
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
||||
|
||||
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
||||
]
|
||||
@ -1,61 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.33 # model depth multiple
|
||||
width_multiple: 1.25 # layer channel multiple
|
||||
anchors:
|
||||
- [19, 27, 44, 40, 38, 94] # P3/8
|
||||
- [96, 68, 86, 152, 180, 137] # P4/16
|
||||
- [140, 301, 303, 264, 238, 542] # P5/32
|
||||
- [436, 615, 739, 380, 925, 792] # P6/64
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [768]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 11
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head: [
|
||||
[-1, 1, Conv, [768, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
||||
[-1, 3, C3, [768, False]], # 15
|
||||
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 19
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 20], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 16], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
||||
|
||||
[-1, 1, Conv, [768, 3, 2]],
|
||||
[[-1, 12], 1, Concat, [1]], # cat head P6
|
||||
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
||||
|
||||
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
||||
]
|
||||
@ -1,49 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head: [
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -1,49 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 0.67 # model depth multiple
|
||||
width_multiple: 0.75 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head: [
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -1,49 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 0.33 # model depth multiple
|
||||
width_multiple: 0.25 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head: [
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -1,49 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 0.33 # model depth multiple
|
||||
width_multiple: 0.5 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head: [
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -1,49 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.33 # model depth multiple
|
||||
width_multiple: 1.25 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head: [
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -1,797 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""
|
||||
TensorFlow, Keras and TFLite versions of YOLOv5
|
||||
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127.
|
||||
|
||||
Usage:
|
||||
$ python models/tf.py --weights yolov5s.pt
|
||||
|
||||
Export:
|
||||
$ python export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import sys
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[1] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from tensorflow import keras
|
||||
|
||||
from models.common import (
|
||||
C3,
|
||||
SPP,
|
||||
SPPF,
|
||||
Bottleneck,
|
||||
BottleneckCSP,
|
||||
C3x,
|
||||
Concat,
|
||||
Conv,
|
||||
CrossConv,
|
||||
DWConv,
|
||||
DWConvTranspose2d,
|
||||
Focus,
|
||||
autopad,
|
||||
)
|
||||
from models.experimental import MixConv2d, attempt_load
|
||||
from models.yolo import Detect, Segment
|
||||
from utils.activations import SiLU
|
||||
from utils.general import LOGGER, make_divisible, print_args
|
||||
|
||||
|
||||
class TFBN(keras.layers.Layer):
|
||||
"""TensorFlow BatchNormalization wrapper for initializing with optional pretrained weights."""
|
||||
|
||||
def __init__(self, w=None):
|
||||
"""Initializes a TensorFlow BatchNormalization layer with optional pretrained weights."""
|
||||
super().__init__()
|
||||
self.bn = keras.layers.BatchNormalization(
|
||||
beta_initializer=keras.initializers.Constant(w.bias.numpy()),
|
||||
gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
|
||||
moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
|
||||
moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
|
||||
epsilon=w.eps,
|
||||
)
|
||||
|
||||
def call(self, inputs):
|
||||
"""Applies batch normalization to the inputs."""
|
||||
return self.bn(inputs)
|
||||
|
||||
|
||||
class TFPad(keras.layers.Layer):
|
||||
"""Pads input tensors in spatial dimensions 1 and 2 with specified integer or tuple padding values."""
|
||||
|
||||
def __init__(self, pad):
|
||||
"""
|
||||
Initializes a padding layer for spatial dimensions 1 and 2 with specified padding, supporting both int and tuple
|
||||
inputs.
|
||||
|
||||
Inputs are
|
||||
"""
|
||||
super().__init__()
|
||||
if isinstance(pad, int):
|
||||
self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
|
||||
else: # tuple/list
|
||||
self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]])
|
||||
|
||||
def call(self, inputs):
|
||||
"""Pads input tensor with zeros using specified padding, suitable for int and tuple pad dimensions."""
|
||||
return tf.pad(inputs, self.pad, mode="constant", constant_values=0)
|
||||
|
||||
|
||||
class TFConv(keras.layers.Layer):
|
||||
"""Implements a standard convolutional layer with optional batch normalization and activation for TensorFlow."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
||||
"""
|
||||
Initializes a standard convolution layer with optional batch normalization and activation; supports only
|
||||
group=1.
|
||||
|
||||
Inputs are ch_in, ch_out, weights, kernel, stride, padding, groups.
|
||||
"""
|
||||
super().__init__()
|
||||
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
||||
# TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
|
||||
# see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
|
||||
conv = keras.layers.Conv2D(
|
||||
filters=c2,
|
||||
kernel_size=k,
|
||||
strides=s,
|
||||
padding="SAME" if s == 1 else "VALID",
|
||||
use_bias=not hasattr(w, "bn"),
|
||||
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
|
||||
bias_initializer="zeros" if hasattr(w, "bn") else keras.initializers.Constant(w.conv.bias.numpy()),
|
||||
)
|
||||
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
|
||||
self.bn = TFBN(w.bn) if hasattr(w, "bn") else tf.identity
|
||||
self.act = activations(w.act) if act else tf.identity
|
||||
|
||||
def call(self, inputs):
|
||||
"""Applies convolution, batch normalization, and activation function to input tensors."""
|
||||
return self.act(self.bn(self.conv(inputs)))
|
||||
|
||||
|
||||
class TFDWConv(keras.layers.Layer):
|
||||
"""Initializes a depthwise convolution layer with optional batch normalization and activation for TensorFlow."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None):
|
||||
"""
|
||||
Initializes a depthwise convolution layer with optional batch normalization and activation for TensorFlow
|
||||
models.
|
||||
|
||||
Input are ch_in, ch_out, weights, kernel, stride, padding, groups.
|
||||
"""
|
||||
super().__init__()
|
||||
assert c2 % c1 == 0, f"TFDWConv() output={c2} must be a multiple of input={c1} channels"
|
||||
conv = keras.layers.DepthwiseConv2D(
|
||||
kernel_size=k,
|
||||
depth_multiplier=c2 // c1,
|
||||
strides=s,
|
||||
padding="SAME" if s == 1 else "VALID",
|
||||
use_bias=not hasattr(w, "bn"),
|
||||
depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
|
||||
bias_initializer="zeros" if hasattr(w, "bn") else keras.initializers.Constant(w.conv.bias.numpy()),
|
||||
)
|
||||
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
|
||||
self.bn = TFBN(w.bn) if hasattr(w, "bn") else tf.identity
|
||||
self.act = activations(w.act) if act else tf.identity
|
||||
|
||||
def call(self, inputs):
|
||||
"""Applies convolution, batch normalization, and activation function to input tensors."""
|
||||
return self.act(self.bn(self.conv(inputs)))
|
||||
|
||||
|
||||
class TFDWConvTranspose2d(keras.layers.Layer):
|
||||
"""Implements a depthwise ConvTranspose2D layer for TensorFlow with specific settings."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None):
|
||||
"""
|
||||
Initializes depthwise ConvTranspose2D layer with specific channel, kernel, stride, and padding settings.
|
||||
|
||||
Inputs are ch_in, ch_out, weights, kernel, stride, padding, groups.
|
||||
"""
|
||||
super().__init__()
|
||||
assert c1 == c2, f"TFDWConv() output={c2} must be equal to input={c1} channels"
|
||||
assert k == 4 and p1 == 1, "TFDWConv() only valid for k=4 and p1=1"
|
||||
weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy()
|
||||
self.c1 = c1
|
||||
self.conv = [
|
||||
keras.layers.Conv2DTranspose(
|
||||
filters=1,
|
||||
kernel_size=k,
|
||||
strides=s,
|
||||
padding="VALID",
|
||||
output_padding=p2,
|
||||
use_bias=True,
|
||||
kernel_initializer=keras.initializers.Constant(weight[..., i : i + 1]),
|
||||
bias_initializer=keras.initializers.Constant(bias[i]),
|
||||
)
|
||||
for i in range(c1)
|
||||
]
|
||||
|
||||
def call(self, inputs):
|
||||
"""Processes input through parallel convolutions and concatenates results, trimming border pixels."""
|
||||
return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1]
|
||||
|
||||
|
||||
class TFFocus(keras.layers.Layer):
|
||||
"""Focuses spatial information into channel space using pixel shuffling and convolution for TensorFlow models."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
||||
"""
|
||||
Initializes TFFocus layer to focus width and height information into channel space with custom convolution
|
||||
parameters.
|
||||
|
||||
Inputs are ch_in, ch_out, kernel, stride, padding, groups.
|
||||
"""
|
||||
super().__init__()
|
||||
self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
|
||||
|
||||
def call(self, inputs):
|
||||
"""
|
||||
Performs pixel shuffling and convolution on input tensor, downsampling by 2 and expanding channels by 4.
|
||||
|
||||
Example x(b,w,h,c) -> y(b,w/2,h/2,4c).
|
||||
"""
|
||||
inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]]
|
||||
return self.conv(tf.concat(inputs, 3))
|
||||
|
||||
|
||||
class TFBottleneck(keras.layers.Layer):
|
||||
"""Implements a TensorFlow bottleneck layer with optional shortcut connections for efficient feature extraction."""
|
||||
|
||||
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None):
|
||||
"""
|
||||
Initializes a standard bottleneck layer for TensorFlow models, expanding and contracting channels with optional
|
||||
shortcut.
|
||||
|
||||
Arguments are ch_in, ch_out, shortcut, groups, expansion.
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
||||
self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
|
||||
self.add = shortcut and c1 == c2
|
||||
|
||||
def call(self, inputs):
|
||||
"""Performs forward pass; if shortcut is True & input/output channels match, adds input to the convolution
|
||||
result.
|
||||
"""
|
||||
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
|
||||
|
||||
|
||||
class TFCrossConv(keras.layers.Layer):
|
||||
"""Implements a cross convolutional layer with optional expansion, grouping, and shortcut for TensorFlow."""
|
||||
|
||||
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None):
|
||||
"""Initializes cross convolution layer with optional expansion, grouping, and shortcut addition capabilities."""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1)
|
||||
self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2)
|
||||
self.add = shortcut and c1 == c2
|
||||
|
||||
def call(self, inputs):
|
||||
"""Passes input through two convolutions optionally adding the input if channel dimensions match."""
|
||||
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
|
||||
|
||||
|
||||
class TFConv2d(keras.layers.Layer):
|
||||
"""Implements a TensorFlow 2D convolution layer, mimicking PyTorch's nn.Conv2D for specified filters and stride."""
|
||||
|
||||
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
|
||||
"""Initializes a TensorFlow 2D convolution layer, mimicking PyTorch's nn.Conv2D functionality for given filter
|
||||
sizes and stride.
|
||||
"""
|
||||
super().__init__()
|
||||
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
||||
self.conv = keras.layers.Conv2D(
|
||||
filters=c2,
|
||||
kernel_size=k,
|
||||
strides=s,
|
||||
padding="VALID",
|
||||
use_bias=bias,
|
||||
kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()),
|
||||
bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None,
|
||||
)
|
||||
|
||||
def call(self, inputs):
|
||||
"""Applies a convolution operation to the inputs and returns the result."""
|
||||
return self.conv(inputs)
|
||||
|
||||
|
||||
class TFBottleneckCSP(keras.layers.Layer):
|
||||
"""Implements a CSP bottleneck layer for TensorFlow models to enhance gradient flow and efficiency."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
||||
"""
|
||||
Initializes CSP bottleneck layer with specified channel sizes, count, shortcut option, groups, and expansion
|
||||
ratio.
|
||||
|
||||
Inputs are ch_in, ch_out, number, shortcut, groups, expansion.
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
||||
self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
|
||||
self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
|
||||
self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
|
||||
self.bn = TFBN(w.bn)
|
||||
self.act = lambda x: keras.activations.swish(x)
|
||||
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
||||
|
||||
def call(self, inputs):
|
||||
"""Processes input through the model layers, concatenates, normalizes, activates, and reduces the output
|
||||
dimensions.
|
||||
"""
|
||||
y1 = self.cv3(self.m(self.cv1(inputs)))
|
||||
y2 = self.cv2(inputs)
|
||||
return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
|
||||
|
||||
|
||||
class TFC3(keras.layers.Layer):
|
||||
"""CSP bottleneck layer with 3 convolutions for TensorFlow, supporting optional shortcuts and group convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
||||
"""
|
||||
Initializes CSP Bottleneck with 3 convolutions, supporting optional shortcuts and group convolutions.
|
||||
|
||||
Inputs are ch_in, ch_out, number, shortcut, groups, expansion.
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
||||
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
|
||||
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
|
||||
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
||||
|
||||
def call(self, inputs):
|
||||
"""
|
||||
Processes input through a sequence of transformations for object detection (YOLOv5).
|
||||
|
||||
See https://github.com/ultralytics/yolov5.
|
||||
"""
|
||||
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
|
||||
|
||||
|
||||
class TFC3x(keras.layers.Layer):
|
||||
"""A TensorFlow layer for enhanced feature extraction using cross-convolutions in object detection models."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
||||
"""
|
||||
Initializes layer with cross-convolutions for enhanced feature extraction in object detection models.
|
||||
|
||||
Inputs are ch_in, ch_out, number, shortcut, groups, expansion.
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
||||
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
|
||||
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
|
||||
self.m = keras.Sequential(
|
||||
[TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)]
|
||||
)
|
||||
|
||||
def call(self, inputs):
|
||||
"""Processes input through cascaded convolutions and merges features, returning the final tensor output."""
|
||||
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
|
||||
|
||||
|
||||
class TFSPP(keras.layers.Layer):
|
||||
"""Implements spatial pyramid pooling for YOLOv3-SPP with specific channels and kernel sizes."""
|
||||
|
||||
def __init__(self, c1, c2, k=(5, 9, 13), w=None):
|
||||
"""Initializes a YOLOv3-SPP layer with specific input/output channels and kernel sizes for pooling."""
|
||||
super().__init__()
|
||||
c_ = c1 // 2 # hidden channels
|
||||
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
||||
self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
|
||||
self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding="SAME") for x in k]
|
||||
|
||||
def call(self, inputs):
|
||||
"""Processes input through two TFConv layers and concatenates with max-pooled outputs at intermediate stage."""
|
||||
x = self.cv1(inputs)
|
||||
return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
|
||||
|
||||
|
||||
class TFSPPF(keras.layers.Layer):
|
||||
"""Implements a fast spatial pyramid pooling layer for TensorFlow with optimized feature extraction."""
|
||||
|
||||
def __init__(self, c1, c2, k=5, w=None):
|
||||
"""Initializes a fast spatial pyramid pooling layer with customizable in/out channels, kernel size, and
|
||||
weights.
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = c1 // 2 # hidden channels
|
||||
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
||||
self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
|
||||
self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding="SAME")
|
||||
|
||||
def call(self, inputs):
|
||||
"""Executes the model's forward pass, concatenating input features with three max-pooled versions before final
|
||||
convolution.
|
||||
"""
|
||||
x = self.cv1(inputs)
|
||||
y1 = self.m(x)
|
||||
y2 = self.m(y1)
|
||||
return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
|
||||
|
||||
|
||||
class TFDetect(keras.layers.Layer):
|
||||
"""Implements YOLOv5 object detection layer in TensorFlow for predicting bounding boxes and class probabilities."""
|
||||
|
||||
def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None):
|
||||
"""Initializes YOLOv5 detection layer for TensorFlow with configurable classes, anchors, channels, and image
|
||||
size.
|
||||
"""
|
||||
super().__init__()
|
||||
self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
|
||||
self.nc = nc # number of classes
|
||||
self.no = nc + 5 # number of outputs per anchor
|
||||
self.nl = len(anchors) # number of detection layers
|
||||
self.na = len(anchors[0]) // 2 # number of anchors
|
||||
self.grid = [tf.zeros(1)] * self.nl # init grid
|
||||
self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
|
||||
self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2])
|
||||
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
|
||||
self.training = False # set to False after building model
|
||||
self.imgsz = imgsz
|
||||
for i in range(self.nl):
|
||||
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
|
||||
self.grid[i] = self._make_grid(nx, ny)
|
||||
|
||||
def call(self, inputs):
|
||||
"""Performs forward pass through the model layers to predict object bounding boxes and classifications."""
|
||||
z = [] # inference output
|
||||
x = []
|
||||
for i in range(self.nl):
|
||||
x.append(self.m[i](inputs[i]))
|
||||
# x(bs,20,20,255) to x(bs,3,20,20,85)
|
||||
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
|
||||
x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])
|
||||
|
||||
if not self.training: # inference
|
||||
y = x[i]
|
||||
grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
|
||||
anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
|
||||
xy = (tf.sigmoid(y[..., 0:2]) * 2 + grid) * self.stride[i] # xy
|
||||
wh = tf.sigmoid(y[..., 2:4]) ** 2 * anchor_grid
|
||||
# Normalize xywh to 0-1 to reduce calibration error
|
||||
xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
||||
wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
||||
y = tf.concat([xy, wh, tf.sigmoid(y[..., 4 : 5 + self.nc]), y[..., 5 + self.nc :]], -1)
|
||||
z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
|
||||
|
||||
return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1),)
|
||||
|
||||
@staticmethod
|
||||
def _make_grid(nx=20, ny=20):
|
||||
"""Generates a 2D grid of coordinates in (x, y) format with shape [1, 1, ny*nx, 2]."""
|
||||
# return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
||||
xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
|
||||
return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
|
||||
|
||||
|
||||
class TFSegment(TFDetect):
|
||||
"""YOLOv5 segmentation head for TensorFlow, combining detection and segmentation."""
|
||||
|
||||
def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), imgsz=(640, 640), w=None):
|
||||
"""Initializes YOLOv5 Segment head with specified channel depths, anchors, and input size for segmentation
|
||||
models.
|
||||
"""
|
||||
super().__init__(nc, anchors, ch, imgsz, w)
|
||||
self.nm = nm # number of masks
|
||||
self.npr = npr # number of protos
|
||||
self.no = 5 + nc + self.nm # number of outputs per anchor
|
||||
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] # output conv
|
||||
self.proto = TFProto(ch[0], self.npr, self.nm, w=w.proto) # protos
|
||||
self.detect = TFDetect.call
|
||||
|
||||
def call(self, x):
|
||||
"""Applies detection and proto layers on input, returning detections and optionally protos if training."""
|
||||
p = self.proto(x[0])
|
||||
# p = TFUpsample(None, scale_factor=4, mode='nearest')(self.proto(x[0])) # (optional) full-size protos
|
||||
p = tf.transpose(p, [0, 3, 1, 2]) # from shape(1,160,160,32) to shape(1,32,160,160)
|
||||
x = self.detect(self, x)
|
||||
return (x, p) if self.training else (x[0], p)
|
||||
|
||||
|
||||
class TFProto(keras.layers.Layer):
|
||||
"""Implements convolutional and upsampling layers for feature extraction in YOLOv5 segmentation."""
|
||||
|
||||
def __init__(self, c1, c_=256, c2=32, w=None):
|
||||
"""Initializes TFProto layer with convolutional and upsampling layers for feature extraction and
|
||||
transformation.
|
||||
"""
|
||||
super().__init__()
|
||||
self.cv1 = TFConv(c1, c_, k=3, w=w.cv1)
|
||||
self.upsample = TFUpsample(None, scale_factor=2, mode="nearest")
|
||||
self.cv2 = TFConv(c_, c_, k=3, w=w.cv2)
|
||||
self.cv3 = TFConv(c_, c2, w=w.cv3)
|
||||
|
||||
def call(self, inputs):
|
||||
"""Performs forward pass through the model, applying convolutions and upscaling on input tensor."""
|
||||
return self.cv3(self.cv2(self.upsample(self.cv1(inputs))))
|
||||
|
||||
|
||||
class TFUpsample(keras.layers.Layer):
|
||||
"""Implements a TensorFlow upsampling layer with specified size, scale factor, and interpolation mode."""
|
||||
|
||||
def __init__(self, size, scale_factor, mode, w=None):
|
||||
"""
|
||||
Initializes a TensorFlow upsampling layer with specified size, scale_factor, and mode, ensuring scale_factor is
|
||||
even.
|
||||
|
||||
Warning: all arguments needed including 'w'
|
||||
"""
|
||||
super().__init__()
|
||||
assert scale_factor % 2 == 0, "scale_factor must be multiple of 2"
|
||||
self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * scale_factor, x.shape[2] * scale_factor), mode)
|
||||
# self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
|
||||
# with default arguments: align_corners=False, half_pixel_centers=False
|
||||
# self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
|
||||
# size=(x.shape[1] * 2, x.shape[2] * 2))
|
||||
|
||||
def call(self, inputs):
|
||||
"""Applies upsample operation to inputs using nearest neighbor interpolation."""
|
||||
return self.upsample(inputs)
|
||||
|
||||
|
||||
class TFConcat(keras.layers.Layer):
|
||||
"""Implements TensorFlow's version of torch.concat() for concatenating tensors along the last dimension."""
|
||||
|
||||
def __init__(self, dimension=1, w=None):
|
||||
"""Initializes a TensorFlow layer for NCHW to NHWC concatenation, requiring dimension=1."""
|
||||
super().__init__()
|
||||
assert dimension == 1, "convert only NCHW to NHWC concat"
|
||||
self.d = 3
|
||||
|
||||
def call(self, inputs):
|
||||
"""Concatenates a list of tensors along the last dimension, used for NCHW to NHWC conversion."""
|
||||
return tf.concat(inputs, self.d)
|
||||
|
||||
|
||||
def parse_model(d, ch, model, imgsz):
|
||||
"""Parses a model definition dict `d` to create YOLOv5 model layers, including dynamic channel adjustments."""
|
||||
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
||||
anchors, nc, gd, gw, ch_mul = (
|
||||
d["anchors"],
|
||||
d["nc"],
|
||||
d["depth_multiple"],
|
||||
d["width_multiple"],
|
||||
d.get("channel_multiple"),
|
||||
)
|
||||
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
||||
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
||||
if not ch_mul:
|
||||
ch_mul = 8
|
||||
|
||||
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
||||
for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args
|
||||
m_str = m
|
||||
m = eval(m) if isinstance(m, str) else m # eval strings
|
||||
for j, a in enumerate(args):
|
||||
try:
|
||||
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
||||
except NameError:
|
||||
pass
|
||||
|
||||
n = max(round(n * gd), 1) if n > 1 else n # depth gain
|
||||
if m in [
|
||||
nn.Conv2d,
|
||||
Conv,
|
||||
DWConv,
|
||||
DWConvTranspose2d,
|
||||
Bottleneck,
|
||||
SPP,
|
||||
SPPF,
|
||||
MixConv2d,
|
||||
Focus,
|
||||
CrossConv,
|
||||
BottleneckCSP,
|
||||
C3,
|
||||
C3x,
|
||||
]:
|
||||
c1, c2 = ch[f], args[0]
|
||||
c2 = make_divisible(c2 * gw, ch_mul) if c2 != no else c2
|
||||
|
||||
args = [c1, c2, *args[1:]]
|
||||
if m in [BottleneckCSP, C3, C3x]:
|
||||
args.insert(2, n)
|
||||
n = 1
|
||||
elif m is nn.BatchNorm2d:
|
||||
args = [ch[f]]
|
||||
elif m is Concat:
|
||||
c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
|
||||
elif m in [Detect, Segment]:
|
||||
args.append([ch[x + 1] for x in f])
|
||||
if isinstance(args[1], int): # number of anchors
|
||||
args[1] = [list(range(args[1] * 2))] * len(f)
|
||||
if m is Segment:
|
||||
args[3] = make_divisible(args[3] * gw, ch_mul)
|
||||
args.append(imgsz)
|
||||
else:
|
||||
c2 = ch[f]
|
||||
|
||||
tf_m = eval("TF" + m_str.replace("nn.", ""))
|
||||
m_ = (
|
||||
keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)])
|
||||
if n > 1
|
||||
else tf_m(*args, w=model.model[i])
|
||||
) # module
|
||||
|
||||
torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
||||
t = str(m)[8:-2].replace("__main__.", "") # module type
|
||||
np = sum(x.numel() for x in torch_m_.parameters()) # number params
|
||||
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
||||
LOGGER.info(f"{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}") # print
|
||||
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
||||
layers.append(m_)
|
||||
ch.append(c2)
|
||||
return keras.Sequential(layers), sorted(save)
|
||||
|
||||
|
||||
class TFModel:
|
||||
"""Implements YOLOv5 model in TensorFlow, supporting TensorFlow, Keras, and TFLite formats for object detection."""
|
||||
|
||||
def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None, model=None, imgsz=(640, 640)):
|
||||
"""Initializes TF YOLOv5 model with specified configuration, channels, classes, model instance, and input
|
||||
size.
|
||||
"""
|
||||
super().__init__()
|
||||
if isinstance(cfg, dict):
|
||||
self.yaml = cfg # model dict
|
||||
else: # is *.yaml
|
||||
import yaml # for torch hub
|
||||
|
||||
self.yaml_file = Path(cfg).name
|
||||
with open(cfg) as f:
|
||||
self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
||||
|
||||
# Define model
|
||||
if nc and nc != self.yaml["nc"]:
|
||||
LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
|
||||
self.yaml["nc"] = nc # override yaml value
|
||||
self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
|
||||
|
||||
def predict(
|
||||
self,
|
||||
inputs,
|
||||
tf_nms=False,
|
||||
agnostic_nms=False,
|
||||
topk_per_class=100,
|
||||
topk_all=100,
|
||||
iou_thres=0.45,
|
||||
conf_thres=0.25,
|
||||
):
|
||||
"""Runs inference on input data, with an option for TensorFlow NMS."""
|
||||
y = [] # outputs
|
||||
x = inputs
|
||||
for m in self.model.layers:
|
||||
if m.f != -1: # if not from previous layer
|
||||
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
||||
|
||||
x = m(x) # run
|
||||
y.append(x if m.i in self.savelist else None) # save output
|
||||
|
||||
# Add TensorFlow NMS
|
||||
if tf_nms:
|
||||
boxes = self._xywh2xyxy(x[0][..., :4])
|
||||
probs = x[0][:, :, 4:5]
|
||||
classes = x[0][:, :, 5:]
|
||||
scores = probs * classes
|
||||
if agnostic_nms:
|
||||
nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
|
||||
else:
|
||||
boxes = tf.expand_dims(boxes, 2)
|
||||
nms = tf.image.combined_non_max_suppression(
|
||||
boxes, scores, topk_per_class, topk_all, iou_thres, conf_thres, clip_boxes=False
|
||||
)
|
||||
return (nms,)
|
||||
return x # output [1,6300,85] = [xywh, conf, class0, class1, ...]
|
||||
# x = x[0] # [x(1,6300,85), ...] to x(6300,85)
|
||||
# xywh = x[..., :4] # x(6300,4) boxes
|
||||
# conf = x[..., 4:5] # x(6300,1) confidences
|
||||
# cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
|
||||
# return tf.concat([conf, cls, xywh], 1)
|
||||
|
||||
@staticmethod
|
||||
def _xywh2xyxy(xywh):
|
||||
"""Converts bounding box format from [x, y, w, h] to [x1, y1, x2, y2], where xy1=top-left and xy2=bottom-
|
||||
right.
|
||||
"""
|
||||
x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
|
||||
return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
|
||||
|
||||
|
||||
class AgnosticNMS(keras.layers.Layer):
|
||||
"""Performs agnostic non-maximum suppression (NMS) on detected objects using IoU and confidence thresholds."""
|
||||
|
||||
def call(self, input, topk_all, iou_thres, conf_thres):
|
||||
"""Performs agnostic NMS on input tensors using given thresholds and top-K selection."""
|
||||
return tf.map_fn(
|
||||
lambda x: self._nms(x, topk_all, iou_thres, conf_thres),
|
||||
input,
|
||||
fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
|
||||
name="agnostic_nms",
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25):
|
||||
"""Performs agnostic non-maximum suppression (NMS) on detected objects, filtering based on IoU and confidence
|
||||
thresholds.
|
||||
"""
|
||||
boxes, classes, scores = x
|
||||
class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
|
||||
scores_inp = tf.reduce_max(scores, -1)
|
||||
selected_inds = tf.image.non_max_suppression(
|
||||
boxes, scores_inp, max_output_size=topk_all, iou_threshold=iou_thres, score_threshold=conf_thres
|
||||
)
|
||||
selected_boxes = tf.gather(boxes, selected_inds)
|
||||
padded_boxes = tf.pad(
|
||||
selected_boxes,
|
||||
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
|
||||
mode="CONSTANT",
|
||||
constant_values=0.0,
|
||||
)
|
||||
selected_scores = tf.gather(scores_inp, selected_inds)
|
||||
padded_scores = tf.pad(
|
||||
selected_scores,
|
||||
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
||||
mode="CONSTANT",
|
||||
constant_values=-1.0,
|
||||
)
|
||||
selected_classes = tf.gather(class_inds, selected_inds)
|
||||
padded_classes = tf.pad(
|
||||
selected_classes,
|
||||
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
||||
mode="CONSTANT",
|
||||
constant_values=-1.0,
|
||||
)
|
||||
valid_detections = tf.shape(selected_inds)[0]
|
||||
return padded_boxes, padded_scores, padded_classes, valid_detections
|
||||
|
||||
|
||||
def activations(act=nn.SiLU):
|
||||
"""Converts PyTorch activations to TensorFlow equivalents, supporting LeakyReLU, Hardswish, and SiLU/Swish."""
|
||||
if isinstance(act, nn.LeakyReLU):
|
||||
return lambda x: keras.activations.relu(x, alpha=0.1)
|
||||
elif isinstance(act, nn.Hardswish):
|
||||
return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667
|
||||
elif isinstance(act, (nn.SiLU, SiLU)):
|
||||
return lambda x: keras.activations.swish(x)
|
||||
else:
|
||||
raise Exception(f"no matching TensorFlow activation found for PyTorch activation {act}")
|
||||
|
||||
|
||||
def representative_dataset_gen(dataset, ncalib=100):
|
||||
"""Generates a representative dataset for calibration by yielding transformed numpy arrays from the input
|
||||
dataset.
|
||||
"""
|
||||
for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
|
||||
im = np.transpose(img, [1, 2, 0])
|
||||
im = np.expand_dims(im, axis=0).astype(np.float32)
|
||||
im /= 255
|
||||
yield [im]
|
||||
if n >= ncalib:
|
||||
break
|
||||
|
||||
|
||||
def run(
|
||||
weights=ROOT / "yolov5s.pt", # weights path
|
||||
imgsz=(640, 640), # inference size h,w
|
||||
batch_size=1, # batch size
|
||||
dynamic=False, # dynamic batch size
|
||||
):
|
||||
# PyTorch model
|
||||
"""Exports YOLOv5 model from PyTorch to TensorFlow and Keras formats, performing inference for validation."""
|
||||
im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
|
||||
model = attempt_load(weights, device=torch.device("cpu"), inplace=True, fuse=False)
|
||||
_ = model(im) # inference
|
||||
model.info()
|
||||
|
||||
# TensorFlow model
|
||||
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
|
||||
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
||||
_ = tf_model.predict(im) # inference
|
||||
|
||||
# Keras model
|
||||
im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
|
||||
keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
|
||||
keras_model.summary()
|
||||
|
||||
LOGGER.info("PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.")
|
||||
|
||||
|
||||
def parse_opt():
|
||||
"""Parses and returns command-line options for model inference, including weights path, image size, batch size, and
|
||||
dynamic batching.
|
||||
"""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path")
|
||||
parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
|
||||
parser.add_argument("--batch-size", type=int, default=1, help="batch size")
|
||||
parser.add_argument("--dynamic", action="store_true", help="dynamic batch size")
|
||||
opt = parser.parse_args()
|
||||
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
||||
print_args(vars(opt))
|
||||
return opt
|
||||
|
||||
|
||||
def main(opt):
|
||||
"""Executes the YOLOv5 model run function with parsed command line options."""
|
||||
run(**vars(opt))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
opt = parse_opt()
|
||||
main(opt)
|
||||
@ -1,495 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""
|
||||
YOLO-specific modules.
|
||||
|
||||
Usage:
|
||||
$ python models/yolo.py --cfg yolov5s.yaml
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import contextlib
|
||||
import math
|
||||
import os
|
||||
import platform
|
||||
import sys
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[1] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
if platform.system() != "Windows":
|
||||
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||
|
||||
from models.common import (
|
||||
C3,
|
||||
C3SPP,
|
||||
C3TR,
|
||||
SPP,
|
||||
SPPF,
|
||||
Bottleneck,
|
||||
BottleneckCSP,
|
||||
C3Ghost,
|
||||
C3x,
|
||||
Classify,
|
||||
Concat,
|
||||
Contract,
|
||||
Conv,
|
||||
CrossConv,
|
||||
DetectMultiBackend,
|
||||
DWConv,
|
||||
DWConvTranspose2d,
|
||||
Expand,
|
||||
Focus,
|
||||
GhostBottleneck,
|
||||
GhostConv,
|
||||
Proto,
|
||||
)
|
||||
from models.experimental import MixConv2d
|
||||
from utils.autoanchor import check_anchor_order
|
||||
from utils.general import LOGGER, check_version, check_yaml, colorstr, make_divisible, print_args
|
||||
from utils.plots import feature_visualization
|
||||
from utils.torch_utils import (
|
||||
fuse_conv_and_bn,
|
||||
initialize_weights,
|
||||
model_info,
|
||||
profile,
|
||||
scale_img,
|
||||
select_device,
|
||||
time_sync,
|
||||
)
|
||||
|
||||
try:
|
||||
import thop # for FLOPs computation
|
||||
except ImportError:
|
||||
thop = None
|
||||
|
||||
|
||||
class Detect(nn.Module):
|
||||
"""YOLOv5 Detect head for processing input tensors and generating detection outputs in object detection models."""
|
||||
|
||||
stride = None # strides computed during build
|
||||
dynamic = False # force grid reconstruction
|
||||
export = False # export mode
|
||||
|
||||
def __init__(self, nc=80, anchors=(), ch=(), inplace=True):
|
||||
"""Initializes YOLOv5 detection layer with specified classes, anchors, channels, and inplace operations."""
|
||||
super().__init__()
|
||||
self.nc = nc # number of classes
|
||||
self.no = nc + 5 # number of outputs per anchor
|
||||
self.nl = len(anchors) # number of detection layers
|
||||
self.na = len(anchors[0]) // 2 # number of anchors
|
||||
self.grid = [torch.empty(0) for _ in range(self.nl)] # init grid
|
||||
self.anchor_grid = [torch.empty(0) for _ in range(self.nl)] # init anchor grid
|
||||
self.register_buffer("anchors", torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
|
||||
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
||||
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
||||
|
||||
def forward(self, x):
|
||||
"""Processes input through YOLOv5 layers, altering shape for detection: `x(bs, 3, ny, nx, 85)`."""
|
||||
z = [] # inference output
|
||||
for i in range(self.nl):
|
||||
x[i] = self.m[i](x[i]) # conv
|
||||
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
||||
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
||||
|
||||
if not self.training: # inference
|
||||
if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
||||
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
|
||||
|
||||
if isinstance(self, Segment): # (boxes + masks)
|
||||
xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)
|
||||
xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i] # xy
|
||||
wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i] # wh
|
||||
y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)
|
||||
else: # Detect (boxes only)
|
||||
xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)
|
||||
xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy
|
||||
wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh
|
||||
y = torch.cat((xy, wh, conf), 4)
|
||||
z.append(y.view(bs, self.na * nx * ny, self.no))
|
||||
|
||||
return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
|
||||
|
||||
def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, "1.10.0")):
|
||||
"""Generates a mesh grid for anchor boxes with optional compatibility for torch versions < 1.10."""
|
||||
d = self.anchors[i].device
|
||||
t = self.anchors[i].dtype
|
||||
shape = 1, self.na, ny, nx, 2 # grid shape
|
||||
y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
|
||||
yv, xv = torch.meshgrid(y, x, indexing="ij") if torch_1_10 else torch.meshgrid(y, x) # torch>=0.7 compatibility
|
||||
grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5
|
||||
anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
|
||||
return grid, anchor_grid
|
||||
|
||||
|
||||
class Segment(Detect):
|
||||
"""YOLOv5 Segment head for segmentation models, extending Detect with mask and prototype layers."""
|
||||
|
||||
def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), inplace=True):
|
||||
"""Initializes YOLOv5 Segment head with options for mask count, protos, and channel adjustments."""
|
||||
super().__init__(nc, anchors, ch, inplace)
|
||||
self.nm = nm # number of masks
|
||||
self.npr = npr # number of protos
|
||||
self.no = 5 + nc + self.nm # number of outputs per anchor
|
||||
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
||||
self.proto = Proto(ch[0], self.npr, self.nm) # protos
|
||||
self.detect = Detect.forward
|
||||
|
||||
def forward(self, x):
|
||||
"""Processes input through the network, returning detections and prototypes; adjusts output based on
|
||||
training/export mode.
|
||||
"""
|
||||
p = self.proto(x[0])
|
||||
x = self.detect(self, x)
|
||||
return (x, p) if self.training else (x[0], p) if self.export else (x[0], p, x[1])
|
||||
|
||||
|
||||
class BaseModel(nn.Module):
|
||||
"""YOLOv5 base model."""
|
||||
|
||||
def forward(self, x, profile=False, visualize=False):
|
||||
"""Executes a single-scale inference or training pass on the YOLOv5 base model, with options for profiling and
|
||||
visualization.
|
||||
"""
|
||||
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
||||
|
||||
def _forward_once(self, x, profile=False, visualize=False):
|
||||
"""Performs a forward pass on the YOLOv5 model, enabling profiling and feature visualization options."""
|
||||
y, dt = [], [] # outputs
|
||||
for m in self.model:
|
||||
if m.f != -1: # if not from previous layer
|
||||
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
||||
if profile:
|
||||
self._profile_one_layer(m, x, dt)
|
||||
x = m(x) # run
|
||||
y.append(x if m.i in self.save else None) # save output
|
||||
if visualize:
|
||||
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
||||
return x
|
||||
|
||||
def _profile_one_layer(self, m, x, dt):
|
||||
"""Profiles a single layer's performance by computing GFLOPs, execution time, and parameters."""
|
||||
c = m == self.model[-1] # is final layer, copy input as inplace fix
|
||||
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1e9 * 2 if thop else 0 # FLOPs
|
||||
t = time_sync()
|
||||
for _ in range(10):
|
||||
m(x.copy() if c else x)
|
||||
dt.append((time_sync() - t) * 100)
|
||||
if m == self.model[0]:
|
||||
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
|
||||
LOGGER.info(f"{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}")
|
||||
if c:
|
||||
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
|
||||
|
||||
def fuse(self):
|
||||
"""Fuses Conv2d() and BatchNorm2d() layers in the model to improve inference speed."""
|
||||
LOGGER.info("Fusing layers... ")
|
||||
for m in self.model.modules():
|
||||
if isinstance(m, (Conv, DWConv)) and hasattr(m, "bn"):
|
||||
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
||||
delattr(m, "bn") # remove batchnorm
|
||||
m.forward = m.forward_fuse # update forward
|
||||
self.info()
|
||||
return self
|
||||
|
||||
def info(self, verbose=False, img_size=640):
|
||||
"""Prints model information given verbosity and image size, e.g., `info(verbose=True, img_size=640)`."""
|
||||
model_info(self, verbose, img_size)
|
||||
|
||||
def _apply(self, fn):
|
||||
"""Applies transformations like to(), cpu(), cuda(), half() to model tensors excluding parameters or registered
|
||||
buffers.
|
||||
"""
|
||||
self = super()._apply(fn)
|
||||
m = self.model[-1] # Detect()
|
||||
if isinstance(m, (Detect, Segment)):
|
||||
m.stride = fn(m.stride)
|
||||
m.grid = list(map(fn, m.grid))
|
||||
if isinstance(m.anchor_grid, list):
|
||||
m.anchor_grid = list(map(fn, m.anchor_grid))
|
||||
return self
|
||||
|
||||
|
||||
class DetectionModel(BaseModel):
|
||||
"""YOLOv5 detection model class for object detection tasks, supporting custom configurations and anchors."""
|
||||
|
||||
def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None, anchors=None):
|
||||
"""Initializes YOLOv5 model with configuration file, input channels, number of classes, and custom anchors."""
|
||||
super().__init__()
|
||||
if isinstance(cfg, dict):
|
||||
self.yaml = cfg # model dict
|
||||
else: # is *.yaml
|
||||
import yaml # for torch hub
|
||||
|
||||
self.yaml_file = Path(cfg).name
|
||||
with open(cfg, encoding="ascii", errors="ignore") as f:
|
||||
self.yaml = yaml.safe_load(f) # model dict
|
||||
|
||||
# Define model
|
||||
ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels
|
||||
if nc and nc != self.yaml["nc"]:
|
||||
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
||||
self.yaml["nc"] = nc # override yaml value
|
||||
if anchors:
|
||||
LOGGER.info(f"Overriding model.yaml anchors with anchors={anchors}")
|
||||
self.yaml["anchors"] = round(anchors) # override yaml value
|
||||
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
||||
self.names = [str(i) for i in range(self.yaml["nc"])] # default names
|
||||
self.inplace = self.yaml.get("inplace", True)
|
||||
|
||||
# Build strides, anchors
|
||||
m = self.model[-1] # Detect()
|
||||
if isinstance(m, (Detect, Segment)):
|
||||
|
||||
def _forward(x):
|
||||
"""Passes the input 'x' through the model and returns the processed output."""
|
||||
return self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)
|
||||
|
||||
s = 256 # 2x min stride
|
||||
m.inplace = self.inplace
|
||||
m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))]) # forward
|
||||
check_anchor_order(m)
|
||||
m.anchors /= m.stride.view(-1, 1, 1)
|
||||
self.stride = m.stride
|
||||
self._initialize_biases() # only run once
|
||||
|
||||
# Init weights, biases
|
||||
initialize_weights(self)
|
||||
self.info()
|
||||
LOGGER.info("")
|
||||
|
||||
def forward(self, x, augment=False, profile=False, visualize=False):
|
||||
"""Performs single-scale or augmented inference and may include profiling or visualization."""
|
||||
if augment:
|
||||
return self._forward_augment(x) # augmented inference, None
|
||||
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
||||
|
||||
def _forward_augment(self, x):
|
||||
"""Performs augmented inference across different scales and flips, returning combined detections."""
|
||||
img_size = x.shape[-2:] # height, width
|
||||
s = [1, 0.83, 0.67] # scales
|
||||
f = [None, 3, None] # flips (2-ud, 3-lr)
|
||||
y = [] # outputs
|
||||
for si, fi in zip(s, f):
|
||||
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
||||
yi = self._forward_once(xi)[0] # forward
|
||||
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
||||
yi = self._descale_pred(yi, fi, si, img_size)
|
||||
y.append(yi)
|
||||
y = self._clip_augmented(y) # clip augmented tails
|
||||
return torch.cat(y, 1), None # augmented inference, train
|
||||
|
||||
def _descale_pred(self, p, flips, scale, img_size):
|
||||
"""De-scales predictions from augmented inference, adjusting for flips and image size."""
|
||||
if self.inplace:
|
||||
p[..., :4] /= scale # de-scale
|
||||
if flips == 2:
|
||||
p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
|
||||
elif flips == 3:
|
||||
p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
|
||||
else:
|
||||
x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
|
||||
if flips == 2:
|
||||
y = img_size[0] - y # de-flip ud
|
||||
elif flips == 3:
|
||||
x = img_size[1] - x # de-flip lr
|
||||
p = torch.cat((x, y, wh, p[..., 4:]), -1)
|
||||
return p
|
||||
|
||||
def _clip_augmented(self, y):
|
||||
"""Clips augmented inference tails for YOLOv5 models, affecting first and last tensors based on grid points and
|
||||
layer counts.
|
||||
"""
|
||||
nl = self.model[-1].nl # number of detection layers (P3-P5)
|
||||
g = sum(4**x for x in range(nl)) # grid points
|
||||
e = 1 # exclude layer count
|
||||
i = (y[0].shape[1] // g) * sum(4**x for x in range(e)) # indices
|
||||
y[0] = y[0][:, :-i] # large
|
||||
i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
|
||||
y[-1] = y[-1][:, i:] # small
|
||||
return y
|
||||
|
||||
def _initialize_biases(self, cf=None):
|
||||
"""
|
||||
Initializes biases for YOLOv5's Detect() module, optionally using class frequencies (cf).
|
||||
|
||||
For details see https://arxiv.org/abs/1708.02002 section 3.3.
|
||||
"""
|
||||
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
||||
m = self.model[-1] # Detect() module
|
||||
for mi, s in zip(m.m, m.stride): # from
|
||||
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
||||
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
||||
b.data[:, 5 : 5 + m.nc] += (
|
||||
math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum())
|
||||
) # cls
|
||||
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
||||
|
||||
|
||||
Model = DetectionModel # retain YOLOv5 'Model' class for backwards compatibility
|
||||
|
||||
|
||||
class SegmentationModel(DetectionModel):
|
||||
"""YOLOv5 segmentation model for object detection and segmentation tasks with configurable parameters."""
|
||||
|
||||
def __init__(self, cfg="yolov5s-seg.yaml", ch=3, nc=None, anchors=None):
|
||||
"""Initializes a YOLOv5 segmentation model with configurable params: cfg (str) for configuration, ch (int) for channels, nc (int) for num classes, anchors (list)."""
|
||||
super().__init__(cfg, ch, nc, anchors)
|
||||
|
||||
|
||||
class ClassificationModel(BaseModel):
|
||||
"""YOLOv5 classification model for image classification tasks, initialized with a config file or detection model."""
|
||||
|
||||
def __init__(self, cfg=None, model=None, nc=1000, cutoff=10):
|
||||
"""Initializes YOLOv5 model with config file `cfg`, input channels `ch`, number of classes `nc`, and `cuttoff`
|
||||
index.
|
||||
"""
|
||||
super().__init__()
|
||||
self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
|
||||
|
||||
def _from_detection_model(self, model, nc=1000, cutoff=10):
|
||||
"""Creates a classification model from a YOLOv5 detection model, slicing at `cutoff` and adding a classification
|
||||
layer.
|
||||
"""
|
||||
if isinstance(model, DetectMultiBackend):
|
||||
model = model.model # unwrap DetectMultiBackend
|
||||
model.model = model.model[:cutoff] # backbone
|
||||
m = model.model[-1] # last layer
|
||||
ch = m.conv.in_channels if hasattr(m, "conv") else m.cv1.conv.in_channels # ch into module
|
||||
c = Classify(ch, nc) # Classify()
|
||||
c.i, c.f, c.type = m.i, m.f, "models.common.Classify" # index, from, type
|
||||
model.model[-1] = c # replace
|
||||
self.model = model.model
|
||||
self.stride = model.stride
|
||||
self.save = []
|
||||
self.nc = nc
|
||||
|
||||
def _from_yaml(self, cfg):
|
||||
"""Creates a YOLOv5 classification model from a specified *.yaml configuration file."""
|
||||
self.model = None
|
||||
|
||||
|
||||
def parse_model(d, ch):
|
||||
"""Parses a YOLOv5 model from a dict `d`, configuring layers based on input channels `ch` and model architecture."""
|
||||
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
||||
anchors, nc, gd, gw, act, ch_mul = (
|
||||
d["anchors"],
|
||||
d["nc"],
|
||||
d["depth_multiple"],
|
||||
d["width_multiple"],
|
||||
d.get("activation"),
|
||||
d.get("channel_multiple"),
|
||||
)
|
||||
if act:
|
||||
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
|
||||
LOGGER.info(f"{colorstr('activation:')} {act}") # print
|
||||
if not ch_mul:
|
||||
ch_mul = 8
|
||||
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
||||
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
||||
|
||||
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
||||
for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args
|
||||
m = eval(m) if isinstance(m, str) else m # eval strings
|
||||
for j, a in enumerate(args):
|
||||
with contextlib.suppress(NameError):
|
||||
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
||||
|
||||
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
|
||||
if m in {
|
||||
Conv,
|
||||
GhostConv,
|
||||
Bottleneck,
|
||||
GhostBottleneck,
|
||||
SPP,
|
||||
SPPF,
|
||||
DWConv,
|
||||
MixConv2d,
|
||||
Focus,
|
||||
CrossConv,
|
||||
BottleneckCSP,
|
||||
C3,
|
||||
C3TR,
|
||||
C3SPP,
|
||||
C3Ghost,
|
||||
nn.ConvTranspose2d,
|
||||
DWConvTranspose2d,
|
||||
C3x,
|
||||
}:
|
||||
c1, c2 = ch[f], args[0]
|
||||
if c2 != no: # if not output
|
||||
c2 = make_divisible(c2 * gw, ch_mul)
|
||||
|
||||
args = [c1, c2, *args[1:]]
|
||||
if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
|
||||
args.insert(2, n) # number of repeats
|
||||
n = 1
|
||||
elif m is nn.BatchNorm2d:
|
||||
args = [ch[f]]
|
||||
elif m is Concat:
|
||||
c2 = sum(ch[x] for x in f)
|
||||
# TODO: channel, gw, gd
|
||||
elif m in {Detect, Segment}:
|
||||
args.append([ch[x] for x in f])
|
||||
if isinstance(args[1], int): # number of anchors
|
||||
args[1] = [list(range(args[1] * 2))] * len(f)
|
||||
if m is Segment:
|
||||
args[3] = make_divisible(args[3] * gw, ch_mul)
|
||||
elif m is Contract:
|
||||
c2 = ch[f] * args[0] ** 2
|
||||
elif m is Expand:
|
||||
c2 = ch[f] // args[0] ** 2
|
||||
else:
|
||||
c2 = ch[f]
|
||||
|
||||
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
||||
t = str(m)[8:-2].replace("__main__.", "") # module type
|
||||
np = sum(x.numel() for x in m_.parameters()) # number params
|
||||
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
||||
LOGGER.info(f"{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}") # print
|
||||
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
||||
layers.append(m_)
|
||||
if i == 0:
|
||||
ch = []
|
||||
ch.append(c2)
|
||||
return nn.Sequential(*layers), sorted(save)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--cfg", type=str, default="yolov5s.yaml", help="model.yaml")
|
||||
parser.add_argument("--batch-size", type=int, default=1, help="total batch size for all GPUs")
|
||||
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
||||
parser.add_argument("--profile", action="store_true", help="profile model speed")
|
||||
parser.add_argument("--line-profile", action="store_true", help="profile model speed layer by layer")
|
||||
parser.add_argument("--test", action="store_true", help="test all yolo*.yaml")
|
||||
opt = parser.parse_args()
|
||||
opt.cfg = check_yaml(opt.cfg) # check YAML
|
||||
print_args(vars(opt))
|
||||
device = select_device(opt.device)
|
||||
|
||||
# Create model
|
||||
im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
|
||||
model = Model(opt.cfg).to(device)
|
||||
|
||||
# Options
|
||||
if opt.line_profile: # profile layer by layer
|
||||
model(im, profile=True)
|
||||
|
||||
elif opt.profile: # profile forward-backward
|
||||
results = profile(input=im, ops=[model], n=3)
|
||||
|
||||
elif opt.test: # test all models
|
||||
for cfg in Path(ROOT / "models").rglob("yolo*.yaml"):
|
||||
try:
|
||||
_ = Model(cfg)
|
||||
except Exception as e:
|
||||
print(f"Error in {cfg}: {e}")
|
||||
|
||||
else: # report fused model summary
|
||||
model.fuse()
|
||||
@ -1,49 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head: [
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -1,49 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 0.67 # model depth multiple
|
||||
width_multiple: 0.75 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head: [
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -1,49 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 0.33 # model depth multiple
|
||||
width_multiple: 0.25 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head: [
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -1,49 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 1 # number of classes
|
||||
depth_multiple: 0.33 # model depth multiple
|
||||
width_multiple: 0.50 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head: [
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -1,49 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.33 # model depth multiple
|
||||
width_multiple: 1.25 # layer channel multiple
|
||||
anchors:
|
||||
- [10, 13, 16, 30, 33, 23] # P3/8
|
||||
- [30, 61, 62, 45, 59, 119] # P4/16
|
||||
- [116, 90, 156, 198, 373, 326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[
|
||||
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head: [
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||
]
|
||||
@ -1,147 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# Overview:
|
||||
# This pyproject.toml file manages the build, packaging, and distribution of the Ultralytics library.
|
||||
# It defines essential project metadata, dependencies, and settings used to develop and deploy the library.
|
||||
|
||||
# Key Sections:
|
||||
# - [build-system]: Specifies the build requirements and backend (e.g., setuptools, wheel).
|
||||
# - [project]: Includes details like name, version, description, authors, dependencies and more.
|
||||
# - [project.optional-dependencies]: Provides additional, optional packages for extended features.
|
||||
# - [tool.*]: Configures settings for various tools (pytest, yapf, etc.) used in the project.
|
||||
|
||||
# Installation:
|
||||
# The Ultralytics library can be installed using the command: 'pip install ultralytics'
|
||||
# For development purposes, you can install the package in editable mode with: 'pip install -e .'
|
||||
# This approach allows for real-time code modifications without the need for re-installation.
|
||||
|
||||
# Documentation:
|
||||
# For comprehensive documentation and usage instructions, visit: https://docs.ultralytics.com
|
||||
|
||||
[build-system]
|
||||
requires = ["setuptools>=43.0.0", "wheel"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
# Project settings -----------------------------------------------------------------------------------------------------
|
||||
[project]
|
||||
version = "7.0.0"
|
||||
name = "YOLOv5"
|
||||
description = "Ultralytics YOLOv5 for SOTA object detection, instance segmentation and image classification."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.8"
|
||||
license = { "text" = "AGPL-3.0" }
|
||||
keywords = ["machine-learning", "deep-learning", "computer-vision", "ML", "DL", "AI", "YOLO", "YOLOv3", "YOLOv5", "YOLOv8", "HUB", "Ultralytics"]
|
||||
authors = [
|
||||
{ name = "Glenn Jocher" },
|
||||
{ name = "Ayush Chaurasia" },
|
||||
{ name = "Jing Qiu" }
|
||||
]
|
||||
maintainers = [
|
||||
{ name = "Glenn Jocher" },
|
||||
{ name = "Ayush Chaurasia" },
|
||||
{ name = "Jing Qiu" }
|
||||
]
|
||||
classifiers = [
|
||||
"Development Status :: 4 - Beta",
|
||||
"Intended Audience :: Developers",
|
||||
"Intended Audience :: Education",
|
||||
"Intended Audience :: Science/Research",
|
||||
"License :: OSI Approved :: GNU Affero General Public License v3 or later (AGPLv3+)",
|
||||
"Programming Language :: Python :: 3",
|
||||
"Programming Language :: Python :: 3.8",
|
||||
"Programming Language :: Python :: 3.9",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
"Programming Language :: Python :: 3.11",
|
||||
"Topic :: Software Development",
|
||||
"Topic :: Scientific/Engineering",
|
||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||
"Topic :: Scientific/Engineering :: Image Recognition",
|
||||
"Operating System :: POSIX :: Linux",
|
||||
"Operating System :: MacOS",
|
||||
"Operating System :: Microsoft :: Windows",
|
||||
]
|
||||
|
||||
# Required dependencies ------------------------------------------------------------------------------------------------
|
||||
dependencies = [
|
||||
"matplotlib>=3.3.0",
|
||||
"numpy>=1.22.2",
|
||||
"opencv-python>=4.6.0",
|
||||
"pillow>=7.1.2",
|
||||
"pyyaml>=5.3.1",
|
||||
"requests>=2.23.0",
|
||||
"scipy>=1.4.1",
|
||||
"torch>=1.8.0",
|
||||
"torchvision>=0.9.0",
|
||||
"tqdm>=4.64.0", # progress bars
|
||||
"psutil", # system utilization
|
||||
"py-cpuinfo", # display CPU info
|
||||
"thop>=0.1.1", # FLOPs computation
|
||||
"pandas>=1.1.4",
|
||||
"seaborn>=0.11.0", # plotting
|
||||
"ultralytics>=8.1.47"
|
||||
]
|
||||
|
||||
# Optional dependencies ------------------------------------------------------------------------------------------------
|
||||
[project.optional-dependencies]
|
||||
dev = [
|
||||
"ipython",
|
||||
"check-manifest",
|
||||
"pre-commit",
|
||||
"pytest",
|
||||
"pytest-cov",
|
||||
"coverage[toml]",
|
||||
"mkdocs-material",
|
||||
"mkdocstrings[python]",
|
||||
"mkdocs-redirects", # for 301 redirects
|
||||
"mkdocs-ultralytics-plugin>=0.0.34", # for meta descriptions and images, dates and authors
|
||||
]
|
||||
export = [
|
||||
"onnx>=1.12.0", # ONNX export
|
||||
"coremltools>=7.0; platform_system != 'Windows'", # CoreML only supported on macOS and Linux
|
||||
"openvino-dev>=2023.0", # OpenVINO export
|
||||
"tensorflow>=2.0.0", # TF bug https://github.com/ultralytics/ultralytics/issues/5161
|
||||
"tensorflowjs>=3.9.0", # TF.js export, automatically installs tensorflow
|
||||
]
|
||||
# tensorflow>=2.4.1,<=2.13.1 # TF exports (-cpu, -aarch64, -macos)
|
||||
# tflite-support # for TFLite model metadata
|
||||
# scikit-learn==0.19.2 # CoreML quantization
|
||||
# nvidia-pyindex # TensorRT export
|
||||
# nvidia-tensorrt # TensorRT export
|
||||
logging = [
|
||||
"comet", # https://docs.ultralytics.com/integrations/comet/
|
||||
"tensorboard>=2.13.0",
|
||||
"dvclive>=2.12.0",
|
||||
]
|
||||
extra = [
|
||||
"ipython", # interactive notebook
|
||||
"albumentations>=1.0.3", # training augmentations
|
||||
"pycocotools>=2.0.6", # COCO mAP
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
"Bug Reports" = "https://github.com/ultralytics/yolov5/issues"
|
||||
"Funding" = "https://ultralytics.com"
|
||||
"Source" = "https://github.com/ultralytics/yolov5/"
|
||||
|
||||
# Tools settings -------------------------------------------------------------------------------------------------------
|
||||
[tool.pytest]
|
||||
norecursedirs = [".git", "dist", "build"]
|
||||
addopts = "--doctest-modules --durations=30 --color=yes"
|
||||
|
||||
[tool.isort]
|
||||
line_length = 120
|
||||
multi_line_output = 0
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 120
|
||||
|
||||
[tool.docformatter]
|
||||
wrap-summaries = 120
|
||||
wrap-descriptions = 120
|
||||
in-place = true
|
||||
pre-summary-newline = true
|
||||
close-quotes-on-newline = true
|
||||
|
||||
[tool.codespell]
|
||||
ignore-words-list = "crate,nd,strack,dota,ane,segway,fo,gool,winn,commend"
|
||||
skip = '*.csv,*venv*,docs/??/,docs/mkdocs_??.yml'
|
||||
@ -1,307 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Run YOLOv5 segmentation inference on images, videos, directories, streams, etc.
|
||||
|
||||
Usage - sources:
|
||||
$ python segment/predict.py --weights yolov5s-seg.pt --source 0 # webcam
|
||||
img.jpg # image
|
||||
vid.mp4 # video
|
||||
screen # screenshot
|
||||
path/ # directory
|
||||
list.txt # list of images
|
||||
list.streams # list of streams
|
||||
'path/*.jpg' # glob
|
||||
'https://youtu.be/LNwODJXcvt4' # YouTube
|
||||
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
||||
|
||||
Usage - formats:
|
||||
$ python segment/predict.py --weights yolov5s-seg.pt # PyTorch
|
||||
yolov5s-seg.torchscript # TorchScript
|
||||
yolov5s-seg.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
||||
yolov5s-seg_openvino_model # OpenVINO
|
||||
yolov5s-seg.engine # TensorRT
|
||||
yolov5s-seg.mlmodel # CoreML (macOS-only)
|
||||
yolov5s-seg_saved_model # TensorFlow SavedModel
|
||||
yolov5s-seg.pb # TensorFlow GraphDef
|
||||
yolov5s-seg.tflite # TensorFlow Lite
|
||||
yolov5s-seg_edgetpu.tflite # TensorFlow Edge TPU
|
||||
yolov5s-seg_paddle_model # PaddlePaddle
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import platform
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[1] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||
|
||||
from ultralytics.utils.plotting import Annotator, colors, save_one_box
|
||||
|
||||
from models.common import DetectMultiBackend
|
||||
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
|
||||
from utils.general import (
|
||||
LOGGER,
|
||||
Profile,
|
||||
check_file,
|
||||
check_img_size,
|
||||
check_imshow,
|
||||
check_requirements,
|
||||
colorstr,
|
||||
cv2,
|
||||
increment_path,
|
||||
non_max_suppression,
|
||||
print_args,
|
||||
scale_boxes,
|
||||
scale_segments,
|
||||
strip_optimizer,
|
||||
)
|
||||
from utils.segment.general import masks2segments, process_mask, process_mask_native
|
||||
from utils.torch_utils import select_device, smart_inference_mode
|
||||
|
||||
|
||||
@smart_inference_mode()
|
||||
def run(
|
||||
weights=ROOT / "yolov5s-seg.pt", # model.pt path(s)
|
||||
source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam)
|
||||
data=ROOT / "data/coco128.yaml", # dataset.yaml path
|
||||
imgsz=(640, 640), # inference size (height, width)
|
||||
conf_thres=0.25, # confidence threshold
|
||||
iou_thres=0.45, # NMS IOU threshold
|
||||
max_det=1000, # maximum detections per image
|
||||
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
view_img=False, # show results
|
||||
save_txt=False, # save results to *.txt
|
||||
save_conf=False, # save confidences in --save-txt labels
|
||||
save_crop=False, # save cropped prediction boxes
|
||||
nosave=False, # do not save images/videos
|
||||
classes=None, # filter by class: --class 0, or --class 0 2 3
|
||||
agnostic_nms=False, # class-agnostic NMS
|
||||
augment=False, # augmented inference
|
||||
visualize=False, # visualize features
|
||||
update=False, # update all models
|
||||
project=ROOT / "runs/predict-seg", # save results to project/name
|
||||
name="exp", # save results to project/name
|
||||
exist_ok=False, # existing project/name ok, do not increment
|
||||
line_thickness=3, # bounding box thickness (pixels)
|
||||
hide_labels=False, # hide labels
|
||||
hide_conf=False, # hide confidences
|
||||
half=False, # use FP16 half-precision inference
|
||||
dnn=False, # use OpenCV DNN for ONNX inference
|
||||
vid_stride=1, # video frame-rate stride
|
||||
retina_masks=False,
|
||||
):
|
||||
"""Run YOLOv5 segmentation inference on diverse sources including images, videos, directories, and streams."""
|
||||
source = str(source)
|
||||
save_img = not nosave and not source.endswith(".txt") # save inference images
|
||||
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
||||
is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
|
||||
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
|
||||
screenshot = source.lower().startswith("screen")
|
||||
if is_url and is_file:
|
||||
source = check_file(source) # download
|
||||
|
||||
# Directories
|
||||
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
||||
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
||||
|
||||
# Load model
|
||||
device = select_device(device)
|
||||
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
||||
stride, names, pt = model.stride, model.names, model.pt
|
||||
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||
|
||||
# Dataloader
|
||||
bs = 1 # batch_size
|
||||
if webcam:
|
||||
view_img = check_imshow(warn=True)
|
||||
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
||||
bs = len(dataset)
|
||||
elif screenshot:
|
||||
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
||||
else:
|
||||
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
||||
vid_path, vid_writer = [None] * bs, [None] * bs
|
||||
|
||||
# Run inference
|
||||
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
|
||||
seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
|
||||
for path, im, im0s, vid_cap, s in dataset:
|
||||
with dt[0]:
|
||||
im = torch.from_numpy(im).to(model.device)
|
||||
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
||||
im /= 255 # 0 - 255 to 0.0 - 1.0
|
||||
if len(im.shape) == 3:
|
||||
im = im[None] # expand for batch dim
|
||||
|
||||
# Inference
|
||||
with dt[1]:
|
||||
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
||||
pred, proto = model(im, augment=augment, visualize=visualize)[:2]
|
||||
|
||||
# NMS
|
||||
with dt[2]:
|
||||
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det, nm=32)
|
||||
|
||||
# Second-stage classifier (optional)
|
||||
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
|
||||
|
||||
# Process predictions
|
||||
for i, det in enumerate(pred): # per image
|
||||
seen += 1
|
||||
if webcam: # batch_size >= 1
|
||||
p, im0, frame = path[i], im0s[i].copy(), dataset.count
|
||||
s += f"{i}: "
|
||||
else:
|
||||
p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
|
||||
|
||||
p = Path(p) # to Path
|
||||
save_path = str(save_dir / p.name) # im.jpg
|
||||
txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt
|
||||
s += "{:g}x{:g} ".format(*im.shape[2:]) # print string
|
||||
imc = im0.copy() if save_crop else im0 # for save_crop
|
||||
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
|
||||
if len(det):
|
||||
if retina_masks:
|
||||
# scale bbox first the crop masks
|
||||
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # rescale boxes to im0 size
|
||||
masks = process_mask_native(proto[i], det[:, 6:], det[:, :4], im0.shape[:2]) # HWC
|
||||
else:
|
||||
masks = process_mask(proto[i], det[:, 6:], det[:, :4], im.shape[2:], upsample=True) # HWC
|
||||
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # rescale boxes to im0 size
|
||||
|
||||
# Segments
|
||||
if save_txt:
|
||||
segments = [
|
||||
scale_segments(im0.shape if retina_masks else im.shape[2:], x, im0.shape, normalize=True)
|
||||
for x in reversed(masks2segments(masks))
|
||||
]
|
||||
|
||||
# Print results
|
||||
for c in det[:, 5].unique():
|
||||
n = (det[:, 5] == c).sum() # detections per class
|
||||
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
||||
|
||||
# Mask plotting
|
||||
annotator.masks(
|
||||
masks,
|
||||
colors=[colors(x, True) for x in det[:, 5]],
|
||||
im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(device).permute(2, 0, 1).flip(0).contiguous()
|
||||
/ 255
|
||||
if retina_masks
|
||||
else im[i],
|
||||
)
|
||||
|
||||
# Write results
|
||||
for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
|
||||
if save_txt: # Write to file
|
||||
seg = segments[j].reshape(-1) # (n,2) to (n*2)
|
||||
line = (cls, *seg, conf) if save_conf else (cls, *seg) # label format
|
||||
with open(f"{txt_path}.txt", "a") as f:
|
||||
f.write(("%g " * len(line)).rstrip() % line + "\n")
|
||||
|
||||
if save_img or save_crop or view_img: # Add bbox to image
|
||||
c = int(cls) # integer class
|
||||
label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}")
|
||||
annotator.box_label(xyxy, label, color=colors(c, True))
|
||||
# annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
|
||||
if save_crop:
|
||||
save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)
|
||||
|
||||
# Stream results
|
||||
im0 = annotator.result()
|
||||
if view_img:
|
||||
if platform.system() == "Linux" and p not in windows:
|
||||
windows.append(p)
|
||||
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
||||
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
||||
cv2.imshow(str(p), im0)
|
||||
if cv2.waitKey(1) == ord("q"): # 1 millisecond
|
||||
exit()
|
||||
|
||||
# Save results (image with detections)
|
||||
if save_img:
|
||||
if dataset.mode == "image":
|
||||
cv2.imwrite(save_path, im0)
|
||||
else: # 'video' or 'stream'
|
||||
if vid_path[i] != save_path: # new video
|
||||
vid_path[i] = save_path
|
||||
if isinstance(vid_writer[i], cv2.VideoWriter):
|
||||
vid_writer[i].release() # release previous video writer
|
||||
if vid_cap: # video
|
||||
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
||||
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
else: # stream
|
||||
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
||||
save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos
|
||||
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
|
||||
vid_writer[i].write(im0)
|
||||
|
||||
# Print time (inference-only)
|
||||
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
|
||||
|
||||
# Print results
|
||||
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
|
||||
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
|
||||
if save_txt or save_img:
|
||||
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
|
||||
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
||||
if update:
|
||||
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
|
||||
|
||||
|
||||
def parse_opt():
|
||||
"""Parses command-line options for YOLOv5 inference including model paths, data sources, inference settings, and
|
||||
output preferences.
|
||||
"""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-seg.pt", help="model path(s)")
|
||||
parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
|
||||
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
|
||||
parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
|
||||
parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold")
|
||||
parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold")
|
||||
parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image")
|
||||
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
||||
parser.add_argument("--view-img", action="store_true", help="show results")
|
||||
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
|
||||
parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
|
||||
parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes")
|
||||
parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
|
||||
parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")
|
||||
parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS")
|
||||
parser.add_argument("--augment", action="store_true", help="augmented inference")
|
||||
parser.add_argument("--visualize", action="store_true", help="visualize features")
|
||||
parser.add_argument("--update", action="store_true", help="update all models")
|
||||
parser.add_argument("--project", default=ROOT / "runs/predict-seg", help="save results to project/name")
|
||||
parser.add_argument("--name", default="exp", help="save results to project/name")
|
||||
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
|
||||
parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)")
|
||||
parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels")
|
||||
parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences")
|
||||
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
|
||||
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
|
||||
parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
|
||||
parser.add_argument("--retina-masks", action="store_true", help="whether to plot masks in native resolution")
|
||||
opt = parser.parse_args()
|
||||
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
||||
print_args(vars(opt))
|
||||
return opt
|
||||
|
||||
|
||||
def main(opt):
|
||||
"""Executes YOLOv5 model inference with given options, checking for requirements before launching."""
|
||||
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
|
||||
run(**vars(opt))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
opt = parse_opt()
|
||||
main(opt)
|
||||
@ -1,764 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Train a YOLOv5 segment model on a segment dataset Models and datasets download automatically from the latest YOLOv5
|
||||
release.
|
||||
|
||||
Usage - Single-GPU training:
|
||||
$ python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 # from pretrained (recommended)
|
||||
$ python segment/train.py --data coco128-seg.yaml --weights '' --cfg yolov5s-seg.yaml --img 640 # from scratch
|
||||
|
||||
Usage - Multi-GPU DDP training:
|
||||
$ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
|
||||
|
||||
Models: https://github.com/ultralytics/yolov5/tree/master/models
|
||||
Datasets: https://github.com/ultralytics/yolov5/tree/master/data
|
||||
Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
from copy import deepcopy
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
import yaml
|
||||
from torch.optim import lr_scheduler
|
||||
from tqdm import tqdm
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[1] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||
|
||||
import segment.val as validate # for end-of-epoch mAP
|
||||
from models.experimental import attempt_load
|
||||
from models.yolo import SegmentationModel
|
||||
from utils.autoanchor import check_anchors
|
||||
from utils.autobatch import check_train_batch_size
|
||||
from utils.callbacks import Callbacks
|
||||
from utils.downloads import attempt_download, is_url
|
||||
from utils.general import (
|
||||
LOGGER,
|
||||
TQDM_BAR_FORMAT,
|
||||
check_amp,
|
||||
check_dataset,
|
||||
check_file,
|
||||
check_git_info,
|
||||
check_git_status,
|
||||
check_img_size,
|
||||
check_requirements,
|
||||
check_suffix,
|
||||
check_yaml,
|
||||
colorstr,
|
||||
get_latest_run,
|
||||
increment_path,
|
||||
init_seeds,
|
||||
intersect_dicts,
|
||||
labels_to_class_weights,
|
||||
labels_to_image_weights,
|
||||
one_cycle,
|
||||
print_args,
|
||||
print_mutation,
|
||||
strip_optimizer,
|
||||
yaml_save,
|
||||
)
|
||||
from utils.loggers import GenericLogger
|
||||
from utils.plots import plot_evolve, plot_labels
|
||||
from utils.segment.dataloaders import create_dataloader
|
||||
from utils.segment.loss import ComputeLoss
|
||||
from utils.segment.metrics import KEYS, fitness
|
||||
from utils.segment.plots import plot_images_and_masks, plot_results_with_masks
|
||||
from utils.torch_utils import (
|
||||
EarlyStopping,
|
||||
ModelEMA,
|
||||
de_parallel,
|
||||
select_device,
|
||||
smart_DDP,
|
||||
smart_optimizer,
|
||||
smart_resume,
|
||||
torch_distributed_zero_first,
|
||||
)
|
||||
|
||||
LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
||||
RANK = int(os.getenv("RANK", -1))
|
||||
WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
|
||||
GIT_INFO = check_git_info()
|
||||
|
||||
|
||||
def train(hyp, opt, device, callbacks):
|
||||
"""
|
||||
Trains the YOLOv5 model on a dataset, managing hyperparameters, model optimization, logging, and validation.
|
||||
|
||||
`hyp` is path/to/hyp.yaml or hyp dictionary.
|
||||
"""
|
||||
(
|
||||
save_dir,
|
||||
epochs,
|
||||
batch_size,
|
||||
weights,
|
||||
single_cls,
|
||||
evolve,
|
||||
data,
|
||||
cfg,
|
||||
resume,
|
||||
noval,
|
||||
nosave,
|
||||
workers,
|
||||
freeze,
|
||||
mask_ratio,
|
||||
) = (
|
||||
Path(opt.save_dir),
|
||||
opt.epochs,
|
||||
opt.batch_size,
|
||||
opt.weights,
|
||||
opt.single_cls,
|
||||
opt.evolve,
|
||||
opt.data,
|
||||
opt.cfg,
|
||||
opt.resume,
|
||||
opt.noval,
|
||||
opt.nosave,
|
||||
opt.workers,
|
||||
opt.freeze,
|
||||
opt.mask_ratio,
|
||||
)
|
||||
# callbacks.run('on_pretrain_routine_start')
|
||||
|
||||
# Directories
|
||||
w = save_dir / "weights" # weights dir
|
||||
(w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
|
||||
last, best = w / "last.pt", w / "best.pt"
|
||||
|
||||
# Hyperparameters
|
||||
if isinstance(hyp, str):
|
||||
with open(hyp, errors="ignore") as f:
|
||||
hyp = yaml.safe_load(f) # load hyps dict
|
||||
LOGGER.info(colorstr("hyperparameters: ") + ", ".join(f"{k}={v}" for k, v in hyp.items()))
|
||||
opt.hyp = hyp.copy() # for saving hyps to checkpoints
|
||||
|
||||
# Save run settings
|
||||
if not evolve:
|
||||
yaml_save(save_dir / "hyp.yaml", hyp)
|
||||
yaml_save(save_dir / "opt.yaml", vars(opt))
|
||||
|
||||
# Loggers
|
||||
data_dict = None
|
||||
if RANK in {-1, 0}:
|
||||
logger = GenericLogger(opt=opt, console_logger=LOGGER)
|
||||
|
||||
# Config
|
||||
plots = not evolve and not opt.noplots # create plots
|
||||
overlap = not opt.no_overlap
|
||||
cuda = device.type != "cpu"
|
||||
init_seeds(opt.seed + 1 + RANK, deterministic=True)
|
||||
with torch_distributed_zero_first(LOCAL_RANK):
|
||||
data_dict = data_dict or check_dataset(data) # check if None
|
||||
train_path, val_path = data_dict["train"], data_dict["val"]
|
||||
nc = 1 if single_cls else int(data_dict["nc"]) # number of classes
|
||||
names = {0: "item"} if single_cls and len(data_dict["names"]) != 1 else data_dict["names"] # class names
|
||||
is_coco = isinstance(val_path, str) and val_path.endswith("coco/val2017.txt") # COCO dataset
|
||||
|
||||
# Model
|
||||
check_suffix(weights, ".pt") # check weights
|
||||
pretrained = weights.endswith(".pt")
|
||||
if pretrained:
|
||||
with torch_distributed_zero_first(LOCAL_RANK):
|
||||
weights = attempt_download(weights) # download if not found locally
|
||||
ckpt = torch.load(weights, map_location="cpu") # load checkpoint to CPU to avoid CUDA memory leak
|
||||
model = SegmentationModel(cfg or ckpt["model"].yaml, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device)
|
||||
exclude = ["anchor"] if (cfg or hyp.get("anchors")) and not resume else [] # exclude keys
|
||||
csd = ckpt["model"].float().state_dict() # checkpoint state_dict as FP32
|
||||
csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
|
||||
model.load_state_dict(csd, strict=False) # load
|
||||
LOGGER.info(f"Transferred {len(csd)}/{len(model.state_dict())} items from {weights}") # report
|
||||
else:
|
||||
model = SegmentationModel(cfg, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device) # create
|
||||
amp = check_amp(model) # check AMP
|
||||
|
||||
# Freeze
|
||||
freeze = [f"model.{x}." for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
|
||||
for k, v in model.named_parameters():
|
||||
v.requires_grad = True # train all layers
|
||||
# v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
|
||||
if any(x in k for x in freeze):
|
||||
LOGGER.info(f"freezing {k}")
|
||||
v.requires_grad = False
|
||||
|
||||
# Image size
|
||||
gs = max(int(model.stride.max()), 32) # grid size (max stride)
|
||||
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
|
||||
|
||||
# Batch size
|
||||
if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
|
||||
batch_size = check_train_batch_size(model, imgsz, amp)
|
||||
logger.update_params({"batch_size": batch_size})
|
||||
# loggers.on_params_update({"batch_size": batch_size})
|
||||
|
||||
# Optimizer
|
||||
nbs = 64 # nominal batch size
|
||||
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
|
||||
hyp["weight_decay"] *= batch_size * accumulate / nbs # scale weight_decay
|
||||
optimizer = smart_optimizer(model, opt.optimizer, hyp["lr0"], hyp["momentum"], hyp["weight_decay"])
|
||||
|
||||
# Scheduler
|
||||
if opt.cos_lr:
|
||||
lf = one_cycle(1, hyp["lrf"], epochs) # cosine 1->hyp['lrf']
|
||||
else:
|
||||
|
||||
def lf(x):
|
||||
"""Linear learning rate scheduler decreasing from 1 to hyp['lrf'] over 'epochs'."""
|
||||
return (1 - x / epochs) * (1.0 - hyp["lrf"]) + hyp["lrf"] # linear
|
||||
|
||||
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
|
||||
|
||||
# EMA
|
||||
ema = ModelEMA(model) if RANK in {-1, 0} else None
|
||||
|
||||
# Resume
|
||||
best_fitness, start_epoch = 0.0, 0
|
||||
if pretrained:
|
||||
if resume:
|
||||
best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
|
||||
del ckpt, csd
|
||||
|
||||
# DP mode
|
||||
if cuda and RANK == -1 and torch.cuda.device_count() > 1:
|
||||
LOGGER.warning(
|
||||
"WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n"
|
||||
"See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started."
|
||||
)
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
# SyncBatchNorm
|
||||
if opt.sync_bn and cuda and RANK != -1:
|
||||
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
||||
LOGGER.info("Using SyncBatchNorm()")
|
||||
|
||||
# Trainloader
|
||||
train_loader, dataset = create_dataloader(
|
||||
train_path,
|
||||
imgsz,
|
||||
batch_size // WORLD_SIZE,
|
||||
gs,
|
||||
single_cls,
|
||||
hyp=hyp,
|
||||
augment=True,
|
||||
cache=None if opt.cache == "val" else opt.cache,
|
||||
rect=opt.rect,
|
||||
rank=LOCAL_RANK,
|
||||
workers=workers,
|
||||
image_weights=opt.image_weights,
|
||||
quad=opt.quad,
|
||||
prefix=colorstr("train: "),
|
||||
shuffle=True,
|
||||
mask_downsample_ratio=mask_ratio,
|
||||
overlap_mask=overlap,
|
||||
)
|
||||
labels = np.concatenate(dataset.labels, 0)
|
||||
mlc = int(labels[:, 0].max()) # max label class
|
||||
assert mlc < nc, f"Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}"
|
||||
|
||||
# Process 0
|
||||
if RANK in {-1, 0}:
|
||||
val_loader = create_dataloader(
|
||||
val_path,
|
||||
imgsz,
|
||||
batch_size // WORLD_SIZE * 2,
|
||||
gs,
|
||||
single_cls,
|
||||
hyp=hyp,
|
||||
cache=None if noval else opt.cache,
|
||||
rect=True,
|
||||
rank=-1,
|
||||
workers=workers * 2,
|
||||
pad=0.5,
|
||||
mask_downsample_ratio=mask_ratio,
|
||||
overlap_mask=overlap,
|
||||
prefix=colorstr("val: "),
|
||||
)[0]
|
||||
|
||||
if not resume:
|
||||
if not opt.noautoanchor:
|
||||
check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz) # run AutoAnchor
|
||||
model.half().float() # pre-reduce anchor precision
|
||||
|
||||
if plots:
|
||||
plot_labels(labels, names, save_dir)
|
||||
# callbacks.run('on_pretrain_routine_end', labels, names)
|
||||
|
||||
# DDP mode
|
||||
if cuda and RANK != -1:
|
||||
model = smart_DDP(model)
|
||||
|
||||
# Model attributes
|
||||
nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
|
||||
hyp["box"] *= 3 / nl # scale to layers
|
||||
hyp["cls"] *= nc / 80 * 3 / nl # scale to classes and layers
|
||||
hyp["obj"] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
|
||||
hyp["label_smoothing"] = opt.label_smoothing
|
||||
model.nc = nc # attach number of classes to model
|
||||
model.hyp = hyp # attach hyperparameters to model
|
||||
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
|
||||
model.names = names
|
||||
|
||||
# Start training
|
||||
t0 = time.time()
|
||||
nb = len(train_loader) # number of batches
|
||||
nw = max(round(hyp["warmup_epochs"] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
|
||||
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
|
||||
last_opt_step = -1
|
||||
maps = np.zeros(nc) # mAP per class
|
||||
results = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||||
scheduler.last_epoch = start_epoch - 1 # do not move
|
||||
scaler = torch.cuda.amp.GradScaler(enabled=amp)
|
||||
stopper, stop = EarlyStopping(patience=opt.patience), False
|
||||
compute_loss = ComputeLoss(model, overlap=overlap) # init loss class
|
||||
# callbacks.run('on_train_start')
|
||||
LOGGER.info(
|
||||
f'Image sizes {imgsz} train, {imgsz} val\n'
|
||||
f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
|
||||
f"Logging results to {colorstr('bold', save_dir)}\n"
|
||||
f'Starting training for {epochs} epochs...'
|
||||
)
|
||||
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
||||
# callbacks.run('on_train_epoch_start')
|
||||
model.train()
|
||||
|
||||
# Update image weights (optional, single-GPU only)
|
||||
if opt.image_weights:
|
||||
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
|
||||
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
|
||||
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
|
||||
|
||||
# Update mosaic border (optional)
|
||||
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
|
||||
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
|
||||
|
||||
mloss = torch.zeros(4, device=device) # mean losses
|
||||
if RANK != -1:
|
||||
train_loader.sampler.set_epoch(epoch)
|
||||
pbar = enumerate(train_loader)
|
||||
LOGGER.info(
|
||||
("\n" + "%11s" * 8)
|
||||
% ("Epoch", "GPU_mem", "box_loss", "seg_loss", "obj_loss", "cls_loss", "Instances", "Size")
|
||||
)
|
||||
if RANK in {-1, 0}:
|
||||
pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
|
||||
optimizer.zero_grad()
|
||||
for i, (imgs, targets, paths, _, masks) in pbar: # batch ------------------------------------------------------
|
||||
# callbacks.run('on_train_batch_start')
|
||||
ni = i + nb * epoch # number integrated batches (since train start)
|
||||
imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
|
||||
|
||||
# Warmup
|
||||
if ni <= nw:
|
||||
xi = [0, nw] # x interp
|
||||
# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
|
||||
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
|
||||
for j, x in enumerate(optimizer.param_groups):
|
||||
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
||||
x["lr"] = np.interp(ni, xi, [hyp["warmup_bias_lr"] if j == 0 else 0.0, x["initial_lr"] * lf(epoch)])
|
||||
if "momentum" in x:
|
||||
x["momentum"] = np.interp(ni, xi, [hyp["warmup_momentum"], hyp["momentum"]])
|
||||
|
||||
# Multi-scale
|
||||
if opt.multi_scale:
|
||||
sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs # size
|
||||
sf = sz / max(imgs.shape[2:]) # scale factor
|
||||
if sf != 1:
|
||||
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
|
||||
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
|
||||
|
||||
# Forward
|
||||
with torch.cuda.amp.autocast(amp):
|
||||
pred = model(imgs) # forward
|
||||
loss, loss_items = compute_loss(pred, targets.to(device), masks=masks.to(device).float())
|
||||
if RANK != -1:
|
||||
loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
|
||||
if opt.quad:
|
||||
loss *= 4.0
|
||||
|
||||
# Backward
|
||||
scaler.scale(loss).backward()
|
||||
|
||||
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
|
||||
if ni - last_opt_step >= accumulate:
|
||||
scaler.unscale_(optimizer) # unscale gradients
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
|
||||
scaler.step(optimizer) # optimizer.step
|
||||
scaler.update()
|
||||
optimizer.zero_grad()
|
||||
if ema:
|
||||
ema.update(model)
|
||||
last_opt_step = ni
|
||||
|
||||
# Log
|
||||
if RANK in {-1, 0}:
|
||||
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
||||
mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G" # (GB)
|
||||
pbar.set_description(
|
||||
("%11s" * 2 + "%11.4g" * 6)
|
||||
% (f"{epoch}/{epochs - 1}", mem, *mloss, targets.shape[0], imgs.shape[-1])
|
||||
)
|
||||
# callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths)
|
||||
# if callbacks.stop_training:
|
||||
# return
|
||||
|
||||
# Mosaic plots
|
||||
if plots:
|
||||
if ni < 3:
|
||||
plot_images_and_masks(imgs, targets, masks, paths, save_dir / f"train_batch{ni}.jpg")
|
||||
if ni == 10:
|
||||
files = sorted(save_dir.glob("train*.jpg"))
|
||||
logger.log_images(files, "Mosaics", epoch)
|
||||
# end batch ------------------------------------------------------------------------------------------------
|
||||
|
||||
# Scheduler
|
||||
lr = [x["lr"] for x in optimizer.param_groups] # for loggers
|
||||
scheduler.step()
|
||||
|
||||
if RANK in {-1, 0}:
|
||||
# mAP
|
||||
# callbacks.run('on_train_epoch_end', epoch=epoch)
|
||||
ema.update_attr(model, include=["yaml", "nc", "hyp", "names", "stride", "class_weights"])
|
||||
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
|
||||
if not noval or final_epoch: # Calculate mAP
|
||||
results, maps, _ = validate.run(
|
||||
data_dict,
|
||||
batch_size=batch_size // WORLD_SIZE * 2,
|
||||
imgsz=imgsz,
|
||||
half=amp,
|
||||
model=ema.ema,
|
||||
single_cls=single_cls,
|
||||
dataloader=val_loader,
|
||||
save_dir=save_dir,
|
||||
plots=False,
|
||||
callbacks=callbacks,
|
||||
compute_loss=compute_loss,
|
||||
mask_downsample_ratio=mask_ratio,
|
||||
overlap=overlap,
|
||||
)
|
||||
|
||||
# Update best mAP
|
||||
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
|
||||
stop = stopper(epoch=epoch, fitness=fi) # early stop check
|
||||
if fi > best_fitness:
|
||||
best_fitness = fi
|
||||
log_vals = list(mloss) + list(results) + lr
|
||||
# callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
|
||||
# Log val metrics and media
|
||||
metrics_dict = dict(zip(KEYS, log_vals))
|
||||
logger.log_metrics(metrics_dict, epoch)
|
||||
|
||||
# Save model
|
||||
if (not nosave) or (final_epoch and not evolve): # if save
|
||||
ckpt = {
|
||||
"epoch": epoch,
|
||||
"best_fitness": best_fitness,
|
||||
"model": deepcopy(de_parallel(model)).half(),
|
||||
"ema": deepcopy(ema.ema).half(),
|
||||
"updates": ema.updates,
|
||||
"optimizer": optimizer.state_dict(),
|
||||
"opt": vars(opt),
|
||||
"git": GIT_INFO, # {remote, branch, commit} if a git repo
|
||||
"date": datetime.now().isoformat(),
|
||||
}
|
||||
|
||||
# Save last, best and delete
|
||||
torch.save(ckpt, last)
|
||||
if best_fitness == fi:
|
||||
torch.save(ckpt, best)
|
||||
if opt.save_period > 0 and epoch % opt.save_period == 0:
|
||||
torch.save(ckpt, w / f"epoch{epoch}.pt")
|
||||
logger.log_model(w / f"epoch{epoch}.pt")
|
||||
del ckpt
|
||||
# callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
|
||||
|
||||
# EarlyStopping
|
||||
if RANK != -1: # if DDP training
|
||||
broadcast_list = [stop if RANK == 0 else None]
|
||||
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
|
||||
if RANK != 0:
|
||||
stop = broadcast_list[0]
|
||||
if stop:
|
||||
break # must break all DDP ranks
|
||||
|
||||
# end epoch ----------------------------------------------------------------------------------------------------
|
||||
# end training -----------------------------------------------------------------------------------------------------
|
||||
if RANK in {-1, 0}:
|
||||
LOGGER.info(f"\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.")
|
||||
for f in last, best:
|
||||
if f.exists():
|
||||
strip_optimizer(f) # strip optimizers
|
||||
if f is best:
|
||||
LOGGER.info(f"\nValidating {f}...")
|
||||
results, _, _ = validate.run(
|
||||
data_dict,
|
||||
batch_size=batch_size // WORLD_SIZE * 2,
|
||||
imgsz=imgsz,
|
||||
model=attempt_load(f, device).half(),
|
||||
iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65
|
||||
single_cls=single_cls,
|
||||
dataloader=val_loader,
|
||||
save_dir=save_dir,
|
||||
save_json=is_coco,
|
||||
verbose=True,
|
||||
plots=plots,
|
||||
callbacks=callbacks,
|
||||
compute_loss=compute_loss,
|
||||
mask_downsample_ratio=mask_ratio,
|
||||
overlap=overlap,
|
||||
) # val best model with plots
|
||||
if is_coco:
|
||||
# callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
|
||||
metrics_dict = dict(zip(KEYS, list(mloss) + list(results) + lr))
|
||||
logger.log_metrics(metrics_dict, epoch)
|
||||
|
||||
# callbacks.run('on_train_end', last, best, epoch, results)
|
||||
# on train end callback using genericLogger
|
||||
logger.log_metrics(dict(zip(KEYS[4:16], results)), epochs)
|
||||
if not opt.evolve:
|
||||
logger.log_model(best, epoch)
|
||||
if plots:
|
||||
plot_results_with_masks(file=save_dir / "results.csv") # save results.png
|
||||
files = ["results.png", "confusion_matrix.png", *(f"{x}_curve.png" for x in ("F1", "PR", "P", "R"))]
|
||||
files = [(save_dir / f) for f in files if (save_dir / f).exists()] # filter
|
||||
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
|
||||
logger.log_images(files, "Results", epoch + 1)
|
||||
logger.log_images(sorted(save_dir.glob("val*.jpg")), "Validation", epoch + 1)
|
||||
torch.cuda.empty_cache()
|
||||
return results
|
||||
|
||||
|
||||
def parse_opt(known=False):
|
||||
"""
|
||||
Parses command line arguments for training configurations, returning parsed arguments.
|
||||
|
||||
Supports both known and unknown args.
|
||||
"""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--weights", type=str, default=ROOT / "yolov5s-seg.pt", help="initial weights path")
|
||||
parser.add_argument("--cfg", type=str, default="", help="model.yaml path")
|
||||
parser.add_argument("--data", type=str, default=ROOT / "data/coco128-seg.yaml", help="dataset.yaml path")
|
||||
parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path")
|
||||
parser.add_argument("--epochs", type=int, default=100, help="total training epochs")
|
||||
parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch")
|
||||
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)")
|
||||
parser.add_argument("--rect", action="store_true", help="rectangular training")
|
||||
parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training")
|
||||
parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
|
||||
parser.add_argument("--noval", action="store_true", help="only validate final epoch")
|
||||
parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")
|
||||
parser.add_argument("--noplots", action="store_true", help="save no plot files")
|
||||
parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations")
|
||||
parser.add_argument("--bucket", type=str, default="", help="gsutil bucket")
|
||||
parser.add_argument("--cache", type=str, nargs="?", const="ram", help="image --cache ram/disk")
|
||||
parser.add_argument("--image-weights", action="store_true", help="use weighted image selection for training")
|
||||
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
||||
parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%")
|
||||
parser.add_argument("--single-cls", action="store_true", help="train multi-class data as single-class")
|
||||
parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer")
|
||||
parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode")
|
||||
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
|
||||
parser.add_argument("--project", default=ROOT / "runs/train-seg", help="save to project/name")
|
||||
parser.add_argument("--name", default="exp", help="save to project/name")
|
||||
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
|
||||
parser.add_argument("--quad", action="store_true", help="quad dataloader")
|
||||
parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler")
|
||||
parser.add_argument("--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon")
|
||||
parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)")
|
||||
parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2")
|
||||
parser.add_argument("--save-period", type=int, default=-1, help="Save checkpoint every x epochs (disabled if < 1)")
|
||||
parser.add_argument("--seed", type=int, default=0, help="Global training seed")
|
||||
parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")
|
||||
|
||||
# Instance Segmentation Args
|
||||
parser.add_argument("--mask-ratio", type=int, default=4, help="Downsample the truth masks to saving memory")
|
||||
parser.add_argument("--no-overlap", action="store_true", help="Overlap masks train faster at slightly less mAP")
|
||||
|
||||
return parser.parse_known_args()[0] if known else parser.parse_args()
|
||||
|
||||
|
||||
def main(opt, callbacks=Callbacks()):
|
||||
"""Initializes training or evolution of YOLOv5 models based on provided configuration and options."""
|
||||
if RANK in {-1, 0}:
|
||||
print_args(vars(opt))
|
||||
check_git_status()
|
||||
check_requirements(ROOT / "requirements.txt")
|
||||
|
||||
# Resume
|
||||
if opt.resume and not opt.evolve: # resume from specified or most recent last.pt
|
||||
last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
|
||||
opt_yaml = last.parent.parent / "opt.yaml" # train options yaml
|
||||
opt_data = opt.data # original dataset
|
||||
if opt_yaml.is_file():
|
||||
with open(opt_yaml, errors="ignore") as f:
|
||||
d = yaml.safe_load(f)
|
||||
else:
|
||||
d = torch.load(last, map_location="cpu")["opt"]
|
||||
opt = argparse.Namespace(**d) # replace
|
||||
opt.cfg, opt.weights, opt.resume = "", str(last), True # reinstate
|
||||
if is_url(opt_data):
|
||||
opt.data = check_file(opt_data) # avoid HUB resume auth timeout
|
||||
else:
|
||||
opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = (
|
||||
check_file(opt.data),
|
||||
check_yaml(opt.cfg),
|
||||
check_yaml(opt.hyp),
|
||||
str(opt.weights),
|
||||
str(opt.project),
|
||||
) # checks
|
||||
assert len(opt.cfg) or len(opt.weights), "either --cfg or --weights must be specified"
|
||||
if opt.evolve:
|
||||
if opt.project == str(ROOT / "runs/train-seg"): # if default project name, rename to runs/evolve-seg
|
||||
opt.project = str(ROOT / "runs/evolve-seg")
|
||||
opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
|
||||
if opt.name == "cfg":
|
||||
opt.name = Path(opt.cfg).stem # use model.yaml as name
|
||||
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
|
||||
|
||||
# DDP mode
|
||||
device = select_device(opt.device, batch_size=opt.batch_size)
|
||||
if LOCAL_RANK != -1:
|
||||
msg = "is not compatible with YOLOv5 Multi-GPU DDP training"
|
||||
assert not opt.image_weights, f"--image-weights {msg}"
|
||||
assert not opt.evolve, f"--evolve {msg}"
|
||||
assert opt.batch_size != -1, f"AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size"
|
||||
assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE"
|
||||
assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command"
|
||||
torch.cuda.set_device(LOCAL_RANK)
|
||||
device = torch.device("cuda", LOCAL_RANK)
|
||||
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
|
||||
|
||||
# Train
|
||||
if not opt.evolve:
|
||||
train(opt.hyp, opt, device, callbacks)
|
||||
|
||||
# Evolve hyperparameters (optional)
|
||||
else:
|
||||
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
|
||||
meta = {
|
||||
"lr0": (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
|
||||
"lrf": (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
|
||||
"momentum": (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
|
||||
"weight_decay": (1, 0.0, 0.001), # optimizer weight decay
|
||||
"warmup_epochs": (1, 0.0, 5.0), # warmup epochs (fractions ok)
|
||||
"warmup_momentum": (1, 0.0, 0.95), # warmup initial momentum
|
||||
"warmup_bias_lr": (1, 0.0, 0.2), # warmup initial bias lr
|
||||
"box": (1, 0.02, 0.2), # box loss gain
|
||||
"cls": (1, 0.2, 4.0), # cls loss gain
|
||||
"cls_pw": (1, 0.5, 2.0), # cls BCELoss positive_weight
|
||||
"obj": (1, 0.2, 4.0), # obj loss gain (scale with pixels)
|
||||
"obj_pw": (1, 0.5, 2.0), # obj BCELoss positive_weight
|
||||
"iou_t": (0, 0.1, 0.7), # IoU training threshold
|
||||
"anchor_t": (1, 2.0, 8.0), # anchor-multiple threshold
|
||||
"anchors": (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
|
||||
"fl_gamma": (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
|
||||
"hsv_h": (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
||||
"hsv_s": (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
||||
"hsv_v": (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
|
||||
"degrees": (1, 0.0, 45.0), # image rotation (+/- deg)
|
||||
"translate": (1, 0.0, 0.9), # image translation (+/- fraction)
|
||||
"scale": (1, 0.0, 0.9), # image scale (+/- gain)
|
||||
"shear": (1, 0.0, 10.0), # image shear (+/- deg)
|
||||
"perspective": (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
||||
"flipud": (1, 0.0, 1.0), # image flip up-down (probability)
|
||||
"fliplr": (0, 0.0, 1.0), # image flip left-right (probability)
|
||||
"mosaic": (1, 0.0, 1.0), # image mixup (probability)
|
||||
"mixup": (1, 0.0, 1.0), # image mixup (probability)
|
||||
"copy_paste": (1, 0.0, 1.0),
|
||||
} # segment copy-paste (probability)
|
||||
|
||||
with open(opt.hyp, errors="ignore") as f:
|
||||
hyp = yaml.safe_load(f) # load hyps dict
|
||||
if "anchors" not in hyp: # anchors commented in hyp.yaml
|
||||
hyp["anchors"] = 3
|
||||
if opt.noautoanchor:
|
||||
del hyp["anchors"], meta["anchors"]
|
||||
opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
|
||||
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
|
||||
evolve_yaml, evolve_csv = save_dir / "hyp_evolve.yaml", save_dir / "evolve.csv"
|
||||
if opt.bucket:
|
||||
# download evolve.csv if exists
|
||||
subprocess.run(
|
||||
[
|
||||
"gsutil",
|
||||
"cp",
|
||||
f"gs://{opt.bucket}/evolve.csv",
|
||||
str(evolve_csv),
|
||||
]
|
||||
)
|
||||
|
||||
for _ in range(opt.evolve): # generations to evolve
|
||||
if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
|
||||
# Select parent(s)
|
||||
parent = "single" # parent selection method: 'single' or 'weighted'
|
||||
x = np.loadtxt(evolve_csv, ndmin=2, delimiter=",", skiprows=1)
|
||||
n = min(5, len(x)) # number of previous results to consider
|
||||
x = x[np.argsort(-fitness(x))][:n] # top n mutations
|
||||
w = fitness(x) - fitness(x).min() + 1e-6 # weights (sum > 0)
|
||||
if parent == "single" or len(x) == 1:
|
||||
# x = x[random.randint(0, n - 1)] # random selection
|
||||
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
|
||||
elif parent == "weighted":
|
||||
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
|
||||
|
||||
# Mutate
|
||||
mp, s = 0.8, 0.2 # mutation probability, sigma
|
||||
npr = np.random
|
||||
npr.seed(int(time.time()))
|
||||
g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
|
||||
ng = len(meta)
|
||||
v = np.ones(ng)
|
||||
while all(v == 1): # mutate until a change occurs (prevent duplicates)
|
||||
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
|
||||
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
|
||||
hyp[k] = float(x[i + 12] * v[i]) # mutate
|
||||
|
||||
# Constrain to limits
|
||||
for k, v in meta.items():
|
||||
hyp[k] = max(hyp[k], v[1]) # lower limit
|
||||
hyp[k] = min(hyp[k], v[2]) # upper limit
|
||||
hyp[k] = round(hyp[k], 5) # significant digits
|
||||
|
||||
# Train mutation
|
||||
results = train(hyp.copy(), opt, device, callbacks)
|
||||
callbacks = Callbacks()
|
||||
# Write mutation results
|
||||
print_mutation(KEYS[4:16], results, hyp.copy(), save_dir, opt.bucket)
|
||||
|
||||
# Plot results
|
||||
plot_evolve(evolve_csv)
|
||||
LOGGER.info(
|
||||
f'Hyperparameter evolution finished {opt.evolve} generations\n'
|
||||
f"Results saved to {colorstr('bold', save_dir)}\n"
|
||||
f'Usage example: $ python train.py --hyp {evolve_yaml}'
|
||||
)
|
||||
|
||||
|
||||
def run(**kwargs):
|
||||
"""
|
||||
Executes YOLOv5 training with given parameters, altering options programmatically; returns updated options.
|
||||
|
||||
Example: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
|
||||
"""
|
||||
opt = parse_opt(True)
|
||||
for k, v in kwargs.items():
|
||||
setattr(opt, k, v)
|
||||
main(opt)
|
||||
return opt
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
opt = parse_opt()
|
||||
main(opt)
|
||||
@ -1,602 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "t6MPjfT5NrKQ"
|
||||
},
|
||||
"source": [
|
||||
"<div align=\"center\">\n",
|
||||
"\n",
|
||||
" <a href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
|
||||
" <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png\"></a>\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"<br>\n",
|
||||
" <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a>\n",
|
||||
" <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
|
||||
" <a href=\"https://www.kaggle.com/models/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
|
||||
"<br>\n",
|
||||
"\n",
|
||||
"This <a href=\"https://github.com/ultralytics/yolov5\">YOLOv5</a> 🚀 notebook by <a href=\"https://ultralytics.com\">Ultralytics</a> presents simple train, validate and predict examples to help start your AI adventure.<br>See <a href=\"https://github.com/ultralytics/yolov5/issues/new/choose\">GitHub</a> for community support or <a href=\"https://ultralytics.com/contact\">contact us</a> for professional support.\n",
|
||||
"\n",
|
||||
"</div>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "7mGmQbAO5pQb"
|
||||
},
|
||||
"source": [
|
||||
"# Setup\n",
|
||||
"\n",
|
||||
"Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "wbvMlHd_QwMG",
|
||||
"outputId": "171b23f0-71b9-4cbf-b666-6fa2ecef70c8"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Setup complete ✅ (2 CPUs, 12.7 GB RAM, 22.6/78.2 GB disk)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!git clone https://github.com/ultralytics/yolov5 # clone\n",
|
||||
"%cd yolov5\n",
|
||||
"%pip install -qr requirements.txt comet_ml # install\n",
|
||||
"\n",
|
||||
"import torch\n",
|
||||
"\n",
|
||||
"import utils\n",
|
||||
"\n",
|
||||
"display = utils.notebook_init() # checks"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "4JnkELT0cIJg"
|
||||
},
|
||||
"source": [
|
||||
"# 1. Predict\n",
|
||||
"\n",
|
||||
"`segment/predict.py` runs YOLOv5 instance segmentation inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/predict`. Example inference sources are:\n",
|
||||
"\n",
|
||||
"```shell\n",
|
||||
"python segment/predict.py --source 0 # webcam\n",
|
||||
" img.jpg # image \n",
|
||||
" vid.mp4 # video\n",
|
||||
" screen # screenshot\n",
|
||||
" path/ # directory\n",
|
||||
" 'path/*.jpg' # glob\n",
|
||||
" 'https://youtu.be/LNwODJXcvt4' # YouTube\n",
|
||||
" 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "zR9ZbuQCH7FX",
|
||||
"outputId": "3f67f1c7-f15e-4fa5-d251-967c3b77eaad"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[34m\u001b[1msegment/predict: \u001b[0mweights=['yolov5s-seg.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/predict-seg, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1, retina_masks=False\n",
|
||||
"YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
|
||||
"\n",
|
||||
"Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt to yolov5s-seg.pt...\n",
|
||||
"100% 14.9M/14.9M [00:01<00:00, 12.0MB/s]\n",
|
||||
"\n",
|
||||
"Fusing layers... \n",
|
||||
"YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
|
||||
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 18.2ms\n",
|
||||
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, 13.4ms\n",
|
||||
"Speed: 0.5ms pre-process, 15.8ms inference, 18.5ms NMS per image at shape (1, 3, 640, 640)\n",
|
||||
"Results saved to \u001b[1mruns/predict-seg/exp\u001b[0m\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!python segment/predict.py --weights yolov5s-seg.pt --img 640 --conf 0.25 --source data/images\n",
|
||||
"# display.Image(filename='runs/predict-seg/exp/zidane.jpg', width=600)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "hkAzDWJ7cWTr"
|
||||
},
|
||||
"source": [
|
||||
" \n",
|
||||
"<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/199030123-08c72f8d-6871-4116-8ed3-c373642cf28e.jpg\" width=\"600\">"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "0eq1SMWl6Sfn"
|
||||
},
|
||||
"source": [
|
||||
"# 2. Validate\n",
|
||||
"Validate a model's accuracy on the [COCO](https://cocodataset.org/#home) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "WQPtK1QYVaD_",
|
||||
"outputId": "9d751d8c-bee8-4339-cf30-9854ca530449"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/coco2017labels-segments.zip ...\n",
|
||||
"Downloading http://images.cocodataset.org/zips/val2017.zip ...\n",
|
||||
"######################################################################## 100.0%\n",
|
||||
"######################################################################## 100.0%\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Download COCO val\n",
|
||||
"!bash data/scripts/get_coco.sh --val --segments # download (780M - 5000 images)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "X58w8JLpMnjH",
|
||||
"outputId": "a140d67a-02da-479e-9ddb-7d54bf9e407a"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[34m\u001b[1msegment/val: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5s-seg.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=False, project=runs/val-seg, name=exp, exist_ok=False, half=True, dnn=False\n",
|
||||
"YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
|
||||
"\n",
|
||||
"Fusing layers... \n",
|
||||
"YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
|
||||
"\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco/val2017... 4952 images, 48 backgrounds, 0 corrupt: 100% 5000/5000 [00:03<00:00, 1361.31it/s]\n",
|
||||
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
|
||||
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 157/157 [01:54<00:00, 1.37it/s]\n",
|
||||
" all 5000 36335 0.673 0.517 0.566 0.373 0.672 0.49 0.532 0.319\n",
|
||||
"Speed: 0.6ms pre-process, 4.4ms inference, 2.9ms NMS per image at shape (32, 3, 640, 640)\n",
|
||||
"Results saved to \u001b[1mruns/val-seg/exp\u001b[0m\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Validate YOLOv5s-seg on COCO val\n",
|
||||
"!python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 --half"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "ZY2VXXXu74w5"
|
||||
},
|
||||
"source": [
|
||||
"# 3. Train\n",
|
||||
"\n",
|
||||
"<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png\"/></a></p>\n",
|
||||
"Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
|
||||
"<br><br>\n",
|
||||
"\n",
|
||||
"Train a YOLOv5s-seg model on the [COCO128](https://www.kaggle.com/datasets/ultralytics/coco128) dataset with `--data coco128-seg.yaml`, starting from pretrained `--weights yolov5s-seg.pt`, or from randomly initialized `--weights '' --cfg yolov5s-seg.yaml`.\n",
|
||||
"\n",
|
||||
"- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
|
||||
"automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
|
||||
"- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
|
||||
"- **Training Results** are saved to `runs/train-seg/` with incrementing run directories, i.e. `runs/train-seg/exp2`, `runs/train-seg/exp3` etc.\n",
|
||||
"<br><br>\n",
|
||||
"\n",
|
||||
"A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n",
|
||||
"\n",
|
||||
"## Train on Custom Data with Roboflow 🌟 NEW\n",
|
||||
"\n",
|
||||
"[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n",
|
||||
"\n",
|
||||
"- Custom Training Example: [https://blog.roboflow.com/train-yolov5-instance-segmentation-custom-dataset/](https://blog.roboflow.com/train-yolov5-instance-segmentation-custom-dataset/?ref=ultralytics)\n",
|
||||
"- Custom Training Notebook: [](https://colab.research.google.com/drive/1JTz7kpmHsg-5qwVz2d2IH3AaenI1tv0N?usp=sharing)\n",
|
||||
"<br>\n",
|
||||
"\n",
|
||||
"<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://robflow-public-assets.s3.amazonaws.com/how-to-train-yolov5-segmentation-annotation.gif\"/></a></p>Label images lightning fast (including with model-assisted labeling)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "i3oKtE4g-aNn"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# @title Select YOLOv5 🚀 logger {run: 'auto'}\n",
|
||||
"logger = \"Comet\" # @param ['Comet', 'ClearML', 'TensorBoard']\n",
|
||||
"\n",
|
||||
"if logger == \"Comet\":\n",
|
||||
" %pip install -q comet_ml\n",
|
||||
" import comet_ml\n",
|
||||
"\n",
|
||||
" comet_ml.init()\n",
|
||||
"elif logger == \"ClearML\":\n",
|
||||
" %pip install -q clearml\n",
|
||||
" import clearml\n",
|
||||
"\n",
|
||||
" clearml.browser_login()\n",
|
||||
"elif logger == \"TensorBoard\":\n",
|
||||
" %load_ext tensorboard\n",
|
||||
" %tensorboard --logdir runs/train"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "1NcFxRcFdJ_O",
|
||||
"outputId": "3a3e0cf7-e79c-47a5-c8e7-2d26eeeab988"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[34m\u001b[1msegment/train: \u001b[0mweights=yolov5s-seg.pt, cfg=, data=coco128-seg.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train-seg, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, mask_ratio=4, no_overlap=False\n",
|
||||
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
|
||||
"YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
|
||||
"\n",
|
||||
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
|
||||
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train-seg', view at http://localhost:6006/\n",
|
||||
"\n",
|
||||
"Dataset not found ⚠️, missing paths ['/content/datasets/coco128-seg/images/train2017']\n",
|
||||
"Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128-seg.zip to coco128-seg.zip...\n",
|
||||
"100% 6.79M/6.79M [00:01<00:00, 6.73MB/s]\n",
|
||||
"Dataset download success ✅ (1.9s), saved to \u001b[1m/content/datasets\u001b[0m\n",
|
||||
"\n",
|
||||
" from n params module arguments \n",
|
||||
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
|
||||
" 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
|
||||
" 2 -1 1 18816 models.common.C3 [64, 64, 1] \n",
|
||||
" 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n",
|
||||
" 4 -1 2 115712 models.common.C3 [128, 128, 2] \n",
|
||||
" 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n",
|
||||
" 6 -1 3 625152 models.common.C3 [256, 256, 3] \n",
|
||||
" 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n",
|
||||
" 8 -1 1 1182720 models.common.C3 [512, 512, 1] \n",
|
||||
" 9 -1 1 656896 models.common.SPPF [512, 512, 5] \n",
|
||||
" 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n",
|
||||
" 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
|
||||
" 12 [-1, 6] 1 0 models.common.Concat [1] \n",
|
||||
" 13 -1 1 361984 models.common.C3 [512, 256, 1, False] \n",
|
||||
" 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n",
|
||||
" 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
|
||||
" 16 [-1, 4] 1 0 models.common.Concat [1] \n",
|
||||
" 17 -1 1 90880 models.common.C3 [256, 128, 1, False] \n",
|
||||
" 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n",
|
||||
" 19 [-1, 14] 1 0 models.common.Concat [1] \n",
|
||||
" 20 -1 1 296448 models.common.C3 [256, 256, 1, False] \n",
|
||||
" 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n",
|
||||
" 22 [-1, 10] 1 0 models.common.Concat [1] \n",
|
||||
" 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
|
||||
" 24 [17, 20, 23] 1 615133 models.yolo.Segment [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], 32, 128, [128, 256, 512]]\n",
|
||||
"Model summary: 225 layers, 7621277 parameters, 7621277 gradients, 26.6 GFLOPs\n",
|
||||
"\n",
|
||||
"Transferred 367/367 items from yolov5s-seg.pt\n",
|
||||
"\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n",
|
||||
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 60 weight(decay=0.0), 63 weight(decay=0.0005), 63 bias\n",
|
||||
"\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
|
||||
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco128-seg/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00, 1389.59it/s]\n",
|
||||
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128-seg/labels/train2017.cache\n",
|
||||
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 238.86it/s]\n",
|
||||
"\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco128-seg/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
|
||||
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 98.90it/s]\n",
|
||||
"\n",
|
||||
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
|
||||
"Plotting labels to runs/train-seg/exp/labels.jpg... \n",
|
||||
"Image sizes 640 train, 640 val\n",
|
||||
"Using 2 dataloader workers\n",
|
||||
"Logging results to \u001b[1mruns/train-seg/exp\u001b[0m\n",
|
||||
"Starting training for 3 epochs...\n",
|
||||
"\n",
|
||||
" Epoch GPU_mem box_loss seg_loss obj_loss cls_loss Instances Size\n",
|
||||
" 0/2 4.92G 0.0417 0.04646 0.06066 0.02126 192 640: 100% 8/8 [00:08<00:00, 1.10s/it]\n",
|
||||
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:02<00:00, 1.81it/s]\n",
|
||||
" all 128 929 0.737 0.649 0.715 0.492 0.719 0.617 0.658 0.408\n",
|
||||
"\n",
|
||||
" Epoch GPU_mem box_loss seg_loss obj_loss cls_loss Instances Size\n",
|
||||
" 1/2 6.29G 0.04157 0.04503 0.05772 0.01777 208 640: 100% 8/8 [00:09<00:00, 1.21s/it]\n",
|
||||
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:02<00:00, 1.87it/s]\n",
|
||||
" all 128 929 0.756 0.674 0.738 0.506 0.725 0.64 0.68 0.422\n",
|
||||
"\n",
|
||||
" Epoch GPU_mem box_loss seg_loss obj_loss cls_loss Instances Size\n",
|
||||
" 2/2 6.29G 0.0425 0.04793 0.06784 0.01863 161 640: 100% 8/8 [00:03<00:00, 2.02it/s]\n",
|
||||
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:02<00:00, 1.88it/s]\n",
|
||||
" all 128 929 0.736 0.694 0.747 0.522 0.769 0.622 0.683 0.427\n",
|
||||
"\n",
|
||||
"3 epochs completed in 0.009 hours.\n",
|
||||
"Optimizer stripped from runs/train-seg/exp/weights/last.pt, 15.6MB\n",
|
||||
"Optimizer stripped from runs/train-seg/exp/weights/best.pt, 15.6MB\n",
|
||||
"\n",
|
||||
"Validating runs/train-seg/exp/weights/best.pt...\n",
|
||||
"Fusing layers... \n",
|
||||
"Model summary: 165 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
|
||||
" Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:06<00:00, 1.59s/it]\n",
|
||||
" all 128 929 0.738 0.694 0.746 0.522 0.759 0.625 0.682 0.426\n",
|
||||
" person 128 254 0.845 0.756 0.836 0.55 0.861 0.669 0.759 0.407\n",
|
||||
" bicycle 128 6 0.475 0.333 0.549 0.341 0.711 0.333 0.526 0.322\n",
|
||||
" car 128 46 0.612 0.565 0.539 0.257 0.555 0.435 0.477 0.171\n",
|
||||
" motorcycle 128 5 0.73 0.8 0.752 0.571 0.747 0.8 0.752 0.42\n",
|
||||
" airplane 128 6 1 0.943 0.995 0.732 0.92 0.833 0.839 0.555\n",
|
||||
" bus 128 7 0.677 0.714 0.722 0.653 0.711 0.714 0.722 0.593\n",
|
||||
" train 128 3 1 0.951 0.995 0.551 1 0.884 0.995 0.781\n",
|
||||
" truck 128 12 0.555 0.417 0.457 0.285 0.624 0.417 0.397 0.277\n",
|
||||
" boat 128 6 0.624 0.5 0.584 0.186 1 0.326 0.412 0.133\n",
|
||||
" traffic light 128 14 0.513 0.302 0.411 0.247 0.435 0.214 0.376 0.251\n",
|
||||
" stop sign 128 2 0.824 1 0.995 0.796 0.906 1 0.995 0.747\n",
|
||||
" bench 128 9 0.75 0.667 0.763 0.367 0.724 0.585 0.698 0.209\n",
|
||||
" bird 128 16 0.961 1 0.995 0.686 0.918 0.938 0.91 0.525\n",
|
||||
" cat 128 4 0.771 0.857 0.945 0.752 0.76 0.8 0.945 0.728\n",
|
||||
" dog 128 9 0.987 0.778 0.963 0.681 1 0.705 0.89 0.574\n",
|
||||
" horse 128 2 0.703 1 0.995 0.697 0.759 1 0.995 0.249\n",
|
||||
" elephant 128 17 0.916 0.882 0.93 0.691 0.811 0.765 0.829 0.537\n",
|
||||
" bear 128 1 0.664 1 0.995 0.995 0.701 1 0.995 0.895\n",
|
||||
" zebra 128 4 0.864 1 0.995 0.921 0.879 1 0.995 0.804\n",
|
||||
" giraffe 128 9 0.883 0.889 0.94 0.683 0.845 0.778 0.78 0.463\n",
|
||||
" backpack 128 6 1 0.59 0.701 0.372 1 0.474 0.52 0.252\n",
|
||||
" umbrella 128 18 0.654 0.839 0.887 0.52 0.517 0.556 0.427 0.229\n",
|
||||
" handbag 128 19 0.54 0.211 0.408 0.221 0.796 0.206 0.396 0.196\n",
|
||||
" tie 128 7 0.864 0.857 0.857 0.577 0.925 0.857 0.857 0.534\n",
|
||||
" suitcase 128 4 0.716 1 0.945 0.647 0.767 1 0.945 0.634\n",
|
||||
" frisbee 128 5 0.708 0.8 0.761 0.643 0.737 0.8 0.761 0.501\n",
|
||||
" skis 128 1 0.691 1 0.995 0.796 0.761 1 0.995 0.199\n",
|
||||
" snowboard 128 7 0.918 0.857 0.904 0.604 0.32 0.286 0.235 0.137\n",
|
||||
" sports ball 128 6 0.902 0.667 0.701 0.466 0.727 0.5 0.497 0.471\n",
|
||||
" kite 128 10 0.586 0.4 0.511 0.231 0.663 0.394 0.417 0.139\n",
|
||||
" baseball bat 128 4 0.359 0.5 0.401 0.169 0.631 0.5 0.526 0.133\n",
|
||||
" baseball glove 128 7 1 0.519 0.58 0.327 0.687 0.286 0.455 0.328\n",
|
||||
" skateboard 128 5 0.729 0.8 0.862 0.631 0.599 0.6 0.604 0.379\n",
|
||||
" tennis racket 128 7 0.57 0.714 0.645 0.448 0.608 0.714 0.645 0.412\n",
|
||||
" bottle 128 18 0.469 0.393 0.537 0.357 0.661 0.389 0.543 0.349\n",
|
||||
" wine glass 128 16 0.677 0.938 0.866 0.441 0.53 0.625 0.67 0.334\n",
|
||||
" cup 128 36 0.777 0.722 0.812 0.466 0.725 0.583 0.762 0.467\n",
|
||||
" fork 128 6 0.948 0.333 0.425 0.27 0.527 0.167 0.18 0.102\n",
|
||||
" knife 128 16 0.757 0.587 0.669 0.458 0.79 0.5 0.552 0.34\n",
|
||||
" spoon 128 22 0.74 0.364 0.559 0.269 0.925 0.364 0.513 0.213\n",
|
||||
" bowl 128 28 0.766 0.714 0.725 0.559 0.803 0.584 0.665 0.353\n",
|
||||
" banana 128 1 0.408 1 0.995 0.398 0.539 1 0.995 0.497\n",
|
||||
" sandwich 128 2 1 0 0.695 0.536 1 0 0.498 0.448\n",
|
||||
" orange 128 4 0.467 1 0.995 0.693 0.518 1 0.995 0.663\n",
|
||||
" broccoli 128 11 0.462 0.455 0.383 0.259 0.548 0.455 0.384 0.256\n",
|
||||
" carrot 128 24 0.631 0.875 0.77 0.533 0.757 0.909 0.853 0.499\n",
|
||||
" hot dog 128 2 0.555 1 0.995 0.995 0.578 1 0.995 0.796\n",
|
||||
" pizza 128 5 0.89 0.8 0.962 0.796 1 0.778 0.962 0.766\n",
|
||||
" donut 128 14 0.695 1 0.893 0.772 0.704 1 0.893 0.696\n",
|
||||
" cake 128 4 0.826 1 0.995 0.92 0.862 1 0.995 0.846\n",
|
||||
" chair 128 35 0.53 0.571 0.613 0.336 0.67 0.6 0.538 0.271\n",
|
||||
" couch 128 6 0.972 0.667 0.833 0.627 1 0.62 0.696 0.394\n",
|
||||
" potted plant 128 14 0.7 0.857 0.883 0.552 0.836 0.857 0.883 0.473\n",
|
||||
" bed 128 3 0.979 0.667 0.83 0.366 1 0 0.83 0.373\n",
|
||||
" dining table 128 13 0.775 0.308 0.505 0.364 0.644 0.231 0.25 0.0804\n",
|
||||
" toilet 128 2 0.836 1 0.995 0.846 0.887 1 0.995 0.797\n",
|
||||
" tv 128 2 0.6 1 0.995 0.846 0.655 1 0.995 0.896\n",
|
||||
" laptop 128 3 0.822 0.333 0.445 0.307 1 0 0.392 0.12\n",
|
||||
" mouse 128 2 1 0 0 0 1 0 0 0\n",
|
||||
" remote 128 8 0.745 0.5 0.62 0.459 0.821 0.5 0.624 0.449\n",
|
||||
" cell phone 128 8 0.686 0.375 0.502 0.272 0.488 0.25 0.28 0.132\n",
|
||||
" microwave 128 3 0.831 1 0.995 0.722 0.867 1 0.995 0.592\n",
|
||||
" oven 128 5 0.439 0.4 0.435 0.294 0.823 0.6 0.645 0.418\n",
|
||||
" sink 128 6 0.677 0.5 0.565 0.448 0.722 0.5 0.46 0.362\n",
|
||||
" refrigerator 128 5 0.533 0.8 0.783 0.524 0.558 0.8 0.783 0.527\n",
|
||||
" book 128 29 0.732 0.379 0.423 0.196 0.69 0.207 0.38 0.131\n",
|
||||
" clock 128 9 0.889 0.778 0.917 0.677 0.908 0.778 0.875 0.604\n",
|
||||
" vase 128 2 0.375 1 0.995 0.995 0.455 1 0.995 0.796\n",
|
||||
" scissors 128 1 1 0 0.0166 0.00166 1 0 0 0\n",
|
||||
" teddy bear 128 21 0.813 0.829 0.841 0.457 0.826 0.678 0.786 0.422\n",
|
||||
" toothbrush 128 5 0.806 1 0.995 0.733 0.991 1 0.995 0.628\n",
|
||||
"Results saved to \u001b[1mruns/train-seg/exp\u001b[0m\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Train YOLOv5s on COCO128 for 3 epochs\n",
|
||||
"!python segment/train.py --img 640 --batch 16 --epochs 3 --data coco128-seg.yaml --weights yolov5s-seg.pt --cache"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "15glLzbQx5u0"
|
||||
},
|
||||
"source": [
|
||||
"# 4. Visualize"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "nWOsI5wJR1o3"
|
||||
},
|
||||
"source": [
|
||||
"## Comet Logging and Visualization 🌟 NEW\n",
|
||||
"\n",
|
||||
"[Comet](https://www.comet.com/site/lp/yolov5-with-comet/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!\n",
|
||||
"\n",
|
||||
"Getting started is easy:\n",
|
||||
"```shell\n",
|
||||
"pip install comet_ml # 1. install\n",
|
||||
"export COMET_API_KEY=<Your API Key> # 2. paste API key\n",
|
||||
"python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt # 3. train\n",
|
||||
"```\n",
|
||||
"To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n",
|
||||
"[](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n",
|
||||
"\n",
|
||||
"<a href=\"https://bit.ly/yolov5-readme-comet2\">\n",
|
||||
"<img alt=\"Comet Dashboard\" src=\"https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png\" width=\"1280\"/></a>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "Lay2WsTjNJzP"
|
||||
},
|
||||
"source": [
|
||||
"## ClearML Logging and Automation 🌟 NEW\n",
|
||||
"\n",
|
||||
"[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n",
|
||||
"\n",
|
||||
"- `pip install clearml`\n",
|
||||
"- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n",
|
||||
"\n",
|
||||
"You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n",
|
||||
"\n",
|
||||
"You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration) for details!\n",
|
||||
"\n",
|
||||
"<a href=\"https://cutt.ly/yolov5-notebook-clearml\">\n",
|
||||
"<img alt=\"ClearML Experiment Management UI\" src=\"https://github.com/thepycoder/clearml_screenshots/raw/main/scalars.jpg\" width=\"1280\"/></a>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "-WPvRbS5Swl6"
|
||||
},
|
||||
"source": [
|
||||
"## Local Logging\n",
|
||||
"\n",
|
||||
"Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n",
|
||||
"\n",
|
||||
"This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices. \n",
|
||||
"\n",
|
||||
"<img alt=\"Local logging results\" src=\"https://user-images.githubusercontent.com/26833433/183222430-e1abd1b7-782c-4cde-b04d-ad52926bf818.jpg\" width=\"1280\"/>\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "Zelyeqbyt3GD"
|
||||
},
|
||||
"source": [
|
||||
"# Environments\n",
|
||||
"\n",
|
||||
"YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
|
||||
"\n",
|
||||
"- **Notebooks** with free GPU: <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a> <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/models/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
|
||||
"- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)\n",
|
||||
"- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)\n",
|
||||
"- **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "6Qu7Iesl0p54"
|
||||
},
|
||||
"source": [
|
||||
"# Status\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "IEijrePND_2I"
|
||||
},
|
||||
"source": [
|
||||
"# Appendix\n",
|
||||
"\n",
|
||||
"Additional content below."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "GMusP4OAxFu6"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n",
|
||||
"\n",
|
||||
"model = torch.hub.load(\n",
|
||||
" \"ultralytics/yolov5\", \"yolov5s-seg\", force_reload=True, trust_repo=True\n",
|
||||
") # or yolov5n - yolov5x6 or custom\n",
|
||||
"im = \"https://ultralytics.com/images/zidane.jpg\" # file, Path, PIL.Image, OpenCV, nparray, list\n",
|
||||
"results = model(im) # inference\n",
|
||||
"results.print() # or .show(), .save(), .crop(), .pandas(), etc."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"accelerator": "GPU",
|
||||
"colab": {
|
||||
"name": "YOLOv5 Segmentation Tutorial",
|
||||
"provenance": [],
|
||||
"toc_visible": true
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
||||
@ -1,522 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Validate a trained YOLOv5 segment model on a segment dataset.
|
||||
|
||||
Usage:
|
||||
$ bash data/scripts/get_coco.sh --val --segments # download COCO-segments val split (1G, 5000 images)
|
||||
$ python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # validate COCO-segments
|
||||
|
||||
Usage - formats:
|
||||
$ python segment/val.py --weights yolov5s-seg.pt # PyTorch
|
||||
yolov5s-seg.torchscript # TorchScript
|
||||
yolov5s-seg.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
||||
yolov5s-seg_openvino_label # OpenVINO
|
||||
yolov5s-seg.engine # TensorRT
|
||||
yolov5s-seg.mlmodel # CoreML (macOS-only)
|
||||
yolov5s-seg_saved_model # TensorFlow SavedModel
|
||||
yolov5s-seg.pb # TensorFlow GraphDef
|
||||
yolov5s-seg.tflite # TensorFlow Lite
|
||||
yolov5s-seg_edgetpu.tflite # TensorFlow Edge TPU
|
||||
yolov5s-seg_paddle_model # PaddlePaddle
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
from multiprocessing.pool import ThreadPool
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[1] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||
|
||||
import torch.nn.functional as F
|
||||
|
||||
from models.common import DetectMultiBackend
|
||||
from models.yolo import SegmentationModel
|
||||
from utils.callbacks import Callbacks
|
||||
from utils.general import (
|
||||
LOGGER,
|
||||
NUM_THREADS,
|
||||
TQDM_BAR_FORMAT,
|
||||
Profile,
|
||||
check_dataset,
|
||||
check_img_size,
|
||||
check_requirements,
|
||||
check_yaml,
|
||||
coco80_to_coco91_class,
|
||||
colorstr,
|
||||
increment_path,
|
||||
non_max_suppression,
|
||||
print_args,
|
||||
scale_boxes,
|
||||
xywh2xyxy,
|
||||
xyxy2xywh,
|
||||
)
|
||||
from utils.metrics import ConfusionMatrix, box_iou
|
||||
from utils.plots import output_to_target, plot_val_study
|
||||
from utils.segment.dataloaders import create_dataloader
|
||||
from utils.segment.general import mask_iou, process_mask, process_mask_native, scale_image
|
||||
from utils.segment.metrics import Metrics, ap_per_class_box_and_mask
|
||||
from utils.segment.plots import plot_images_and_masks
|
||||
from utils.torch_utils import de_parallel, select_device, smart_inference_mode
|
||||
|
||||
|
||||
def save_one_txt(predn, save_conf, shape, file):
|
||||
"""Saves detection results in txt format; includes class, xywh (normalized), optionally confidence if `save_conf` is
|
||||
True.
|
||||
"""
|
||||
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
|
||||
for *xyxy, conf, cls in predn.tolist():
|
||||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
||||
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
||||
with open(file, "a") as f:
|
||||
f.write(("%g " * len(line)).rstrip() % line + "\n")
|
||||
|
||||
|
||||
def save_one_json(predn, jdict, path, class_map, pred_masks):
|
||||
"""
|
||||
Saves a JSON file with detection results including bounding boxes, category IDs, scores, and segmentation masks.
|
||||
|
||||
Example JSON result: {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}.
|
||||
"""
|
||||
from pycocotools.mask import encode
|
||||
|
||||
def single_encode(x):
|
||||
"""Encodes binary mask arrays into RLE (Run-Length Encoding) format for JSON serialization."""
|
||||
rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0]
|
||||
rle["counts"] = rle["counts"].decode("utf-8")
|
||||
return rle
|
||||
|
||||
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
|
||||
box = xyxy2xywh(predn[:, :4]) # xywh
|
||||
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
||||
pred_masks = np.transpose(pred_masks, (2, 0, 1))
|
||||
with ThreadPool(NUM_THREADS) as pool:
|
||||
rles = pool.map(single_encode, pred_masks)
|
||||
for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
|
||||
jdict.append(
|
||||
{
|
||||
"image_id": image_id,
|
||||
"category_id": class_map[int(p[5])],
|
||||
"bbox": [round(x, 3) for x in b],
|
||||
"score": round(p[4], 5),
|
||||
"segmentation": rles[i],
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def process_batch(detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False):
|
||||
"""
|
||||
Return correct prediction matrix
|
||||
Arguments:
|
||||
detections (array[N, 6]), x1, y1, x2, y2, conf, class
|
||||
labels (array[M, 5]), class, x1, y1, x2, y2
|
||||
Returns:
|
||||
correct (array[N, 10]), for 10 IoU levels.
|
||||
"""
|
||||
if masks:
|
||||
if overlap:
|
||||
nl = len(labels)
|
||||
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
|
||||
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
|
||||
gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
|
||||
if gt_masks.shape[1:] != pred_masks.shape[1:]:
|
||||
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0]
|
||||
gt_masks = gt_masks.gt_(0.5)
|
||||
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
|
||||
else: # boxes
|
||||
iou = box_iou(labels[:, 1:], detections[:, :4])
|
||||
|
||||
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
|
||||
correct_class = labels[:, 0:1] == detections[:, 5]
|
||||
for i in range(len(iouv)):
|
||||
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
|
||||
if x[0].shape[0]:
|
||||
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
|
||||
if x[0].shape[0] > 1:
|
||||
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
||||
# matches = matches[matches[:, 2].argsort()[::-1]]
|
||||
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
||||
correct[matches[:, 1].astype(int), i] = True
|
||||
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
|
||||
|
||||
|
||||
@smart_inference_mode()
|
||||
def run(
|
||||
data,
|
||||
weights=None, # model.pt path(s)
|
||||
batch_size=32, # batch size
|
||||
imgsz=640, # inference size (pixels)
|
||||
conf_thres=0.001, # confidence threshold
|
||||
iou_thres=0.6, # NMS IoU threshold
|
||||
max_det=300, # maximum detections per image
|
||||
task="val", # train, val, test, speed or study
|
||||
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
workers=8, # max dataloader workers (per RANK in DDP mode)
|
||||
single_cls=False, # treat as single-class dataset
|
||||
augment=False, # augmented inference
|
||||
verbose=False, # verbose output
|
||||
save_txt=False, # save results to *.txt
|
||||
save_hybrid=False, # save label+prediction hybrid results to *.txt
|
||||
save_conf=False, # save confidences in --save-txt labels
|
||||
save_json=False, # save a COCO-JSON results file
|
||||
project=ROOT / "runs/val-seg", # save to project/name
|
||||
name="exp", # save to project/name
|
||||
exist_ok=False, # existing project/name ok, do not increment
|
||||
half=True, # use FP16 half-precision inference
|
||||
dnn=False, # use OpenCV DNN for ONNX inference
|
||||
model=None,
|
||||
dataloader=None,
|
||||
save_dir=Path(""),
|
||||
plots=True,
|
||||
overlap=False,
|
||||
mask_downsample_ratio=1,
|
||||
compute_loss=None,
|
||||
callbacks=Callbacks(),
|
||||
):
|
||||
"""Validates a YOLOv5 segmentation model on specified dataset, producing metrics, plots, and optional JSON
|
||||
output.
|
||||
"""
|
||||
if save_json:
|
||||
check_requirements("pycocotools>=2.0.6")
|
||||
process = process_mask_native # more accurate
|
||||
else:
|
||||
process = process_mask # faster
|
||||
|
||||
# Initialize/load model and set device
|
||||
training = model is not None
|
||||
if training: # called by train.py
|
||||
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
|
||||
half &= device.type != "cpu" # half precision only supported on CUDA
|
||||
model.half() if half else model.float()
|
||||
nm = de_parallel(model).model[-1].nm # number of masks
|
||||
else: # called directly
|
||||
device = select_device(device, batch_size=batch_size)
|
||||
|
||||
# Directories
|
||||
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
||||
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
||||
|
||||
# Load model
|
||||
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
||||
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
||||
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||
half = model.fp16 # FP16 supported on limited backends with CUDA
|
||||
nm = de_parallel(model).model.model[-1].nm if isinstance(model, SegmentationModel) else 32 # number of masks
|
||||
if engine:
|
||||
batch_size = model.batch_size
|
||||
else:
|
||||
device = model.device
|
||||
if not (pt or jit):
|
||||
batch_size = 1 # export.py models default to batch-size 1
|
||||
LOGGER.info(f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models")
|
||||
|
||||
# Data
|
||||
data = check_dataset(data) # check
|
||||
|
||||
# Configure
|
||||
model.eval()
|
||||
cuda = device.type != "cpu"
|
||||
is_coco = isinstance(data.get("val"), str) and data["val"].endswith(f"coco{os.sep}val2017.txt") # COCO dataset
|
||||
nc = 1 if single_cls else int(data["nc"]) # number of classes
|
||||
iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
|
||||
niou = iouv.numel()
|
||||
|
||||
# Dataloader
|
||||
if not training:
|
||||
if pt and not single_cls: # check --weights are trained on --data
|
||||
ncm = model.model.nc
|
||||
assert ncm == nc, (
|
||||
f"{weights} ({ncm} classes) trained on different --data than what you passed ({nc} "
|
||||
f"classes). Pass correct combination of --weights and --data that are trained together."
|
||||
)
|
||||
model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
|
||||
pad, rect = (0.0, False) if task == "speed" else (0.5, pt) # square inference for benchmarks
|
||||
task = task if task in ("train", "val", "test") else "val" # path to train/val/test images
|
||||
dataloader = create_dataloader(
|
||||
data[task],
|
||||
imgsz,
|
||||
batch_size,
|
||||
stride,
|
||||
single_cls,
|
||||
pad=pad,
|
||||
rect=rect,
|
||||
workers=workers,
|
||||
prefix=colorstr(f"{task}: "),
|
||||
overlap_mask=overlap,
|
||||
mask_downsample_ratio=mask_downsample_ratio,
|
||||
)[0]
|
||||
|
||||
seen = 0
|
||||
confusion_matrix = ConfusionMatrix(nc=nc)
|
||||
names = model.names if hasattr(model, "names") else model.module.names # get class names
|
||||
if isinstance(names, (list, tuple)): # old format
|
||||
names = dict(enumerate(names))
|
||||
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
|
||||
s = ("%22s" + "%11s" * 10) % (
|
||||
"Class",
|
||||
"Images",
|
||||
"Instances",
|
||||
"Box(P",
|
||||
"R",
|
||||
"mAP50",
|
||||
"mAP50-95)",
|
||||
"Mask(P",
|
||||
"R",
|
||||
"mAP50",
|
||||
"mAP50-95)",
|
||||
)
|
||||
dt = Profile(device=device), Profile(device=device), Profile(device=device)
|
||||
metrics = Metrics()
|
||||
loss = torch.zeros(4, device=device)
|
||||
jdict, stats = [], []
|
||||
# callbacks.run('on_val_start')
|
||||
pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
|
||||
for batch_i, (im, targets, paths, shapes, masks) in enumerate(pbar):
|
||||
# callbacks.run('on_val_batch_start')
|
||||
with dt[0]:
|
||||
if cuda:
|
||||
im = im.to(device, non_blocking=True)
|
||||
targets = targets.to(device)
|
||||
masks = masks.to(device)
|
||||
masks = masks.float()
|
||||
im = im.half() if half else im.float() # uint8 to fp16/32
|
||||
im /= 255 # 0 - 255 to 0.0 - 1.0
|
||||
nb, _, height, width = im.shape # batch size, channels, height, width
|
||||
|
||||
# Inference
|
||||
with dt[1]:
|
||||
preds, protos, train_out = model(im) if compute_loss else (*model(im, augment=augment)[:2], None)
|
||||
|
||||
# Loss
|
||||
if compute_loss:
|
||||
loss += compute_loss((train_out, protos), targets, masks)[1] # box, obj, cls
|
||||
|
||||
# NMS
|
||||
targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
|
||||
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
|
||||
with dt[2]:
|
||||
preds = non_max_suppression(
|
||||
preds, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls, max_det=max_det, nm=nm
|
||||
)
|
||||
|
||||
# Metrics
|
||||
plot_masks = [] # masks for plotting
|
||||
for si, (pred, proto) in enumerate(zip(preds, protos)):
|
||||
labels = targets[targets[:, 0] == si, 1:]
|
||||
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
|
||||
path, shape = Path(paths[si]), shapes[si][0]
|
||||
correct_masks = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
|
||||
correct_bboxes = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
|
||||
seen += 1
|
||||
|
||||
if npr == 0:
|
||||
if nl:
|
||||
stats.append((correct_masks, correct_bboxes, *torch.zeros((2, 0), device=device), labels[:, 0]))
|
||||
if plots:
|
||||
confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
|
||||
continue
|
||||
|
||||
# Masks
|
||||
midx = [si] if overlap else targets[:, 0] == si
|
||||
gt_masks = masks[midx]
|
||||
pred_masks = process(proto, pred[:, 6:], pred[:, :4], shape=im[si].shape[1:])
|
||||
|
||||
# Predictions
|
||||
if single_cls:
|
||||
pred[:, 5] = 0
|
||||
predn = pred.clone()
|
||||
scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
|
||||
|
||||
# Evaluate
|
||||
if nl:
|
||||
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
|
||||
scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
|
||||
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
|
||||
correct_bboxes = process_batch(predn, labelsn, iouv)
|
||||
correct_masks = process_batch(predn, labelsn, iouv, pred_masks, gt_masks, overlap=overlap, masks=True)
|
||||
if plots:
|
||||
confusion_matrix.process_batch(predn, labelsn)
|
||||
stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0])) # (conf, pcls, tcls)
|
||||
|
||||
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
|
||||
if plots and batch_i < 3:
|
||||
plot_masks.append(pred_masks[:15]) # filter top 15 to plot
|
||||
|
||||
# Save/log
|
||||
if save_txt:
|
||||
save_one_txt(predn, save_conf, shape, file=save_dir / "labels" / f"{path.stem}.txt")
|
||||
if save_json:
|
||||
pred_masks = scale_image(
|
||||
im[si].shape[1:], pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1]
|
||||
)
|
||||
save_one_json(predn, jdict, path, class_map, pred_masks) # append to COCO-JSON dictionary
|
||||
# callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
|
||||
|
||||
# Plot images
|
||||
if plots and batch_i < 3:
|
||||
if len(plot_masks):
|
||||
plot_masks = torch.cat(plot_masks, dim=0)
|
||||
plot_images_and_masks(im, targets, masks, paths, save_dir / f"val_batch{batch_i}_labels.jpg", names)
|
||||
plot_images_and_masks(
|
||||
im,
|
||||
output_to_target(preds, max_det=15),
|
||||
plot_masks,
|
||||
paths,
|
||||
save_dir / f"val_batch{batch_i}_pred.jpg",
|
||||
names,
|
||||
) # pred
|
||||
|
||||
# callbacks.run('on_val_batch_end')
|
||||
|
||||
# Compute metrics
|
||||
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
|
||||
if len(stats) and stats[0].any():
|
||||
results = ap_per_class_box_and_mask(*stats, plot=plots, save_dir=save_dir, names=names)
|
||||
metrics.update(results)
|
||||
nt = np.bincount(stats[4].astype(int), minlength=nc) # number of targets per class
|
||||
|
||||
# Print results
|
||||
pf = "%22s" + "%11i" * 2 + "%11.3g" * 8 # print format
|
||||
LOGGER.info(pf % ("all", seen, nt.sum(), *metrics.mean_results()))
|
||||
if nt.sum() == 0:
|
||||
LOGGER.warning(f"WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels")
|
||||
|
||||
# Print results per class
|
||||
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
|
||||
for i, c in enumerate(metrics.ap_class_index):
|
||||
LOGGER.info(pf % (names[c], seen, nt[c], *metrics.class_result(i)))
|
||||
|
||||
# Print speeds
|
||||
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
|
||||
if not training:
|
||||
shape = (batch_size, 3, imgsz, imgsz)
|
||||
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}" % t)
|
||||
|
||||
# Plots
|
||||
if plots:
|
||||
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
|
||||
# callbacks.run('on_val_end')
|
||||
|
||||
mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask = metrics.mean_results()
|
||||
|
||||
# Save JSON
|
||||
if save_json and len(jdict):
|
||||
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else "" # weights
|
||||
anno_json = str(Path("../datasets/coco/annotations/instances_val2017.json")) # annotations
|
||||
pred_json = str(save_dir / f"{w}_predictions.json") # predictions
|
||||
LOGGER.info(f"\nEvaluating pycocotools mAP... saving {pred_json}...")
|
||||
with open(pred_json, "w") as f:
|
||||
json.dump(jdict, f)
|
||||
|
||||
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||||
from pycocotools.coco import COCO
|
||||
from pycocotools.cocoeval import COCOeval
|
||||
|
||||
anno = COCO(anno_json) # init annotations api
|
||||
pred = anno.loadRes(pred_json) # init predictions api
|
||||
results = []
|
||||
for eval in COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "segm"):
|
||||
if is_coco:
|
||||
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # img ID to evaluate
|
||||
eval.evaluate()
|
||||
eval.accumulate()
|
||||
eval.summarize()
|
||||
results.extend(eval.stats[:2]) # update results (mAP@0.5:0.95, mAP@0.5)
|
||||
map_bbox, map50_bbox, map_mask, map50_mask = results
|
||||
except Exception as e:
|
||||
LOGGER.info(f"pycocotools unable to run: {e}")
|
||||
|
||||
# Return results
|
||||
model.float() # for training
|
||||
if not training:
|
||||
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
|
||||
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
||||
final_metric = mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask
|
||||
return (*final_metric, *(loss.cpu() / len(dataloader)).tolist()), metrics.get_maps(nc), t
|
||||
|
||||
|
||||
def parse_opt():
|
||||
"""Parses command line arguments for configuring YOLOv5 options like dataset path, weights, batch size, and
|
||||
inference settings.
|
||||
"""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--data", type=str, default=ROOT / "data/coco128-seg.yaml", help="dataset.yaml path")
|
||||
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-seg.pt", help="model path(s)")
|
||||
parser.add_argument("--batch-size", type=int, default=32, help="batch size")
|
||||
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)")
|
||||
parser.add_argument("--conf-thres", type=float, default=0.001, help="confidence threshold")
|
||||
parser.add_argument("--iou-thres", type=float, default=0.6, help="NMS IoU threshold")
|
||||
parser.add_argument("--max-det", type=int, default=300, help="maximum detections per image")
|
||||
parser.add_argument("--task", default="val", help="train, val, test, speed or study")
|
||||
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
||||
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
|
||||
parser.add_argument("--single-cls", action="store_true", help="treat as single-class dataset")
|
||||
parser.add_argument("--augment", action="store_true", help="augmented inference")
|
||||
parser.add_argument("--verbose", action="store_true", help="report mAP by class")
|
||||
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
|
||||
parser.add_argument("--save-hybrid", action="store_true", help="save label+prediction hybrid results to *.txt")
|
||||
parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
|
||||
parser.add_argument("--save-json", action="store_true", help="save a COCO-JSON results file")
|
||||
parser.add_argument("--project", default=ROOT / "runs/val-seg", help="save results to project/name")
|
||||
parser.add_argument("--name", default="exp", help="save to project/name")
|
||||
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
|
||||
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
|
||||
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
|
||||
opt = parser.parse_args()
|
||||
opt.data = check_yaml(opt.data) # check YAML
|
||||
# opt.save_json |= opt.data.endswith('coco.yaml')
|
||||
opt.save_txt |= opt.save_hybrid
|
||||
print_args(vars(opt))
|
||||
return opt
|
||||
|
||||
|
||||
def main(opt):
|
||||
"""Executes YOLOv5 tasks including training, validation, testing, speed, and study with configurable options."""
|
||||
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
|
||||
|
||||
if opt.task in ("train", "val", "test"): # run normally
|
||||
if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
|
||||
LOGGER.warning(f"WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results")
|
||||
if opt.save_hybrid:
|
||||
LOGGER.warning("WARNING ⚠️ --save-hybrid returns high mAP from hybrid labels, not from predictions alone")
|
||||
run(**vars(opt))
|
||||
|
||||
else:
|
||||
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
|
||||
opt.half = torch.cuda.is_available() and opt.device != "cpu" # FP16 for fastest results
|
||||
if opt.task == "speed": # speed benchmarks
|
||||
# python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
|
||||
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
|
||||
for opt.weights in weights:
|
||||
run(**vars(opt), plots=False)
|
||||
|
||||
elif opt.task == "study": # speed vs mAP benchmarks
|
||||
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
|
||||
for opt.weights in weights:
|
||||
f = f"study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt" # filename to save to
|
||||
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
|
||||
for opt.imgsz in x: # img-size
|
||||
LOGGER.info(f"\nRunning {f} --imgsz {opt.imgsz}...")
|
||||
r, _, t = run(**vars(opt), plots=False)
|
||||
y.append(r + t) # results and times
|
||||
np.savetxt(f, y, fmt="%10.4g") # save
|
||||
subprocess.run(["zip", "-r", "study.zip", "study_*.txt"])
|
||||
plot_val_study(x=x) # plot
|
||||
else:
|
||||
raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
opt = parse_opt()
|
||||
main(opt)
|
||||
@ -1,604 +0,0 @@
|
||||
{
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"name": "YOLOv5 Tutorial",
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"name": "python3",
|
||||
"display_name": "Python 3"
|
||||
},
|
||||
"accelerator": "GPU"
|
||||
},
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "t6MPjfT5NrKQ"
|
||||
},
|
||||
"source": [
|
||||
"<div align=\"center\">\n",
|
||||
"\n",
|
||||
" <a href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
|
||||
" <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png\"></a>\n",
|
||||
"\n",
|
||||
"[中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [العربية](https://docs.ultralytics.com/ar/)\n",
|
||||
"\n",
|
||||
" <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a>\n",
|
||||
" <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
|
||||
" <a href=\"https://www.kaggle.com/models/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
|
||||
"\n",
|
||||
"This <a href=\"https://github.com/ultralytics/yolov5\">YOLOv5</a> 🚀 notebook by <a href=\"https://ultralytics.com\">Ultralytics</a> presents simple train, validate and predict examples to help start your AI adventure.<br>We hope that the resources in this notebook will help you get the most out of YOLOv5. Please browse the YOLOv5 <a href=\"https://docs.ultralytics.com/yolov5\">Docs</a> for details, raise an issue on <a href=\"https://github.com/ultralytics/yolov5\">GitHub</a> for support, and join our <a href=\"https://ultralytics.com/discord\">Discord</a> community for questions and discussions!\n",
|
||||
"\n",
|
||||
"</div>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "7mGmQbAO5pQb"
|
||||
},
|
||||
"source": [
|
||||
"# Setup\n",
|
||||
"\n",
|
||||
"Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"id": "wbvMlHd_QwMG",
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"outputId": "e8225db4-e61d-4640-8b1f-8bfce3331cea"
|
||||
},
|
||||
"source": [
|
||||
"!git clone https://github.com/ultralytics/yolov5 # clone\n",
|
||||
"%cd yolov5\n",
|
||||
"%pip install -qr requirements.txt comet_ml # install\n",
|
||||
"\n",
|
||||
"import torch\n",
|
||||
"import utils\n",
|
||||
"display = utils.notebook_init() # checks"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stderr",
|
||||
"text": [
|
||||
"YOLOv5 🚀 v7.0-136-g71244ae Python-3.9.16 torch-2.0.0+cu118 CUDA:0 (Tesla T4, 15102MiB)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"Setup complete ✅ (2 CPUs, 12.7 GB RAM, 23.3/166.8 GB disk)\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "4JnkELT0cIJg"
|
||||
},
|
||||
"source": [
|
||||
"# 1. Detect\n",
|
||||
"\n",
|
||||
"`detect.py` runs YOLOv5 inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/detect`. Example inference sources are:\n",
|
||||
"\n",
|
||||
"```shell\n",
|
||||
"python detect.py --source 0 # webcam\n",
|
||||
" img.jpg # image\n",
|
||||
" vid.mp4 # video\n",
|
||||
" screen # screenshot\n",
|
||||
" path/ # directory\n",
|
||||
" 'path/*.jpg' # glob\n",
|
||||
" 'https://youtu.be/LNwODJXcvt4' # YouTube\n",
|
||||
" 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"id": "zR9ZbuQCH7FX",
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"outputId": "284ef04b-1596-412f-88f6-948828dd2b49"
|
||||
},
|
||||
"source": [
|
||||
"!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n",
|
||||
"# display.Image(filename='runs/detect/exp/zidane.jpg', width=600)"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1\n",
|
||||
"YOLOv5 🚀 v7.0-136-g71244ae Python-3.9.16 torch-2.0.0+cu118 CUDA:0 (Tesla T4, 15102MiB)\n",
|
||||
"\n",
|
||||
"Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt to yolov5s.pt...\n",
|
||||
"100% 14.1M/14.1M [00:00<00:00, 24.5MB/s]\n",
|
||||
"\n",
|
||||
"Fusing layers... \n",
|
||||
"YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
|
||||
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 41.5ms\n",
|
||||
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, 60.0ms\n",
|
||||
"Speed: 0.5ms pre-process, 50.8ms inference, 37.7ms NMS per image at shape (1, 3, 640, 640)\n",
|
||||
"Results saved to \u001b[1mruns/detect/exp\u001b[0m\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "hkAzDWJ7cWTr"
|
||||
},
|
||||
"source": [
|
||||
" \n",
|
||||
"<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/127574988-6a558aa1-d268-44b9-bf6b-62d4c605cc72.jpg\" width=\"600\">"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "0eq1SMWl6Sfn"
|
||||
},
|
||||
"source": [
|
||||
"# 2. Validate\n",
|
||||
"Validate a model's accuracy on the [COCO](https://cocodataset.org/#home) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"id": "WQPtK1QYVaD_",
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"outputId": "cf7d52f0-281c-4c96-a488-79f5908f8426"
|
||||
},
|
||||
"source": [
|
||||
"# Download COCO val\n",
|
||||
"torch.hub.download_url_to_file('https://github.com/ultralytics/assets/releases/download/v0.0.0/coco2017val.zip', 'tmp.zip') # download (780M - 5000 images)\n",
|
||||
"!unzip -q tmp.zip -d ../datasets && rm tmp.zip # unzip"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stderr",
|
||||
"text": [
|
||||
"100%|██████████| 780M/780M [00:12<00:00, 66.6MB/s]\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"id": "X58w8JLpMnjH",
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"outputId": "3e234e05-ee8b-4ad1-b1a4-f6a55d5e4f3d"
|
||||
},
|
||||
"source": [
|
||||
"# Validate YOLOv5s on COCO val\n",
|
||||
"!python val.py --weights yolov5s.pt --data coco.yaml --img 640 --half"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5s.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False\n",
|
||||
"YOLOv5 🚀 v7.0-136-g71244ae Python-3.9.16 torch-2.0.0+cu118 CUDA:0 (Tesla T4, 15102MiB)\n",
|
||||
"\n",
|
||||
"Fusing layers... \n",
|
||||
"YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
|
||||
"\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco/val2017... 4952 images, 48 backgrounds, 0 corrupt: 100% 5000/5000 [00:02<00:00, 2024.59it/s]\n",
|
||||
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
|
||||
" Class Images Instances P R mAP50 mAP50-95: 100% 157/157 [01:25<00:00, 1.84it/s]\n",
|
||||
" all 5000 36335 0.671 0.519 0.566 0.371\n",
|
||||
"Speed: 0.1ms pre-process, 3.1ms inference, 2.3ms NMS per image at shape (32, 3, 640, 640)\n",
|
||||
"\n",
|
||||
"Evaluating pycocotools mAP... saving runs/val/exp/yolov5s_predictions.json...\n",
|
||||
"loading annotations into memory...\n",
|
||||
"Done (t=0.43s)\n",
|
||||
"creating index...\n",
|
||||
"index created!\n",
|
||||
"Loading and preparing results...\n",
|
||||
"DONE (t=5.32s)\n",
|
||||
"creating index...\n",
|
||||
"index created!\n",
|
||||
"Running per image evaluation...\n",
|
||||
"Evaluate annotation type *bbox*\n",
|
||||
"DONE (t=78.89s).\n",
|
||||
"Accumulating evaluation results...\n",
|
||||
"DONE (t=14.51s).\n",
|
||||
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.374\n",
|
||||
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.572\n",
|
||||
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.402\n",
|
||||
" Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.211\n",
|
||||
" Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.423\n",
|
||||
" Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.489\n",
|
||||
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.311\n",
|
||||
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.516\n",
|
||||
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.566\n",
|
||||
" Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.378\n",
|
||||
" Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.625\n",
|
||||
" Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.722\n",
|
||||
"Results saved to \u001b[1mruns/val/exp\u001b[0m\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "ZY2VXXXu74w5"
|
||||
},
|
||||
"source": [
|
||||
"# 3. Train\n",
|
||||
"\n",
|
||||
"<p align=\"\"><a href=\"https://ultralytics.com/hub\"><img width=\"1000\" src=\"https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png\"/></a></p>\n",
|
||||
"Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
|
||||
"<br><br>\n",
|
||||
"\n",
|
||||
"Train a YOLOv5s model on the [COCO128](https://www.kaggle.com/datasets/ultralytics/coco128) dataset with `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`.\n",
|
||||
"\n",
|
||||
"- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
|
||||
"automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
|
||||
"- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
|
||||
"- **Training Results** are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc.\n",
|
||||
"<br>\n",
|
||||
"\n",
|
||||
"A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n",
|
||||
"\n",
|
||||
"## Label a dataset on Roboflow (optional)\n",
|
||||
"\n",
|
||||
"[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"#@title Select YOLOv5 🚀 logger {run: 'auto'}\n",
|
||||
"logger = 'Comet' #@param ['Comet', 'ClearML', 'TensorBoard']\n",
|
||||
"\n",
|
||||
"if logger == 'Comet':\n",
|
||||
" %pip install -q comet_ml\n",
|
||||
" import comet_ml; comet_ml.init()\n",
|
||||
"elif logger == 'ClearML':\n",
|
||||
" %pip install -q clearml\n",
|
||||
" import clearml; clearml.browser_login()\n",
|
||||
"elif logger == 'TensorBoard':\n",
|
||||
" %load_ext tensorboard\n",
|
||||
" %tensorboard --logdir runs/train"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "i3oKtE4g-aNn"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"id": "1NcFxRcFdJ_O",
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"outputId": "bbeeea2b-04fc-4185-aa64-258690495b5a"
|
||||
},
|
||||
"source": [
|
||||
"# Train YOLOv5s on COCO128 for 3 epochs\n",
|
||||
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"2023-04-09 14:11:38.063605: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
|
||||
"To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
|
||||
"2023-04-09 14:11:39.026661: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
|
||||
"\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
|
||||
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
|
||||
"YOLOv5 🚀 v7.0-136-g71244ae Python-3.9.16 torch-2.0.0+cu118 CUDA:0 (Tesla T4, 15102MiB)\n",
|
||||
"\n",
|
||||
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
|
||||
"\u001b[34m\u001b[1mClearML: \u001b[0mrun 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML\n",
|
||||
"\u001b[34m\u001b[1mComet: \u001b[0mrun 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet\n",
|
||||
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
|
||||
"\n",
|
||||
"Dataset not found ⚠️, missing paths ['/content/datasets/coco128/images/train2017']\n",
|
||||
"Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128.zip to coco128.zip...\n",
|
||||
"100% 6.66M/6.66M [00:00<00:00, 75.6MB/s]\n",
|
||||
"Dataset download success ✅ (0.6s), saved to \u001b[1m/content/datasets\u001b[0m\n",
|
||||
"\n",
|
||||
" from n params module arguments \n",
|
||||
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
|
||||
" 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
|
||||
" 2 -1 1 18816 models.common.C3 [64, 64, 1] \n",
|
||||
" 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n",
|
||||
" 4 -1 2 115712 models.common.C3 [128, 128, 2] \n",
|
||||
" 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n",
|
||||
" 6 -1 3 625152 models.common.C3 [256, 256, 3] \n",
|
||||
" 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n",
|
||||
" 8 -1 1 1182720 models.common.C3 [512, 512, 1] \n",
|
||||
" 9 -1 1 656896 models.common.SPPF [512, 512, 5] \n",
|
||||
" 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n",
|
||||
" 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
|
||||
" 12 [-1, 6] 1 0 models.common.Concat [1] \n",
|
||||
" 13 -1 1 361984 models.common.C3 [512, 256, 1, False] \n",
|
||||
" 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n",
|
||||
" 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
|
||||
" 16 [-1, 4] 1 0 models.common.Concat [1] \n",
|
||||
" 17 -1 1 90880 models.common.C3 [256, 128, 1, False] \n",
|
||||
" 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n",
|
||||
" 19 [-1, 14] 1 0 models.common.Concat [1] \n",
|
||||
" 20 -1 1 296448 models.common.C3 [256, 256, 1, False] \n",
|
||||
" 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n",
|
||||
" 22 [-1, 10] 1 0 models.common.Concat [1] \n",
|
||||
" 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
|
||||
" 24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
|
||||
"Model summary: 214 layers, 7235389 parameters, 7235389 gradients, 16.6 GFLOPs\n",
|
||||
"\n",
|
||||
"Transferred 349/349 items from yolov5s.pt\n",
|
||||
"\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n",
|
||||
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias\n",
|
||||
"\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
|
||||
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco128/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00, 1709.36it/s]\n",
|
||||
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128/labels/train2017.cache\n",
|
||||
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 264.35it/s]\n",
|
||||
"\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco128/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
|
||||
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 107.05it/s]\n",
|
||||
"\n",
|
||||
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
|
||||
"Plotting labels to runs/train/exp/labels.jpg... \n",
|
||||
"Image sizes 640 train, 640 val\n",
|
||||
"Using 2 dataloader workers\n",
|
||||
"Logging results to \u001b[1mruns/train/exp\u001b[0m\n",
|
||||
"Starting training for 3 epochs...\n",
|
||||
"\n",
|
||||
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
||||
" 0/2 3.91G 0.04618 0.07209 0.01703 232 640: 100% 8/8 [00:09<00:00, 1.17s/it]\n",
|
||||
" Class Images Instances P R mAP50 mAP50-95: 100% 4/4 [00:01<00:00, 2.01it/s]\n",
|
||||
" all 128 929 0.667 0.602 0.68 0.45\n",
|
||||
"\n",
|
||||
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
||||
" 1/2 4.76G 0.04622 0.06891 0.01817 201 640: 100% 8/8 [00:02<00:00, 3.78it/s]\n",
|
||||
" Class Images Instances P R mAP50 mAP50-95: 100% 4/4 [00:01<00:00, 2.16it/s]\n",
|
||||
" all 128 929 0.709 0.645 0.722 0.478\n",
|
||||
"\n",
|
||||
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
||||
" 2/2 4.76G 0.0436 0.0647 0.01698 227 640: 100% 8/8 [00:01<00:00, 4.19it/s]\n",
|
||||
" Class Images Instances P R mAP50 mAP50-95: 100% 4/4 [00:01<00:00, 2.95it/s]\n",
|
||||
" all 128 929 0.761 0.647 0.735 0.49\n",
|
||||
"\n",
|
||||
"3 epochs completed in 0.006 hours.\n",
|
||||
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.8MB\n",
|
||||
"Optimizer stripped from runs/train/exp/weights/best.pt, 14.8MB\n",
|
||||
"\n",
|
||||
"Validating runs/train/exp/weights/best.pt...\n",
|
||||
"Fusing layers... \n",
|
||||
"Model summary: 157 layers, 7225885 parameters, 0 gradients, 16.4 GFLOPs\n",
|
||||
" Class Images Instances P R mAP50 mAP50-95: 100% 4/4 [00:06<00:00, 1.56s/it]\n",
|
||||
" all 128 929 0.759 0.646 0.734 0.49\n",
|
||||
" person 128 254 0.857 0.706 0.805 0.525\n",
|
||||
" bicycle 128 6 0.773 0.577 0.725 0.414\n",
|
||||
" car 128 46 0.664 0.435 0.551 0.24\n",
|
||||
" motorcycle 128 5 0.587 0.8 0.837 0.635\n",
|
||||
" airplane 128 6 1 0.989 0.995 0.715\n",
|
||||
" bus 128 7 0.635 0.714 0.753 0.651\n",
|
||||
" train 128 3 0.686 0.333 0.72 0.504\n",
|
||||
" truck 128 12 0.604 0.333 0.472 0.259\n",
|
||||
" boat 128 6 0.938 0.333 0.449 0.177\n",
|
||||
" traffic light 128 14 0.778 0.255 0.401 0.217\n",
|
||||
" stop sign 128 2 0.826 1 0.995 0.895\n",
|
||||
" bench 128 9 0.711 0.556 0.661 0.313\n",
|
||||
" bird 128 16 0.962 1 0.995 0.642\n",
|
||||
" cat 128 4 0.868 1 0.995 0.754\n",
|
||||
" dog 128 9 1 0.652 0.899 0.651\n",
|
||||
" horse 128 2 0.853 1 0.995 0.622\n",
|
||||
" elephant 128 17 0.909 0.882 0.934 0.698\n",
|
||||
" bear 128 1 0.696 1 0.995 0.995\n",
|
||||
" zebra 128 4 0.855 1 0.995 0.905\n",
|
||||
" giraffe 128 9 0.788 0.828 0.912 0.701\n",
|
||||
" backpack 128 6 0.835 0.5 0.738 0.311\n",
|
||||
" umbrella 128 18 0.785 0.814 0.859 0.48\n",
|
||||
" handbag 128 19 0.759 0.263 0.366 0.205\n",
|
||||
" tie 128 7 0.983 0.714 0.77 0.492\n",
|
||||
" suitcase 128 4 0.656 1 0.945 0.631\n",
|
||||
" frisbee 128 5 0.721 0.8 0.759 0.724\n",
|
||||
" skis 128 1 0.737 1 0.995 0.3\n",
|
||||
" snowboard 128 7 0.829 0.696 0.83 0.537\n",
|
||||
" sports ball 128 6 0.637 0.667 0.602 0.311\n",
|
||||
" kite 128 10 0.636 0.6 0.599 0.226\n",
|
||||
" baseball bat 128 4 0.501 0.25 0.468 0.205\n",
|
||||
" baseball glove 128 7 0.483 0.429 0.465 0.292\n",
|
||||
" skateboard 128 5 0.932 0.6 0.687 0.493\n",
|
||||
" tennis racket 128 7 0.77 0.429 0.547 0.332\n",
|
||||
" bottle 128 18 0.577 0.379 0.554 0.276\n",
|
||||
" wine glass 128 16 0.704 0.875 0.89 0.51\n",
|
||||
" cup 128 36 0.841 0.667 0.837 0.533\n",
|
||||
" fork 128 6 0.992 0.333 0.45 0.315\n",
|
||||
" knife 128 16 0.768 0.688 0.695 0.403\n",
|
||||
" spoon 128 22 0.838 0.47 0.639 0.384\n",
|
||||
" bowl 128 28 0.764 0.58 0.716 0.513\n",
|
||||
" banana 128 1 0.902 1 0.995 0.301\n",
|
||||
" sandwich 128 2 1 0 0.359 0.326\n",
|
||||
" orange 128 4 0.722 0.75 0.912 0.581\n",
|
||||
" broccoli 128 11 0.547 0.364 0.432 0.317\n",
|
||||
" carrot 128 24 0.619 0.625 0.724 0.495\n",
|
||||
" hot dog 128 2 0.409 1 0.828 0.762\n",
|
||||
" pizza 128 5 0.833 0.995 0.962 0.727\n",
|
||||
" donut 128 14 0.631 1 0.96 0.839\n",
|
||||
" cake 128 4 0.87 1 0.995 0.83\n",
|
||||
" chair 128 35 0.583 0.6 0.608 0.317\n",
|
||||
" couch 128 6 0.907 0.667 0.815 0.544\n",
|
||||
" potted plant 128 14 0.739 0.786 0.823 0.48\n",
|
||||
" bed 128 3 0.985 0.333 0.83 0.441\n",
|
||||
" dining table 128 13 0.821 0.357 0.578 0.342\n",
|
||||
" toilet 128 2 1 0.988 0.995 0.846\n",
|
||||
" tv 128 2 0.57 1 0.995 0.796\n",
|
||||
" laptop 128 3 1 0 0.593 0.312\n",
|
||||
" mouse 128 2 1 0 0.089 0.0445\n",
|
||||
" remote 128 8 1 0.624 0.634 0.538\n",
|
||||
" cell phone 128 8 0.622 0.417 0.421 0.187\n",
|
||||
" microwave 128 3 0.711 1 0.995 0.766\n",
|
||||
" oven 128 5 0.329 0.4 0.43 0.282\n",
|
||||
" sink 128 6 0.437 0.333 0.338 0.265\n",
|
||||
" refrigerator 128 5 0.567 0.8 0.799 0.536\n",
|
||||
" book 128 29 0.597 0.257 0.349 0.154\n",
|
||||
" clock 128 9 0.765 0.889 0.932 0.736\n",
|
||||
" vase 128 2 0.33 1 0.995 0.895\n",
|
||||
" scissors 128 1 1 0 0.497 0.0498\n",
|
||||
" teddy bear 128 21 0.856 0.569 0.841 0.547\n",
|
||||
" toothbrush 128 5 0.8 1 0.928 0.574\n",
|
||||
"Results saved to \u001b[1mruns/train/exp\u001b[0m\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "15glLzbQx5u0"
|
||||
},
|
||||
"source": [
|
||||
"# 4. Visualize"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## Comet Logging and Visualization 🌟 NEW\n",
|
||||
"\n",
|
||||
"[Comet](https://www.comet.com/site/lp/yolov5-with-comet/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!\n",
|
||||
"\n",
|
||||
"Getting started is easy:\n",
|
||||
"```shell\n",
|
||||
"pip install comet_ml # 1. install\n",
|
||||
"export COMET_API_KEY=<Your API Key> # 2. paste API key\n",
|
||||
"python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt # 3. train\n",
|
||||
"```\n",
|
||||
"To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n",
|
||||
"[](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n",
|
||||
"\n",
|
||||
"<a href=\"https://bit.ly/yolov5-readme-comet2\">\n",
|
||||
"<img alt=\"Comet Dashboard\" src=\"https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png\" width=\"1280\"/></a>"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "nWOsI5wJR1o3"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## ClearML Logging and Automation 🌟 NEW\n",
|
||||
"\n",
|
||||
"[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n",
|
||||
"\n",
|
||||
"- `pip install clearml`\n",
|
||||
"- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n",
|
||||
"\n",
|
||||
"You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n",
|
||||
"\n",
|
||||
"You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration) for details!\n",
|
||||
"\n",
|
||||
"<a href=\"https://cutt.ly/yolov5-notebook-clearml\">\n",
|
||||
"<img alt=\"ClearML Experiment Management UI\" src=\"https://github.com/thepycoder/clearml_screenshots/raw/main/scalars.jpg\" width=\"1280\"/></a>"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "Lay2WsTjNJzP"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "-WPvRbS5Swl6"
|
||||
},
|
||||
"source": [
|
||||
"## Local Logging\n",
|
||||
"\n",
|
||||
"Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n",
|
||||
"\n",
|
||||
"This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices.\n",
|
||||
"\n",
|
||||
"<img alt=\"Local logging results\" src=\"https://user-images.githubusercontent.com/26833433/183222430-e1abd1b7-782c-4cde-b04d-ad52926bf818.jpg\" width=\"1280\"/>\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "Zelyeqbyt3GD"
|
||||
},
|
||||
"source": [
|
||||
"# Environments\n",
|
||||
"\n",
|
||||
"YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
|
||||
"\n",
|
||||
"- **Notebooks** with free GPU: <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a> <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/models/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
|
||||
"- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)\n",
|
||||
"- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)\n",
|
||||
"- **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "6Qu7Iesl0p54"
|
||||
},
|
||||
"source": [
|
||||
"# Status\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "IEijrePND_2I"
|
||||
},
|
||||
"source": [
|
||||
"# Appendix\n",
|
||||
"\n",
|
||||
"Additional content below."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"id": "GMusP4OAxFu6"
|
||||
},
|
||||
"source": [
|
||||
"# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n",
|
||||
"import torch\n",
|
||||
"\n",
|
||||
"model = torch.hub.load('ultralytics/yolov5', 'yolov5s', force_reload=True, trust_repo=True) # or yolov5n - yolov5x6 or custom\n",
|
||||
"im = 'https://ultralytics.com/images/zidane.jpg' # file, Path, PIL.Image, OpenCV, nparray, list\n",
|
||||
"results = model(im) # inference\n",
|
||||
"results.print() # or .show(), .save(), .crop(), .pandas(), etc."
|
||||
],
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
}
|
||||
]
|
||||
}
|
||||
@ -1,97 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""utils/initialization."""
|
||||
|
||||
import contextlib
|
||||
import platform
|
||||
import threading
|
||||
|
||||
|
||||
def emojis(str=""):
|
||||
"""Returns an emoji-safe version of a string, stripped of emojis on Windows platforms."""
|
||||
return str.encode().decode("ascii", "ignore") if platform.system() == "Windows" else str
|
||||
|
||||
|
||||
class TryExcept(contextlib.ContextDecorator):
|
||||
"""A context manager and decorator for error handling that prints an optional message with emojis on exception."""
|
||||
|
||||
def __init__(self, msg=""):
|
||||
"""Initializes TryExcept with an optional message, used as a decorator or context manager for error handling."""
|
||||
self.msg = msg
|
||||
|
||||
def __enter__(self):
|
||||
"""Enter the runtime context related to this object for error handling with an optional message."""
|
||||
pass
|
||||
|
||||
def __exit__(self, exc_type, value, traceback):
|
||||
"""Context manager exit method that prints an error message with emojis if an exception occurred, always returns
|
||||
True.
|
||||
"""
|
||||
if value:
|
||||
print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}"))
|
||||
return True
|
||||
|
||||
|
||||
def threaded(func):
|
||||
"""Decorator @threaded to run a function in a separate thread, returning the thread instance."""
|
||||
|
||||
def wrapper(*args, **kwargs):
|
||||
"""Runs the decorated function in a separate daemon thread and returns the thread instance."""
|
||||
thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
|
||||
thread.start()
|
||||
return thread
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def join_threads(verbose=False):
|
||||
"""
|
||||
Joins all daemon threads, optionally printing their names if verbose is True.
|
||||
|
||||
Example: atexit.register(lambda: join_threads())
|
||||
"""
|
||||
main_thread = threading.current_thread()
|
||||
for t in threading.enumerate():
|
||||
if t is not main_thread:
|
||||
if verbose:
|
||||
print(f"Joining thread {t.name}")
|
||||
t.join()
|
||||
|
||||
|
||||
def notebook_init(verbose=True):
|
||||
"""Initializes notebook environment by checking requirements, cleaning up, and displaying system info."""
|
||||
print("Checking setup...")
|
||||
|
||||
import os
|
||||
import shutil
|
||||
|
||||
from ultralytics.utils.checks import check_requirements
|
||||
|
||||
from utils.general import check_font, is_colab
|
||||
from utils.torch_utils import select_device # imports
|
||||
|
||||
check_font()
|
||||
|
||||
import psutil
|
||||
|
||||
if check_requirements("wandb", install=False):
|
||||
os.system("pip uninstall -y wandb") # eliminate unexpected account creation prompt with infinite hang
|
||||
if is_colab():
|
||||
shutil.rmtree("/content/sample_data", ignore_errors=True) # remove colab /sample_data directory
|
||||
|
||||
# System info
|
||||
display = None
|
||||
if verbose:
|
||||
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
||||
ram = psutil.virtual_memory().total
|
||||
total, used, free = shutil.disk_usage("/")
|
||||
with contextlib.suppress(Exception): # clear display if ipython is installed
|
||||
from IPython import display
|
||||
|
||||
display.clear_output()
|
||||
s = f"({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)"
|
||||
else:
|
||||
s = ""
|
||||
|
||||
select_device(newline=False)
|
||||
print(emojis(f"Setup complete ✅ {s}"))
|
||||
return display
|
||||
@ -1,134 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""Activation functions."""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class SiLU(nn.Module):
|
||||
"""Applies the Sigmoid-weighted Linear Unit (SiLU) activation function, also known as Swish."""
|
||||
|
||||
@staticmethod
|
||||
def forward(x):
|
||||
"""
|
||||
Applies the Sigmoid-weighted Linear Unit (SiLU) activation function.
|
||||
|
||||
https://arxiv.org/pdf/1606.08415.pdf.
|
||||
"""
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
class Hardswish(nn.Module):
|
||||
"""Applies the Hardswish activation function, which is efficient for mobile and embedded devices."""
|
||||
|
||||
@staticmethod
|
||||
def forward(x):
|
||||
"""
|
||||
Applies the Hardswish activation function, compatible with TorchScript, CoreML, and ONNX.
|
||||
|
||||
Equivalent to x * F.hardsigmoid(x)
|
||||
"""
|
||||
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX
|
||||
|
||||
|
||||
class Mish(nn.Module):
|
||||
"""Mish activation https://github.com/digantamisra98/Mish."""
|
||||
|
||||
@staticmethod
|
||||
def forward(x):
|
||||
"""Applies the Mish activation function, a smooth alternative to ReLU."""
|
||||
return x * F.softplus(x).tanh()
|
||||
|
||||
|
||||
class MemoryEfficientMish(nn.Module):
|
||||
"""Efficiently applies the Mish activation function using custom autograd for reduced memory usage."""
|
||||
|
||||
class F(torch.autograd.Function):
|
||||
"""Implements a custom autograd function for memory-efficient Mish activation."""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, x):
|
||||
"""Applies the Mish activation function, a smooth ReLU alternative, to the input tensor `x`."""
|
||||
ctx.save_for_backward(x)
|
||||
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
"""Computes the gradient of the Mish activation function with respect to input `x`."""
|
||||
x = ctx.saved_tensors[0]
|
||||
sx = torch.sigmoid(x)
|
||||
fx = F.softplus(x).tanh()
|
||||
return grad_output * (fx + x * sx * (1 - fx * fx))
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies the Mish activation function to the input tensor `x`."""
|
||||
return self.F.apply(x)
|
||||
|
||||
|
||||
class FReLU(nn.Module):
|
||||
"""FReLU activation https://arxiv.org/abs/2007.11824."""
|
||||
|
||||
def __init__(self, c1, k=3): # ch_in, kernel
|
||||
"""Initializes FReLU activation with channel `c1` and kernel size `k`."""
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
|
||||
self.bn = nn.BatchNorm2d(c1)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Applies FReLU activation with max operation between input and BN-convolved input.
|
||||
|
||||
https://arxiv.org/abs/2007.11824
|
||||
"""
|
||||
return torch.max(x, self.bn(self.conv(x)))
|
||||
|
||||
|
||||
class AconC(nn.Module):
|
||||
"""
|
||||
ACON activation (activate or not) function.
|
||||
|
||||
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
|
||||
See "Activate or Not: Learning Customized Activation" https://arxiv.org/pdf/2009.04759.pdf.
|
||||
"""
|
||||
|
||||
def __init__(self, c1):
|
||||
"""Initializes AconC with learnable parameters p1, p2, and beta for channel-wise activation control."""
|
||||
super().__init__()
|
||||
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
||||
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
||||
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies AconC activation function with learnable parameters for channel-wise control on input tensor x."""
|
||||
dpx = (self.p1 - self.p2) * x
|
||||
return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
|
||||
|
||||
|
||||
class MetaAconC(nn.Module):
|
||||
"""
|
||||
ACON activation (activate or not) function.
|
||||
|
||||
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
|
||||
See "Activate or Not: Learning Customized Activation" https://arxiv.org/pdf/2009.04759.pdf.
|
||||
"""
|
||||
|
||||
def __init__(self, c1, k=1, s=1, r=16):
|
||||
"""Initializes MetaAconC with params: channel_in (c1), kernel size (k=1), stride (s=1), reduction (r=16)."""
|
||||
super().__init__()
|
||||
c2 = max(r, c1 // r)
|
||||
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
||||
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
||||
self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
|
||||
self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
|
||||
# self.bn1 = nn.BatchNorm2d(c2)
|
||||
# self.bn2 = nn.BatchNorm2d(c1)
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies a forward pass transforming input `x` using learnable parameters and sigmoid activation."""
|
||||
y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
|
||||
# batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
|
||||
# beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
|
||||
beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
|
||||
dpx = (self.p1 - self.p2) * x
|
||||
return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
|
||||
@ -1,448 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""Image augmentation functions."""
|
||||
|
||||
import math
|
||||
import random
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
import torchvision.transforms.functional as TF
|
||||
|
||||
from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box, xywhn2xyxy
|
||||
from utils.metrics import bbox_ioa
|
||||
|
||||
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean
|
||||
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation
|
||||
|
||||
|
||||
class Albumentations:
|
||||
"""Provides optional data augmentation for YOLOv5 using Albumentations library if installed."""
|
||||
|
||||
def __init__(self, size=640):
|
||||
"""Initializes Albumentations class for optional data augmentation in YOLOv5 with specified input size."""
|
||||
self.transform = None
|
||||
prefix = colorstr("albumentations: ")
|
||||
try:
|
||||
import albumentations as A
|
||||
|
||||
check_version(A.__version__, "1.0.3", hard=True) # version requirement
|
||||
|
||||
T = [
|
||||
A.RandomResizedCrop(height=size, width=size, scale=(0.8, 1.0), ratio=(0.9, 1.11), p=0.0),
|
||||
A.Blur(p=0.01),
|
||||
A.MedianBlur(p=0.01),
|
||||
A.ToGray(p=0.01),
|
||||
A.CLAHE(p=0.01),
|
||||
A.RandomBrightnessContrast(p=0.0),
|
||||
A.RandomGamma(p=0.0),
|
||||
A.ImageCompression(quality_lower=75, p=0.0),
|
||||
] # transforms
|
||||
self.transform = A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"]))
|
||||
|
||||
LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p))
|
||||
except ImportError: # package not installed, skip
|
||||
pass
|
||||
except Exception as e:
|
||||
LOGGER.info(f"{prefix}{e}")
|
||||
|
||||
def __call__(self, im, labels, p=1.0):
|
||||
"""Applies transformations to an image and labels with probability `p`, returning updated image and labels."""
|
||||
if self.transform and random.random() < p:
|
||||
new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
|
||||
im, labels = new["image"], np.array([[c, *b] for c, b in zip(new["class_labels"], new["bboxes"])])
|
||||
return im, labels
|
||||
|
||||
|
||||
def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False):
|
||||
"""
|
||||
Applies ImageNet normalization to RGB images in BCHW format, modifying them in-place if specified.
|
||||
|
||||
Example: y = (x - mean) / std
|
||||
"""
|
||||
return TF.normalize(x, mean, std, inplace=inplace)
|
||||
|
||||
|
||||
def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD):
|
||||
"""Reverses ImageNet normalization for BCHW format RGB images by applying `x = x * std + mean`."""
|
||||
for i in range(3):
|
||||
x[:, i] = x[:, i] * std[i] + mean[i]
|
||||
return x
|
||||
|
||||
|
||||
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
|
||||
"""Applies HSV color-space augmentation to an image with random gains for hue, saturation, and value."""
|
||||
if hgain or sgain or vgain:
|
||||
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
||||
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
|
||||
dtype = im.dtype # uint8
|
||||
|
||||
x = np.arange(0, 256, dtype=r.dtype)
|
||||
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
||||
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
||||
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
||||
|
||||
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
|
||||
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
|
||||
|
||||
|
||||
def hist_equalize(im, clahe=True, bgr=False):
|
||||
"""Equalizes image histogram, with optional CLAHE, for BGR or RGB image with shape (n,m,3) and range 0-255."""
|
||||
yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
|
||||
if clahe:
|
||||
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
||||
yuv[:, :, 0] = c.apply(yuv[:, :, 0])
|
||||
else:
|
||||
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
|
||||
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
|
||||
|
||||
|
||||
def replicate(im, labels):
|
||||
"""
|
||||
Replicates half of the smallest object labels in an image for data augmentation.
|
||||
|
||||
Returns augmented image and labels.
|
||||
"""
|
||||
h, w = im.shape[:2]
|
||||
boxes = labels[:, 1:].astype(int)
|
||||
x1, y1, x2, y2 = boxes.T
|
||||
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
|
||||
for i in s.argsort()[: round(s.size * 0.5)]: # smallest indices
|
||||
x1b, y1b, x2b, y2b = boxes[i]
|
||||
bh, bw = y2b - y1b, x2b - x1b
|
||||
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
|
||||
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
|
||||
im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax]
|
||||
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
|
||||
|
||||
return im, labels
|
||||
|
||||
|
||||
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
||||
"""Resizes and pads image to new_shape with stride-multiple constraints, returns resized image, ratio, padding."""
|
||||
shape = im.shape[:2] # current shape [height, width]
|
||||
if isinstance(new_shape, int):
|
||||
new_shape = (new_shape, new_shape)
|
||||
|
||||
# Scale ratio (new / old)
|
||||
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||||
if not scaleup: # only scale down, do not scale up (for better val mAP)
|
||||
r = min(r, 1.0)
|
||||
|
||||
# Compute padding
|
||||
ratio = r, r # width, height ratios
|
||||
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||||
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
||||
if auto: # minimum rectangle
|
||||
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
||||
elif scaleFill: # stretch
|
||||
dw, dh = 0.0, 0.0
|
||||
new_unpad = (new_shape[1], new_shape[0])
|
||||
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
||||
|
||||
dw /= 2 # divide padding into 2 sides
|
||||
dh /= 2
|
||||
|
||||
if shape[::-1] != new_unpad: # resize
|
||||
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||||
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||||
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
||||
return im, ratio, (dw, dh)
|
||||
|
||||
|
||||
def random_perspective(
|
||||
im, targets=(), segments=(), degrees=10, translate=0.1, scale=0.1, shear=10, perspective=0.0, border=(0, 0)
|
||||
):
|
||||
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
|
||||
# targets = [cls, xyxy]
|
||||
"""Applies random perspective transformation to an image, modifying the image and corresponding labels."""
|
||||
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
|
||||
width = im.shape[1] + border[1] * 2
|
||||
|
||||
# Center
|
||||
C = np.eye(3)
|
||||
C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
|
||||
C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
|
||||
|
||||
# Perspective
|
||||
P = np.eye(3)
|
||||
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
||||
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
||||
|
||||
# Rotation and Scale
|
||||
R = np.eye(3)
|
||||
a = random.uniform(-degrees, degrees)
|
||||
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
||||
s = random.uniform(1 - scale, 1 + scale)
|
||||
# s = 2 ** random.uniform(-scale, scale)
|
||||
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
||||
|
||||
# Shear
|
||||
S = np.eye(3)
|
||||
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
||||
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
||||
|
||||
# Translation
|
||||
T = np.eye(3)
|
||||
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
||||
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
||||
|
||||
# Combined rotation matrix
|
||||
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
||||
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
||||
if perspective:
|
||||
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
|
||||
else: # affine
|
||||
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
||||
|
||||
# Visualize
|
||||
# import matplotlib.pyplot as plt
|
||||
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
||||
# ax[0].imshow(im[:, :, ::-1]) # base
|
||||
# ax[1].imshow(im2[:, :, ::-1]) # warped
|
||||
|
||||
# Transform label coordinates
|
||||
n = len(targets)
|
||||
if n:
|
||||
use_segments = any(x.any() for x in segments) and len(segments) == n
|
||||
new = np.zeros((n, 4))
|
||||
if use_segments: # warp segments
|
||||
segments = resample_segments(segments) # upsample
|
||||
for i, segment in enumerate(segments):
|
||||
xy = np.ones((len(segment), 3))
|
||||
xy[:, :2] = segment
|
||||
xy = xy @ M.T # transform
|
||||
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
|
||||
|
||||
# clip
|
||||
new[i] = segment2box(xy, width, height)
|
||||
|
||||
else: # warp boxes
|
||||
xy = np.ones((n * 4, 3))
|
||||
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
||||
xy = xy @ M.T # transform
|
||||
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
|
||||
|
||||
# create new boxes
|
||||
x = xy[:, [0, 2, 4, 6]]
|
||||
y = xy[:, [1, 3, 5, 7]]
|
||||
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
||||
|
||||
# clip
|
||||
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
|
||||
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
|
||||
|
||||
# filter candidates
|
||||
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
|
||||
targets = targets[i]
|
||||
targets[:, 1:5] = new[i]
|
||||
|
||||
return im, targets
|
||||
|
||||
|
||||
def copy_paste(im, labels, segments, p=0.5):
|
||||
"""
|
||||
Applies Copy-Paste augmentation by flipping and merging segments and labels on an image.
|
||||
|
||||
Details at https://arxiv.org/abs/2012.07177.
|
||||
"""
|
||||
n = len(segments)
|
||||
if p and n:
|
||||
h, w, c = im.shape # height, width, channels
|
||||
im_new = np.zeros(im.shape, np.uint8)
|
||||
for j in random.sample(range(n), k=round(p * n)):
|
||||
l, s = labels[j], segments[j]
|
||||
box = w - l[3], l[2], w - l[1], l[4]
|
||||
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
||||
if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
|
||||
labels = np.concatenate((labels, [[l[0], *box]]), 0)
|
||||
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
|
||||
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED)
|
||||
|
||||
result = cv2.flip(im, 1) # augment segments (flip left-right)
|
||||
i = cv2.flip(im_new, 1).astype(bool)
|
||||
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
|
||||
|
||||
return im, labels, segments
|
||||
|
||||
|
||||
def cutout(im, labels, p=0.5):
|
||||
"""
|
||||
Applies cutout augmentation to an image with optional label adjustment, using random masks of varying sizes.
|
||||
|
||||
Details at https://arxiv.org/abs/1708.04552.
|
||||
"""
|
||||
if random.random() < p:
|
||||
h, w = im.shape[:2]
|
||||
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
||||
for s in scales:
|
||||
mask_h = random.randint(1, int(h * s)) # create random masks
|
||||
mask_w = random.randint(1, int(w * s))
|
||||
|
||||
# box
|
||||
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
||||
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
||||
xmax = min(w, xmin + mask_w)
|
||||
ymax = min(h, ymin + mask_h)
|
||||
|
||||
# apply random color mask
|
||||
im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
||||
|
||||
# return unobscured labels
|
||||
if len(labels) and s > 0.03:
|
||||
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
||||
ioa = bbox_ioa(box, xywhn2xyxy(labels[:, 1:5], w, h)) # intersection over area
|
||||
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
||||
|
||||
return labels
|
||||
|
||||
|
||||
def mixup(im, labels, im2, labels2):
|
||||
"""
|
||||
Applies MixUp augmentation by blending images and labels.
|
||||
|
||||
See https://arxiv.org/pdf/1710.09412.pdf for details.
|
||||
"""
|
||||
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
||||
im = (im * r + im2 * (1 - r)).astype(np.uint8)
|
||||
labels = np.concatenate((labels, labels2), 0)
|
||||
return im, labels
|
||||
|
||||
|
||||
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):
|
||||
"""
|
||||
Filters bounding box candidates by minimum width-height threshold `wh_thr` (pixels), aspect ratio threshold
|
||||
`ar_thr`, and area ratio threshold `area_thr`.
|
||||
|
||||
box1(4,n) is before augmentation, box2(4,n) is after augmentation.
|
||||
"""
|
||||
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
||||
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
||||
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
|
||||
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
|
||||
|
||||
|
||||
def classify_albumentations(
|
||||
augment=True,
|
||||
size=224,
|
||||
scale=(0.08, 1.0),
|
||||
ratio=(0.75, 1.0 / 0.75), # 0.75, 1.33
|
||||
hflip=0.5,
|
||||
vflip=0.0,
|
||||
jitter=0.4,
|
||||
mean=IMAGENET_MEAN,
|
||||
std=IMAGENET_STD,
|
||||
auto_aug=False,
|
||||
):
|
||||
# YOLOv5 classification Albumentations (optional, only used if package is installed)
|
||||
"""Sets up and returns Albumentations transforms for YOLOv5 classification tasks depending on augmentation
|
||||
settings.
|
||||
"""
|
||||
prefix = colorstr("albumentations: ")
|
||||
try:
|
||||
import albumentations as A
|
||||
from albumentations.pytorch import ToTensorV2
|
||||
|
||||
check_version(A.__version__, "1.0.3", hard=True) # version requirement
|
||||
if augment: # Resize and crop
|
||||
T = [A.RandomResizedCrop(height=size, width=size, scale=scale, ratio=ratio)]
|
||||
if auto_aug:
|
||||
# TODO: implement AugMix, AutoAug & RandAug in albumentation
|
||||
LOGGER.info(f"{prefix}auto augmentations are currently not supported")
|
||||
else:
|
||||
if hflip > 0:
|
||||
T += [A.HorizontalFlip(p=hflip)]
|
||||
if vflip > 0:
|
||||
T += [A.VerticalFlip(p=vflip)]
|
||||
if jitter > 0:
|
||||
color_jitter = (float(jitter),) * 3 # repeat value for brightness, contrast, saturation, 0 hue
|
||||
T += [A.ColorJitter(*color_jitter, 0)]
|
||||
else: # Use fixed crop for eval set (reproducibility)
|
||||
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
|
||||
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor
|
||||
LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p))
|
||||
return A.Compose(T)
|
||||
|
||||
except ImportError: # package not installed, skip
|
||||
LOGGER.warning(f"{prefix}⚠️ not found, install with `pip install albumentations` (recommended)")
|
||||
except Exception as e:
|
||||
LOGGER.info(f"{prefix}{e}")
|
||||
|
||||
|
||||
def classify_transforms(size=224):
|
||||
"""Applies a series of transformations including center crop, ToTensor, and normalization for classification."""
|
||||
assert isinstance(size, int), f"ERROR: classify_transforms size {size} must be integer, not (list, tuple)"
|
||||
# T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
||||
return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
||||
|
||||
|
||||
class LetterBox:
|
||||
"""Resizes and pads images to specified dimensions while maintaining aspect ratio for YOLOv5 preprocessing."""
|
||||
|
||||
def __init__(self, size=(640, 640), auto=False, stride=32):
|
||||
"""Initializes a LetterBox object for YOLOv5 image preprocessing with optional auto sizing and stride
|
||||
adjustment.
|
||||
"""
|
||||
super().__init__()
|
||||
self.h, self.w = (size, size) if isinstance(size, int) else size
|
||||
self.auto = auto # pass max size integer, automatically solve for short side using stride
|
||||
self.stride = stride # used with auto
|
||||
|
||||
def __call__(self, im):
|
||||
"""
|
||||
Resizes and pads input image `im` (HWC format) to specified dimensions, maintaining aspect ratio.
|
||||
|
||||
im = np.array HWC
|
||||
"""
|
||||
imh, imw = im.shape[:2]
|
||||
r = min(self.h / imh, self.w / imw) # ratio of new/old
|
||||
h, w = round(imh * r), round(imw * r) # resized image
|
||||
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w
|
||||
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
|
||||
im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype)
|
||||
im_out[top : top + h, left : left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
|
||||
return im_out
|
||||
|
||||
|
||||
class CenterCrop:
|
||||
"""Applies center crop to an image, resizing it to the specified size while maintaining aspect ratio."""
|
||||
|
||||
def __init__(self, size=640):
|
||||
"""Initializes CenterCrop for image preprocessing, accepting single int or tuple for size, defaults to 640."""
|
||||
super().__init__()
|
||||
self.h, self.w = (size, size) if isinstance(size, int) else size
|
||||
|
||||
def __call__(self, im):
|
||||
"""
|
||||
Applies center crop to the input image and resizes it to a specified size, maintaining aspect ratio.
|
||||
|
||||
im = np.array HWC
|
||||
"""
|
||||
imh, imw = im.shape[:2]
|
||||
m = min(imh, imw) # min dimension
|
||||
top, left = (imh - m) // 2, (imw - m) // 2
|
||||
return cv2.resize(im[top : top + m, left : left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
|
||||
class ToTensor:
|
||||
"""Converts BGR np.array image from HWC to RGB CHW format, normalizes to [0, 1], and supports FP16 if half=True."""
|
||||
|
||||
def __init__(self, half=False):
|
||||
"""Initializes ToTensor for YOLOv5 image preprocessing, with optional half precision (half=True for FP16)."""
|
||||
super().__init__()
|
||||
self.half = half
|
||||
|
||||
def __call__(self, im):
|
||||
"""
|
||||
Converts BGR np.array image from HWC to RGB CHW format, and normalizes to [0, 1], with support for FP16 if
|
||||
`half=True`.
|
||||
|
||||
im = np.array HWC in BGR order
|
||||
"""
|
||||
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous
|
||||
im = torch.from_numpy(im) # to torch
|
||||
im = im.half() if self.half else im.float() # uint8 to fp16/32
|
||||
im /= 255.0 # 0-255 to 0.0-1.0
|
||||
return im
|
||||
@ -1,175 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""AutoAnchor utils."""
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import yaml
|
||||
from tqdm import tqdm
|
||||
|
||||
from utils import TryExcept
|
||||
from utils.general import LOGGER, TQDM_BAR_FORMAT, colorstr
|
||||
|
||||
PREFIX = colorstr("AutoAnchor: ")
|
||||
|
||||
|
||||
def check_anchor_order(m):
|
||||
"""Checks and corrects anchor order against stride in YOLOv5 Detect() module if necessary."""
|
||||
a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer
|
||||
da = a[-1] - a[0] # delta a
|
||||
ds = m.stride[-1] - m.stride[0] # delta s
|
||||
if da and (da.sign() != ds.sign()): # same order
|
||||
LOGGER.info(f"{PREFIX}Reversing anchor order")
|
||||
m.anchors[:] = m.anchors.flip(0)
|
||||
|
||||
|
||||
@TryExcept(f"{PREFIX}ERROR")
|
||||
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
||||
"""Evaluates anchor fit to dataset and adjusts if necessary, supporting customizable threshold and image size."""
|
||||
m = model.module.model[-1] if hasattr(model, "module") else model.model[-1] # Detect()
|
||||
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
|
||||
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
|
||||
|
||||
def metric(k): # compute metric
|
||||
"""Computes ratio metric, anchors above threshold, and best possible recall for YOLOv5 anchor evaluation."""
|
||||
r = wh[:, None] / k[None]
|
||||
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
|
||||
best = x.max(1)[0] # best_x
|
||||
aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold
|
||||
bpr = (best > 1 / thr).float().mean() # best possible recall
|
||||
return bpr, aat
|
||||
|
||||
stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides
|
||||
anchors = m.anchors.clone() * stride # current anchors
|
||||
bpr, aat = metric(anchors.cpu().view(-1, 2))
|
||||
s = f"\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). "
|
||||
if bpr > 0.98: # threshold to recompute
|
||||
LOGGER.info(f"{s}Current anchors are a good fit to dataset ✅")
|
||||
else:
|
||||
LOGGER.info(f"{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...")
|
||||
na = m.anchors.numel() // 2 # number of anchors
|
||||
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
||||
new_bpr = metric(anchors)[0]
|
||||
if new_bpr > bpr: # replace anchors
|
||||
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
|
||||
m.anchors[:] = anchors.clone().view_as(m.anchors)
|
||||
check_anchor_order(m) # must be in pixel-space (not grid-space)
|
||||
m.anchors /= stride
|
||||
s = f"{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)"
|
||||
else:
|
||||
s = f"{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)"
|
||||
LOGGER.info(s)
|
||||
|
||||
|
||||
def kmean_anchors(dataset="./data/coco128.yaml", n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
||||
"""
|
||||
Creates kmeans-evolved anchors from training dataset.
|
||||
|
||||
Arguments:
|
||||
dataset: path to data.yaml, or a loaded dataset
|
||||
n: number of anchors
|
||||
img_size: image size used for training
|
||||
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
||||
gen: generations to evolve anchors using genetic algorithm
|
||||
verbose: print all results
|
||||
|
||||
Return:
|
||||
k: kmeans evolved anchors
|
||||
|
||||
Usage:
|
||||
from utils.autoanchor import *; _ = kmean_anchors()
|
||||
"""
|
||||
from scipy.cluster.vq import kmeans
|
||||
|
||||
npr = np.random
|
||||
thr = 1 / thr
|
||||
|
||||
def metric(k, wh): # compute metrics
|
||||
"""Computes ratio metric, anchors above threshold, and best possible recall for YOLOv5 anchor evaluation."""
|
||||
r = wh[:, None] / k[None]
|
||||
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
|
||||
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
||||
return x, x.max(1)[0] # x, best_x
|
||||
|
||||
def anchor_fitness(k): # mutation fitness
|
||||
"""Evaluates fitness of YOLOv5 anchors by computing recall and ratio metrics for an anchor evolution process."""
|
||||
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
||||
return (best * (best > thr).float()).mean() # fitness
|
||||
|
||||
def print_results(k, verbose=True):
|
||||
"""Sorts and logs kmeans-evolved anchor metrics and best possible recall values for YOLOv5 anchor evaluation."""
|
||||
k = k[np.argsort(k.prod(1))] # sort small to large
|
||||
x, best = metric(k, wh0)
|
||||
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
||||
s = (
|
||||
f"{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n"
|
||||
f"{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, "
|
||||
f"past_thr={x[x > thr].mean():.3f}-mean: "
|
||||
)
|
||||
for x in k:
|
||||
s += "%i,%i, " % (round(x[0]), round(x[1]))
|
||||
if verbose:
|
||||
LOGGER.info(s[:-2])
|
||||
return k
|
||||
|
||||
if isinstance(dataset, str): # *.yaml file
|
||||
with open(dataset, errors="ignore") as f:
|
||||
data_dict = yaml.safe_load(f) # model dict
|
||||
from utils.dataloaders import LoadImagesAndLabels
|
||||
|
||||
dataset = LoadImagesAndLabels(data_dict["train"], augment=True, rect=True)
|
||||
|
||||
# Get label wh
|
||||
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
||||
|
||||
# Filter
|
||||
i = (wh0 < 3.0).any(1).sum()
|
||||
if i:
|
||||
LOGGER.info(f"{PREFIX}WARNING ⚠️ Extremely small objects found: {i} of {len(wh0)} labels are <3 pixels in size")
|
||||
wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32) # filter > 2 pixels
|
||||
# wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
|
||||
|
||||
# Kmeans init
|
||||
try:
|
||||
LOGGER.info(f"{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...")
|
||||
assert n <= len(wh) # apply overdetermined constraint
|
||||
s = wh.std(0) # sigmas for whitening
|
||||
k = kmeans(wh / s, n, iter=30)[0] * s # points
|
||||
assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar
|
||||
except Exception:
|
||||
LOGGER.warning(f"{PREFIX}WARNING ⚠️ switching strategies from kmeans to random init")
|
||||
k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init
|
||||
wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
|
||||
k = print_results(k, verbose=False)
|
||||
|
||||
# Plot
|
||||
# k, d = [None] * 20, [None] * 20
|
||||
# for i in tqdm(range(1, 21)):
|
||||
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
||||
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
|
||||
# ax = ax.ravel()
|
||||
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
||||
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
||||
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
||||
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
||||
# fig.savefig('wh.png', dpi=200)
|
||||
|
||||
# Evolve
|
||||
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
||||
pbar = tqdm(range(gen), bar_format=TQDM_BAR_FORMAT) # progress bar
|
||||
for _ in pbar:
|
||||
v = np.ones(sh)
|
||||
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
||||
v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
||||
kg = (k.copy() * v).clip(min=2.0)
|
||||
fg = anchor_fitness(kg)
|
||||
if fg > f:
|
||||
f, k = fg, kg.copy()
|
||||
pbar.desc = f"{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}"
|
||||
if verbose:
|
||||
print_results(k, verbose)
|
||||
|
||||
return print_results(k).astype(np.float32)
|
||||
@ -1,70 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""Auto-batch utils."""
|
||||
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from utils.general import LOGGER, colorstr
|
||||
from utils.torch_utils import profile
|
||||
|
||||
|
||||
def check_train_batch_size(model, imgsz=640, amp=True):
|
||||
"""Checks and computes optimal training batch size for YOLOv5 model, given image size and AMP setting."""
|
||||
with torch.cuda.amp.autocast(amp):
|
||||
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
|
||||
|
||||
|
||||
def autobatch(model, imgsz=640, fraction=0.8, batch_size=16):
|
||||
"""Estimates optimal YOLOv5 batch size using `fraction` of CUDA memory."""
|
||||
# Usage:
|
||||
# import torch
|
||||
# from utils.autobatch import autobatch
|
||||
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
|
||||
# print(autobatch(model))
|
||||
|
||||
# Check device
|
||||
prefix = colorstr("AutoBatch: ")
|
||||
LOGGER.info(f"{prefix}Computing optimal batch size for --imgsz {imgsz}")
|
||||
device = next(model.parameters()).device # get model device
|
||||
if device.type == "cpu":
|
||||
LOGGER.info(f"{prefix}CUDA not detected, using default CPU batch-size {batch_size}")
|
||||
return batch_size
|
||||
if torch.backends.cudnn.benchmark:
|
||||
LOGGER.info(f"{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}")
|
||||
return batch_size
|
||||
|
||||
# Inspect CUDA memory
|
||||
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
||||
d = str(device).upper() # 'CUDA:0'
|
||||
properties = torch.cuda.get_device_properties(device) # device properties
|
||||
t = properties.total_memory / gb # GiB total
|
||||
r = torch.cuda.memory_reserved(device) / gb # GiB reserved
|
||||
a = torch.cuda.memory_allocated(device) / gb # GiB allocated
|
||||
f = t - (r + a) # GiB free
|
||||
LOGGER.info(f"{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free")
|
||||
|
||||
# Profile batch sizes
|
||||
batch_sizes = [1, 2, 4, 8, 16]
|
||||
try:
|
||||
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
|
||||
results = profile(img, model, n=3, device=device)
|
||||
except Exception as e:
|
||||
LOGGER.warning(f"{prefix}{e}")
|
||||
|
||||
# Fit a solution
|
||||
y = [x[2] for x in results if x] # memory [2]
|
||||
p = np.polyfit(batch_sizes[: len(y)], y, deg=1) # first degree polynomial fit
|
||||
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
|
||||
if None in results: # some sizes failed
|
||||
i = results.index(None) # first fail index
|
||||
if b >= batch_sizes[i]: # y intercept above failure point
|
||||
b = batch_sizes[max(i - 1, 0)] # select prior safe point
|
||||
if b < 1 or b > 1024: # b outside of safe range
|
||||
b = batch_size
|
||||
LOGGER.warning(f"{prefix}WARNING ⚠️ CUDA anomaly detected, recommend restart environment and retry command.")
|
||||
|
||||
fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted
|
||||
LOGGER.info(f"{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅")
|
||||
return b
|
||||
@ -1,26 +0,0 @@
|
||||
# AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
|
||||
# This script will run on every instance restart, not only on first start
|
||||
# --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
|
||||
|
||||
Content-Type: multipart/mixed; boundary="//"
|
||||
MIME-Version: 1.0
|
||||
|
||||
--//
|
||||
Content-Type: text/cloud-config; charset="us-ascii"
|
||||
MIME-Version: 1.0
|
||||
Content-Transfer-Encoding: 7bit
|
||||
Content-Disposition: attachment; filename="cloud-config.txt"
|
||||
|
||||
#cloud-config
|
||||
cloud_final_modules:
|
||||
- [scripts-user, always]
|
||||
|
||||
--//
|
||||
Content-Type: text/x-shellscript; charset="us-ascii"
|
||||
MIME-Version: 1.0
|
||||
Content-Transfer-Encoding: 7bit
|
||||
Content-Disposition: attachment; filename="userdata.txt"
|
||||
|
||||
#!/bin/bash
|
||||
# --- paste contents of userdata.sh here ---
|
||||
--//
|
||||
@ -1,41 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
# Resume all interrupted trainings in yolov5/ dir including DDP trainings
|
||||
# Usage: $ python utils/aws/resume.py
|
||||
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import yaml
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[2] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
|
||||
port = 0 # --master_port
|
||||
path = Path("").resolve()
|
||||
for last in path.rglob("*/**/last.pt"):
|
||||
ckpt = torch.load(last)
|
||||
if ckpt["optimizer"] is None:
|
||||
continue
|
||||
|
||||
# Load opt.yaml
|
||||
with open(last.parent.parent / "opt.yaml", errors="ignore") as f:
|
||||
opt = yaml.safe_load(f)
|
||||
|
||||
# Get device count
|
||||
d = opt["device"].split(",") # devices
|
||||
nd = len(d) # number of devices
|
||||
ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
|
||||
|
||||
if ddp: # multi-GPU
|
||||
port += 1
|
||||
cmd = f"python -m torch.distributed.run --nproc_per_node {nd} --master_port {port} train.py --resume {last}"
|
||||
else: # single-GPU
|
||||
cmd = f"python train.py --resume {last}"
|
||||
|
||||
cmd += " > /dev/null 2>&1 &" # redirect output to dev/null and run in daemon thread
|
||||
print(cmd)
|
||||
os.system(cmd)
|
||||
@ -1,27 +0,0 @@
|
||||
#!/bin/bash
|
||||
# AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
|
||||
# This script will run only once on first instance start (for a re-start script see mime.sh)
|
||||
# /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
|
||||
# Use >300 GB SSD
|
||||
|
||||
cd home/ubuntu
|
||||
if [ ! -d yolov5 ]; then
|
||||
echo "Running first-time script." # install dependencies, download COCO, pull Docker
|
||||
git clone https://github.com/ultralytics/yolov5 -b master && sudo chmod -R 777 yolov5
|
||||
cd yolov5
|
||||
bash data/scripts/get_coco.sh && echo "COCO done." &
|
||||
sudo docker pull ultralytics/yolov5:latest && echo "Docker done." &
|
||||
python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
|
||||
wait && echo "All tasks done." # finish background tasks
|
||||
else
|
||||
echo "Running re-start script." # resume interrupted runs
|
||||
i=0
|
||||
list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
|
||||
while IFS= read -r id; do
|
||||
((i++))
|
||||
echo "restarting container $i: $id"
|
||||
sudo docker start $id
|
||||
# sudo docker exec -it $id python train.py --resume # single-GPU
|
||||
sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
|
||||
done <<<"$list"
|
||||
fi
|
||||
@ -1,72 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""Callback utils."""
|
||||
|
||||
import threading
|
||||
|
||||
|
||||
class Callbacks:
|
||||
"""Handles all registered callbacks for YOLOv5 Hooks."""
|
||||
|
||||
def __init__(self):
|
||||
"""Initializes a Callbacks object to manage registered YOLOv5 training event hooks."""
|
||||
self._callbacks = {
|
||||
"on_pretrain_routine_start": [],
|
||||
"on_pretrain_routine_end": [],
|
||||
"on_train_start": [],
|
||||
"on_train_epoch_start": [],
|
||||
"on_train_batch_start": [],
|
||||
"optimizer_step": [],
|
||||
"on_before_zero_grad": [],
|
||||
"on_train_batch_end": [],
|
||||
"on_train_epoch_end": [],
|
||||
"on_val_start": [],
|
||||
"on_val_batch_start": [],
|
||||
"on_val_image_end": [],
|
||||
"on_val_batch_end": [],
|
||||
"on_val_end": [],
|
||||
"on_fit_epoch_end": [], # fit = train + val
|
||||
"on_model_save": [],
|
||||
"on_train_end": [],
|
||||
"on_params_update": [],
|
||||
"teardown": [],
|
||||
}
|
||||
self.stop_training = False # set True to interrupt training
|
||||
|
||||
def register_action(self, hook, name="", callback=None):
|
||||
"""
|
||||
Register a new action to a callback hook.
|
||||
|
||||
Args:
|
||||
hook: The callback hook name to register the action to
|
||||
name: The name of the action for later reference
|
||||
callback: The callback to fire
|
||||
"""
|
||||
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
||||
assert callable(callback), f"callback '{callback}' is not callable"
|
||||
self._callbacks[hook].append({"name": name, "callback": callback})
|
||||
|
||||
def get_registered_actions(self, hook=None):
|
||||
"""
|
||||
Returns all the registered actions by callback hook.
|
||||
|
||||
Args:
|
||||
hook: The name of the hook to check, defaults to all
|
||||
"""
|
||||
return self._callbacks[hook] if hook else self._callbacks
|
||||
|
||||
def run(self, hook, *args, thread=False, **kwargs):
|
||||
"""
|
||||
Loop through the registered actions and fire all callbacks on main thread.
|
||||
|
||||
Args:
|
||||
hook: The name of the hook to check, defaults to all
|
||||
args: Arguments to receive from YOLOv5
|
||||
thread: (boolean) Run callbacks in daemon thread
|
||||
kwargs: Keyword Arguments to receive from YOLOv5
|
||||
"""
|
||||
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
||||
for logger in self._callbacks[hook]:
|
||||
if thread:
|
||||
threading.Thread(target=logger["callback"], args=args, kwargs=kwargs, daemon=True).start()
|
||||
else:
|
||||
logger["callback"](*args, **kwargs)
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,73 +0,0 @@
|
||||
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
|
||||
# Builds ultralytics/yolov5:latest image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
|
||||
# Image is CUDA-optimized for YOLOv5 single/multi-GPU training and inference
|
||||
|
||||
# Start FROM PyTorch image https://hub.docker.com/r/pytorch/pytorch
|
||||
FROM pytorch/pytorch:2.0.0-cuda11.7-cudnn8-runtime
|
||||
|
||||
# Downloads to user config dir
|
||||
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
|
||||
|
||||
# Install linux packages
|
||||
ENV DEBIAN_FRONTEND noninteractive
|
||||
RUN apt update
|
||||
RUN TZ=Etc/UTC apt install -y tzdata
|
||||
RUN apt install --no-install-recommends -y gcc git zip curl htop libgl1 libglib2.0-0 libpython3-dev gnupg
|
||||
# RUN alias python=python3
|
||||
|
||||
# Security updates
|
||||
# https://security.snyk.io/vuln/SNYK-UBUNTU1804-OPENSSL-3314796
|
||||
RUN apt upgrade --no-install-recommends -y openssl
|
||||
|
||||
# Create working directory
|
||||
RUN rm -rf /usr/src/app && mkdir -p /usr/src/app
|
||||
WORKDIR /usr/src/app
|
||||
|
||||
# Copy contents
|
||||
COPY . /usr/src/app
|
||||
|
||||
# Install pip packages
|
||||
COPY requirements.txt .
|
||||
RUN python3 -m pip install --upgrade pip wheel
|
||||
RUN pip install --no-cache -r requirements.txt albumentations comet gsutil notebook \
|
||||
coremltools onnx onnx-simplifier onnxruntime 'openvino-dev>=2023.0'
|
||||
# tensorflow tensorflowjs \
|
||||
|
||||
# Set environment variables
|
||||
ENV OMP_NUM_THREADS=1
|
||||
|
||||
# Cleanup
|
||||
ENV DEBIAN_FRONTEND teletype
|
||||
|
||||
|
||||
# Usage Examples -------------------------------------------------------------------------------------------------------
|
||||
|
||||
# Build and Push
|
||||
# t=ultralytics/yolov5:latest && sudo docker build -f utils/docker/Dockerfile -t $t . && sudo docker push $t
|
||||
|
||||
# Pull and Run
|
||||
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
|
||||
|
||||
# Pull and Run with local directory access
|
||||
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
|
||||
|
||||
# Kill all
|
||||
# sudo docker kill $(sudo docker ps -q)
|
||||
|
||||
# Kill all image-based
|
||||
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
|
||||
|
||||
# DockerHub tag update
|
||||
# t=ultralytics/yolov5:latest tnew=ultralytics/yolov5:v6.2 && sudo docker pull $t && sudo docker tag $t $tnew && sudo docker push $tnew
|
||||
|
||||
# Clean up
|
||||
# sudo docker system prune -a --volumes
|
||||
|
||||
# Update Ubuntu drivers
|
||||
# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
|
||||
|
||||
# DDP test
|
||||
# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
|
||||
|
||||
# GCP VM from Image
|
||||
# docker.io/ultralytics/yolov5:latest
|
||||
@ -1,40 +0,0 @@
|
||||
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
|
||||
# Builds ultralytics/yolov5:latest-arm64 image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
|
||||
# Image is aarch64-compatible for Apple M1 and other ARM architectures i.e. Jetson Nano and Raspberry Pi
|
||||
|
||||
# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
|
||||
FROM arm64v8/ubuntu:22.10
|
||||
|
||||
# Downloads to user config dir
|
||||
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
|
||||
|
||||
# Install linux packages
|
||||
ENV DEBIAN_FRONTEND noninteractive
|
||||
RUN apt update
|
||||
RUN TZ=Etc/UTC apt install -y tzdata
|
||||
RUN apt install --no-install-recommends -y python3-pip git zip curl htop gcc libgl1 libglib2.0-0 libpython3-dev
|
||||
# RUN alias python=python3
|
||||
|
||||
# Install pip packages
|
||||
COPY requirements.txt .
|
||||
RUN python3 -m pip install --upgrade pip wheel
|
||||
RUN pip install --no-cache -r requirements.txt albumentations gsutil notebook \
|
||||
coremltools onnx onnxruntime
|
||||
# tensorflow-aarch64 tensorflowjs \
|
||||
|
||||
# Create working directory
|
||||
RUN mkdir -p /usr/src/app
|
||||
WORKDIR /usr/src/app
|
||||
|
||||
# Copy contents
|
||||
COPY . /usr/src/app
|
||||
ENV DEBIAN_FRONTEND teletype
|
||||
|
||||
|
||||
# Usage Examples -------------------------------------------------------------------------------------------------------
|
||||
|
||||
# Build and Push
|
||||
# t=ultralytics/yolov5:latest-arm64 && sudo docker build --platform linux/arm64 -f utils/docker/Dockerfile-arm64 -t $t . && sudo docker push $t
|
||||
|
||||
# Pull and Run
|
||||
# t=ultralytics/yolov5:latest-arm64 && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t
|
||||
@ -1,42 +0,0 @@
|
||||
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
|
||||
# Builds ultralytics/yolov5:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
|
||||
# Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLOv5 deployments
|
||||
|
||||
# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
|
||||
FROM ubuntu:23.10
|
||||
|
||||
# Downloads to user config dir
|
||||
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
|
||||
|
||||
# Install linux packages
|
||||
# g++ required to build 'tflite_support' and 'lap' packages, libusb-1.0-0 required for 'tflite_support' package
|
||||
RUN apt update \
|
||||
&& apt install --no-install-recommends -y python3-pip git zip curl htop libgl1 libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0
|
||||
# RUN alias python=python3
|
||||
|
||||
# Remove python3.11/EXTERNALLY-MANAGED or use 'pip install --break-system-packages' avoid 'externally-managed-environment' Ubuntu nightly error
|
||||
RUN rm -rf /usr/lib/python3.11/EXTERNALLY-MANAGED
|
||||
|
||||
# Install pip packages
|
||||
COPY requirements.txt .
|
||||
RUN python3 -m pip install --upgrade pip wheel
|
||||
RUN pip install --no-cache -r requirements.txt albumentations gsutil notebook \
|
||||
coremltools onnx onnx-simplifier onnxruntime 'openvino-dev>=2023.0' \
|
||||
# tensorflow tensorflowjs \
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
|
||||
# Create working directory
|
||||
RUN mkdir -p /usr/src/app
|
||||
WORKDIR /usr/src/app
|
||||
|
||||
# Copy contents
|
||||
COPY . /usr/src/app
|
||||
|
||||
|
||||
# Usage Examples -------------------------------------------------------------------------------------------------------
|
||||
|
||||
# Build and Push
|
||||
# t=ultralytics/yolov5:latest-cpu && sudo docker build -f utils/docker/Dockerfile-cpu -t $t . && sudo docker push $t
|
||||
|
||||
# Pull and Run
|
||||
# t=ultralytics/yolov5:latest-cpu && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t
|
||||
@ -1,136 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""Download utils."""
|
||||
|
||||
import logging
|
||||
import subprocess
|
||||
import urllib
|
||||
from pathlib import Path
|
||||
|
||||
import requests
|
||||
import torch
|
||||
|
||||
|
||||
def is_url(url, check=True):
|
||||
"""Determines if a string is a URL and optionally checks its existence online, returning a boolean."""
|
||||
try:
|
||||
url = str(url)
|
||||
result = urllib.parse.urlparse(url)
|
||||
assert all([result.scheme, result.netloc]) # check if is url
|
||||
return (urllib.request.urlopen(url).getcode() == 200) if check else True # check if exists online
|
||||
except (AssertionError, urllib.request.HTTPError):
|
||||
return False
|
||||
|
||||
|
||||
def gsutil_getsize(url=""):
|
||||
"""
|
||||
Returns the size in bytes of a file at a Google Cloud Storage URL using `gsutil du`.
|
||||
|
||||
Returns 0 if the command fails or output is empty.
|
||||
"""
|
||||
output = subprocess.check_output(["gsutil", "du", url], shell=True, encoding="utf-8")
|
||||
return int(output.split()[0]) if output else 0
|
||||
|
||||
|
||||
def url_getsize(url="https://ultralytics.com/images/bus.jpg"):
|
||||
"""Returns the size in bytes of a downloadable file at a given URL; defaults to -1 if not found."""
|
||||
response = requests.head(url, allow_redirects=True)
|
||||
return int(response.headers.get("content-length", -1))
|
||||
|
||||
|
||||
def curl_download(url, filename, *, silent: bool = False) -> bool:
|
||||
"""Download a file from a url to a filename using curl."""
|
||||
silent_option = "sS" if silent else "" # silent
|
||||
proc = subprocess.run(
|
||||
[
|
||||
"curl",
|
||||
"-#",
|
||||
f"-{silent_option}L",
|
||||
url,
|
||||
"--output",
|
||||
filename,
|
||||
"--retry",
|
||||
"9",
|
||||
"-C",
|
||||
"-",
|
||||
]
|
||||
)
|
||||
return proc.returncode == 0
|
||||
|
||||
|
||||
def safe_download(file, url, url2=None, min_bytes=1e0, error_msg=""):
|
||||
"""
|
||||
Downloads a file from a URL (or alternate URL) to a specified path if file is above a minimum size.
|
||||
|
||||
Removes incomplete downloads.
|
||||
"""
|
||||
from utils.general import LOGGER
|
||||
|
||||
file = Path(file)
|
||||
assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
|
||||
try: # url1
|
||||
LOGGER.info(f"Downloading {url} to {file}...")
|
||||
torch.hub.download_url_to_file(url, str(file), progress=LOGGER.level <= logging.INFO)
|
||||
assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
|
||||
except Exception as e: # url2
|
||||
if file.exists():
|
||||
file.unlink() # remove partial downloads
|
||||
LOGGER.info(f"ERROR: {e}\nRe-attempting {url2 or url} to {file}...")
|
||||
# curl download, retry and resume on fail
|
||||
curl_download(url2 or url, file)
|
||||
finally:
|
||||
if not file.exists() or file.stat().st_size < min_bytes: # check
|
||||
if file.exists():
|
||||
file.unlink() # remove partial downloads
|
||||
LOGGER.info(f"ERROR: {assert_msg}\n{error_msg}")
|
||||
LOGGER.info("")
|
||||
|
||||
|
||||
def attempt_download(file, repo="ultralytics/yolov5", release="v7.0"):
|
||||
"""Downloads a file from GitHub release assets or via direct URL if not found locally, supporting backup
|
||||
versions.
|
||||
"""
|
||||
from utils.general import LOGGER
|
||||
|
||||
def github_assets(repository, version="latest"):
|
||||
"""Fetches GitHub repository release tag and asset names using the GitHub API."""
|
||||
if version != "latest":
|
||||
version = f"tags/{version}" # i.e. tags/v7.0
|
||||
response = requests.get(f"https://api.github.com/repos/{repository}/releases/{version}").json() # github api
|
||||
return response["tag_name"], [x["name"] for x in response["assets"]] # tag, assets
|
||||
|
||||
file = Path(str(file).strip().replace("'", ""))
|
||||
if not file.exists():
|
||||
# URL specified
|
||||
name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
|
||||
if str(file).startswith(("http:/", "https:/")): # download
|
||||
url = str(file).replace(":/", "://") # Pathlib turns :// -> :/
|
||||
file = name.split("?")[0] # parse authentication https://url.com/file.txt?auth...
|
||||
if Path(file).is_file():
|
||||
LOGGER.info(f"Found {url} locally at {file}") # file already exists
|
||||
else:
|
||||
safe_download(file=file, url=url, min_bytes=1e5)
|
||||
return file
|
||||
|
||||
# GitHub assets
|
||||
assets = [f"yolov5{size}{suffix}.pt" for size in "nsmlx" for suffix in ("", "6", "-cls", "-seg")] # default
|
||||
try:
|
||||
tag, assets = github_assets(repo, release)
|
||||
except Exception:
|
||||
try:
|
||||
tag, assets = github_assets(repo) # latest release
|
||||
except Exception:
|
||||
try:
|
||||
tag = subprocess.check_output("git tag", shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
|
||||
except Exception:
|
||||
tag = release
|
||||
|
||||
if name in assets:
|
||||
file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
|
||||
safe_download(
|
||||
file,
|
||||
url=f"https://github.com/{repo}/releases/download/{tag}/{name}",
|
||||
min_bytes=1e5,
|
||||
error_msg=f"{file} missing, try downloading from https://github.com/{repo}/releases/{tag}",
|
||||
)
|
||||
|
||||
return str(file)
|
||||
@ -1,70 +0,0 @@
|
||||
# Flask REST API
|
||||
|
||||
[REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/).
|
||||
|
||||
## Requirements
|
||||
|
||||
[Flask](https://palletsprojects.com/projects/flask/) is required. Install with:
|
||||
|
||||
```shell
|
||||
$ pip install Flask
|
||||
```
|
||||
|
||||
## Run
|
||||
|
||||
After Flask installation run:
|
||||
|
||||
```shell
|
||||
$ python3 restapi.py --port 5000
|
||||
```
|
||||
|
||||
Then use [curl](https://curl.se/) to perform a request:
|
||||
|
||||
```shell
|
||||
$ curl -X POST -F image=@zidane.jpg 'http://localhost:5000/v1/object-detection/yolov5s'
|
||||
```
|
||||
|
||||
The model inference results are returned as a JSON response:
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"class": 0,
|
||||
"confidence": 0.8900438547,
|
||||
"height": 0.9318675399,
|
||||
"name": "person",
|
||||
"width": 0.3264600933,
|
||||
"xcenter": 0.7438579798,
|
||||
"ycenter": 0.5207948685
|
||||
},
|
||||
{
|
||||
"class": 0,
|
||||
"confidence": 0.8440024257,
|
||||
"height": 0.7155083418,
|
||||
"name": "person",
|
||||
"width": 0.6546785235,
|
||||
"xcenter": 0.427829951,
|
||||
"ycenter": 0.6334488392
|
||||
},
|
||||
{
|
||||
"class": 27,
|
||||
"confidence": 0.3771208823,
|
||||
"height": 0.3902671337,
|
||||
"name": "tie",
|
||||
"width": 0.0696444362,
|
||||
"xcenter": 0.3675483763,
|
||||
"ycenter": 0.7991207838
|
||||
},
|
||||
{
|
||||
"class": 27,
|
||||
"confidence": 0.3527112305,
|
||||
"height": 0.1540903747,
|
||||
"name": "tie",
|
||||
"width": 0.0336618312,
|
||||
"xcenter": 0.7814827561,
|
||||
"ycenter": 0.5065554976
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given in `example_request.py`
|
||||
@ -1,17 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""Perform test request."""
|
||||
|
||||
import pprint
|
||||
|
||||
import requests
|
||||
|
||||
DETECTION_URL = "http://localhost:5000/v1/object-detection/yolov5s"
|
||||
IMAGE = "zidane.jpg"
|
||||
|
||||
# Read image
|
||||
with open(IMAGE, "rb") as f:
|
||||
image_data = f.read()
|
||||
|
||||
response = requests.post(DETECTION_URL, files={"image": image_data}).json()
|
||||
|
||||
pprint.pprint(response)
|
||||
@ -1,49 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""Run a Flask REST API exposing one or more YOLOv5s models."""
|
||||
|
||||
import argparse
|
||||
import io
|
||||
|
||||
import torch
|
||||
from flask import Flask, request
|
||||
from PIL import Image
|
||||
|
||||
app = Flask(__name__)
|
||||
models = {}
|
||||
|
||||
DETECTION_URL = "/v1/object-detection/<model>"
|
||||
|
||||
|
||||
@app.route(DETECTION_URL, methods=["POST"])
|
||||
def predict(model):
|
||||
"""Predict and return object detections in JSON format given an image and model name via a Flask REST API POST
|
||||
request.
|
||||
"""
|
||||
if request.method != "POST":
|
||||
return
|
||||
|
||||
if request.files.get("image"):
|
||||
# Method 1
|
||||
# with request.files["image"] as f:
|
||||
# im = Image.open(io.BytesIO(f.read()))
|
||||
|
||||
# Method 2
|
||||
im_file = request.files["image"]
|
||||
im_bytes = im_file.read()
|
||||
im = Image.open(io.BytesIO(im_bytes))
|
||||
|
||||
if model in models:
|
||||
results = models[model](im, size=640) # reduce size=320 for faster inference
|
||||
return results.pandas().xyxy[0].to_json(orient="records")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model")
|
||||
parser.add_argument("--port", default=5000, type=int, help="port number")
|
||||
parser.add_argument("--model", nargs="+", default=["yolov5s"], help="model(s) to run, i.e. --model yolov5n yolov5s")
|
||||
opt = parser.parse_args()
|
||||
|
||||
for m in opt.model:
|
||||
models[m] = torch.hub.load("ultralytics/yolov5", m, force_reload=True, skip_validation=True)
|
||||
|
||||
app.run(host="0.0.0.0", port=opt.port) # debug=True causes Restarting with stat
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,25 +0,0 @@
|
||||
FROM gcr.io/google-appengine/python
|
||||
|
||||
# Create a virtualenv for dependencies. This isolates these packages from
|
||||
# system-level packages.
|
||||
# Use -p python3 or -p python3.7 to select python version. Default is version 2.
|
||||
RUN virtualenv /env -p python3
|
||||
|
||||
# Setting these environment variables are the same as running
|
||||
# source /env/bin/activate.
|
||||
ENV VIRTUAL_ENV /env
|
||||
ENV PATH /env/bin:$PATH
|
||||
|
||||
RUN apt-get update && apt-get install -y python-opencv
|
||||
|
||||
# Copy the application's requirements.txt and run pip to install all
|
||||
# dependencies into the virtualenv.
|
||||
ADD requirements.txt /app/requirements.txt
|
||||
RUN pip install -r /app/requirements.txt
|
||||
|
||||
# Add the application source code.
|
||||
ADD . /app
|
||||
|
||||
# Run a WSGI server to serve the application. gunicorn must be declared as
|
||||
# a dependency in requirements.txt.
|
||||
CMD gunicorn -b :$PORT main:app
|
||||
@ -1,6 +0,0 @@
|
||||
# add these requirements in your app on top of the existing ones
|
||||
pip==23.3
|
||||
Flask==2.3.2
|
||||
gunicorn==22.0.0
|
||||
werkzeug>=3.0.1 # not directly required, pinned by Snyk to avoid a vulnerability
|
||||
zipp>=3.19.1 # not directly required, pinned by Snyk to avoid a vulnerability
|
||||
@ -1,16 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
runtime: custom
|
||||
env: flex
|
||||
|
||||
service: yolov5app
|
||||
|
||||
liveness_check:
|
||||
initial_delay_sec: 600
|
||||
|
||||
manual_scaling:
|
||||
instances: 1
|
||||
resources:
|
||||
cpu: 1
|
||||
memory_gb: 4
|
||||
disk_size_gb: 20
|
||||
@ -1,476 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""Logging utils."""
|
||||
|
||||
import json
|
||||
import os
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
import pkg_resources as pkg
|
||||
import torch
|
||||
|
||||
from utils.general import LOGGER, colorstr, cv2
|
||||
from utils.loggers.clearml.clearml_utils import ClearmlLogger
|
||||
from utils.loggers.wandb.wandb_utils import WandbLogger
|
||||
from utils.plots import plot_images, plot_labels, plot_results
|
||||
from utils.torch_utils import de_parallel
|
||||
|
||||
LOGGERS = ("csv", "tb", "wandb", "clearml", "comet") # *.csv, TensorBoard, Weights & Biases, ClearML
|
||||
RANK = int(os.getenv("RANK", -1))
|
||||
|
||||
try:
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
except ImportError:
|
||||
|
||||
def SummaryWriter(*args):
|
||||
"""Fall back to SummaryWriter returning None if TensorBoard is not installed."""
|
||||
return None # None = SummaryWriter(str)
|
||||
|
||||
|
||||
try:
|
||||
import wandb
|
||||
|
||||
assert hasattr(wandb, "__version__") # verify package import not local dir
|
||||
if pkg.parse_version(wandb.__version__) >= pkg.parse_version("0.12.2") and RANK in {0, -1}:
|
||||
try:
|
||||
wandb_login_success = wandb.login(timeout=30)
|
||||
except wandb.errors.UsageError: # known non-TTY terminal issue
|
||||
wandb_login_success = False
|
||||
if not wandb_login_success:
|
||||
wandb = None
|
||||
except (ImportError, AssertionError):
|
||||
wandb = None
|
||||
|
||||
try:
|
||||
import clearml
|
||||
|
||||
assert hasattr(clearml, "__version__") # verify package import not local dir
|
||||
except (ImportError, AssertionError):
|
||||
clearml = None
|
||||
|
||||
try:
|
||||
if RANK in {0, -1}:
|
||||
import comet_ml
|
||||
|
||||
assert hasattr(comet_ml, "__version__") # verify package import not local dir
|
||||
from utils.loggers.comet import CometLogger
|
||||
|
||||
else:
|
||||
comet_ml = None
|
||||
except (ImportError, AssertionError):
|
||||
comet_ml = None
|
||||
|
||||
|
||||
def _json_default(value):
|
||||
"""
|
||||
Format `value` for JSON serialization (e.g. unwrap tensors).
|
||||
|
||||
Fall back to strings.
|
||||
"""
|
||||
if isinstance(value, torch.Tensor):
|
||||
try:
|
||||
value = value.item()
|
||||
except ValueError: # "only one element tensors can be converted to Python scalars"
|
||||
pass
|
||||
return value if isinstance(value, float) else str(value)
|
||||
|
||||
|
||||
class Loggers:
|
||||
"""Initializes and manages various logging utilities for tracking YOLOv5 training and validation metrics."""
|
||||
|
||||
def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
|
||||
"""Initializes loggers for YOLOv5 training and validation metrics, paths, and options."""
|
||||
self.save_dir = save_dir
|
||||
self.weights = weights
|
||||
self.opt = opt
|
||||
self.hyp = hyp
|
||||
self.plots = not opt.noplots # plot results
|
||||
self.logger = logger # for printing results to console
|
||||
self.include = include
|
||||
self.keys = [
|
||||
"train/box_loss",
|
||||
"train/obj_loss",
|
||||
"train/cls_loss", # train loss
|
||||
"metrics/precision",
|
||||
"metrics/recall",
|
||||
"metrics/mAP_0.5",
|
||||
"metrics/mAP_0.5:0.95", # metrics
|
||||
"val/box_loss",
|
||||
"val/obj_loss",
|
||||
"val/cls_loss", # val loss
|
||||
"x/lr0",
|
||||
"x/lr1",
|
||||
"x/lr2",
|
||||
] # params
|
||||
self.best_keys = ["best/epoch", "best/precision", "best/recall", "best/mAP_0.5", "best/mAP_0.5:0.95"]
|
||||
for k in LOGGERS:
|
||||
setattr(self, k, None) # init empty logger dictionary
|
||||
self.csv = True # always log to csv
|
||||
self.ndjson_console = "ndjson_console" in self.include # log ndjson to console
|
||||
self.ndjson_file = "ndjson_file" in self.include # log ndjson to file
|
||||
|
||||
# Messages
|
||||
if not comet_ml:
|
||||
prefix = colorstr("Comet: ")
|
||||
s = f"{prefix}run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet"
|
||||
self.logger.info(s)
|
||||
# TensorBoard
|
||||
s = self.save_dir
|
||||
if "tb" in self.include and not self.opt.evolve:
|
||||
prefix = colorstr("TensorBoard: ")
|
||||
self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
|
||||
self.tb = SummaryWriter(str(s))
|
||||
|
||||
# W&B
|
||||
if wandb and "wandb" in self.include:
|
||||
self.opt.hyp = self.hyp # add hyperparameters
|
||||
self.wandb = WandbLogger(self.opt)
|
||||
else:
|
||||
self.wandb = None
|
||||
|
||||
# ClearML
|
||||
if clearml and "clearml" in self.include:
|
||||
try:
|
||||
self.clearml = ClearmlLogger(self.opt, self.hyp)
|
||||
except Exception:
|
||||
self.clearml = None
|
||||
prefix = colorstr("ClearML: ")
|
||||
LOGGER.warning(
|
||||
f"{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging."
|
||||
f" See https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration#readme"
|
||||
)
|
||||
|
||||
else:
|
||||
self.clearml = None
|
||||
|
||||
# Comet
|
||||
if comet_ml and "comet" in self.include:
|
||||
if isinstance(self.opt.resume, str) and self.opt.resume.startswith("comet://"):
|
||||
run_id = self.opt.resume.split("/")[-1]
|
||||
self.comet_logger = CometLogger(self.opt, self.hyp, run_id=run_id)
|
||||
|
||||
else:
|
||||
self.comet_logger = CometLogger(self.opt, self.hyp)
|
||||
|
||||
else:
|
||||
self.comet_logger = None
|
||||
|
||||
@property
|
||||
def remote_dataset(self):
|
||||
"""Fetches dataset dictionary from remote logging services like ClearML, Weights & Biases, or Comet ML."""
|
||||
data_dict = None
|
||||
if self.clearml:
|
||||
data_dict = self.clearml.data_dict
|
||||
if self.wandb:
|
||||
data_dict = self.wandb.data_dict
|
||||
if self.comet_logger:
|
||||
data_dict = self.comet_logger.data_dict
|
||||
|
||||
return data_dict
|
||||
|
||||
def on_train_start(self):
|
||||
"""Initializes the training process for Comet ML logger if it's configured."""
|
||||
if self.comet_logger:
|
||||
self.comet_logger.on_train_start()
|
||||
|
||||
def on_pretrain_routine_start(self):
|
||||
"""Invokes pre-training routine start hook for Comet ML logger if available."""
|
||||
if self.comet_logger:
|
||||
self.comet_logger.on_pretrain_routine_start()
|
||||
|
||||
def on_pretrain_routine_end(self, labels, names):
|
||||
"""Callback that runs at the end of pre-training routine, logging label plots if enabled."""
|
||||
if self.plots:
|
||||
plot_labels(labels, names, self.save_dir)
|
||||
paths = self.save_dir.glob("*labels*.jpg") # training labels
|
||||
if self.wandb:
|
||||
self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
|
||||
if self.comet_logger:
|
||||
self.comet_logger.on_pretrain_routine_end(paths)
|
||||
if self.clearml:
|
||||
for path in paths:
|
||||
self.clearml.log_plot(title=path.stem, plot_path=path)
|
||||
|
||||
def on_train_batch_end(self, model, ni, imgs, targets, paths, vals):
|
||||
"""Logs training batch end events, plots images, and updates external loggers with batch-end data."""
|
||||
log_dict = dict(zip(self.keys[:3], vals))
|
||||
# Callback runs on train batch end
|
||||
# ni: number integrated batches (since train start)
|
||||
if self.plots:
|
||||
if ni < 3:
|
||||
f = self.save_dir / f"train_batch{ni}.jpg" # filename
|
||||
plot_images(imgs, targets, paths, f)
|
||||
if ni == 0 and self.tb and not self.opt.sync_bn:
|
||||
log_tensorboard_graph(self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz))
|
||||
if ni == 10 and (self.wandb or self.clearml):
|
||||
files = sorted(self.save_dir.glob("train*.jpg"))
|
||||
if self.wandb:
|
||||
self.wandb.log({"Mosaics": [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
|
||||
if self.clearml:
|
||||
self.clearml.log_debug_samples(files, title="Mosaics")
|
||||
|
||||
if self.comet_logger:
|
||||
self.comet_logger.on_train_batch_end(log_dict, step=ni)
|
||||
|
||||
def on_train_epoch_end(self, epoch):
|
||||
"""Callback that updates the current epoch in Weights & Biases at the end of a training epoch."""
|
||||
if self.wandb:
|
||||
self.wandb.current_epoch = epoch + 1
|
||||
|
||||
if self.comet_logger:
|
||||
self.comet_logger.on_train_epoch_end(epoch)
|
||||
|
||||
def on_val_start(self):
|
||||
"""Callback that signals the start of a validation phase to the Comet logger."""
|
||||
if self.comet_logger:
|
||||
self.comet_logger.on_val_start()
|
||||
|
||||
def on_val_image_end(self, pred, predn, path, names, im):
|
||||
"""Callback that logs a validation image and its predictions to WandB or ClearML."""
|
||||
if self.wandb:
|
||||
self.wandb.val_one_image(pred, predn, path, names, im)
|
||||
if self.clearml:
|
||||
self.clearml.log_image_with_boxes(path, pred, names, im)
|
||||
|
||||
def on_val_batch_end(self, batch_i, im, targets, paths, shapes, out):
|
||||
"""Logs validation batch results to Comet ML during training at the end of each validation batch."""
|
||||
if self.comet_logger:
|
||||
self.comet_logger.on_val_batch_end(batch_i, im, targets, paths, shapes, out)
|
||||
|
||||
def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
|
||||
"""Logs validation results to WandB or ClearML at the end of the validation process."""
|
||||
if self.wandb or self.clearml:
|
||||
files = sorted(self.save_dir.glob("val*.jpg"))
|
||||
if self.wandb:
|
||||
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
|
||||
if self.clearml:
|
||||
self.clearml.log_debug_samples(files, title="Validation")
|
||||
|
||||
if self.comet_logger:
|
||||
self.comet_logger.on_val_end(nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
|
||||
|
||||
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
|
||||
"""Callback that logs metrics and saves them to CSV or NDJSON at the end of each fit (train+val) epoch."""
|
||||
x = dict(zip(self.keys, vals))
|
||||
if self.csv:
|
||||
file = self.save_dir / "results.csv"
|
||||
n = len(x) + 1 # number of cols
|
||||
s = "" if file.exists() else (("%20s," * n % tuple(["epoch"] + self.keys)).rstrip(",") + "\n") # add header
|
||||
with open(file, "a") as f:
|
||||
f.write(s + ("%20.5g," * n % tuple([epoch] + vals)).rstrip(",") + "\n")
|
||||
if self.ndjson_console or self.ndjson_file:
|
||||
json_data = json.dumps(dict(epoch=epoch, **x), default=_json_default)
|
||||
if self.ndjson_console:
|
||||
print(json_data)
|
||||
if self.ndjson_file:
|
||||
file = self.save_dir / "results.ndjson"
|
||||
with open(file, "a") as f:
|
||||
print(json_data, file=f)
|
||||
|
||||
if self.tb:
|
||||
for k, v in x.items():
|
||||
self.tb.add_scalar(k, v, epoch)
|
||||
elif self.clearml: # log to ClearML if TensorBoard not used
|
||||
self.clearml.log_scalars(x, epoch)
|
||||
|
||||
if self.wandb:
|
||||
if best_fitness == fi:
|
||||
best_results = [epoch] + vals[3:7]
|
||||
for i, name in enumerate(self.best_keys):
|
||||
self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary
|
||||
self.wandb.log(x)
|
||||
self.wandb.end_epoch()
|
||||
|
||||
if self.clearml:
|
||||
self.clearml.current_epoch_logged_images = set() # reset epoch image limit
|
||||
self.clearml.current_epoch += 1
|
||||
|
||||
if self.comet_logger:
|
||||
self.comet_logger.on_fit_epoch_end(x, epoch=epoch)
|
||||
|
||||
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
|
||||
"""Callback that handles model saving events, logging to Weights & Biases or ClearML if enabled."""
|
||||
if (epoch + 1) % self.opt.save_period == 0 and not final_epoch and self.opt.save_period != -1:
|
||||
if self.wandb:
|
||||
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
|
||||
if self.clearml:
|
||||
self.clearml.task.update_output_model(
|
||||
model_path=str(last), model_name="Latest Model", auto_delete_file=False
|
||||
)
|
||||
|
||||
if self.comet_logger:
|
||||
self.comet_logger.on_model_save(last, epoch, final_epoch, best_fitness, fi)
|
||||
|
||||
def on_train_end(self, last, best, epoch, results):
|
||||
"""Callback that runs at the end of training to save plots and log results."""
|
||||
if self.plots:
|
||||
plot_results(file=self.save_dir / "results.csv") # save results.png
|
||||
files = ["results.png", "confusion_matrix.png", *(f"{x}_curve.png" for x in ("F1", "PR", "P", "R"))]
|
||||
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
|
||||
self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")
|
||||
|
||||
if self.tb and not self.clearml: # These images are already captured by ClearML by now, we don't want doubles
|
||||
for f in files:
|
||||
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats="HWC")
|
||||
|
||||
if self.wandb:
|
||||
self.wandb.log(dict(zip(self.keys[3:10], results)))
|
||||
self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
|
||||
# Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
|
||||
if not self.opt.evolve:
|
||||
wandb.log_artifact(
|
||||
str(best if best.exists() else last),
|
||||
type="model",
|
||||
name=f"run_{self.wandb.wandb_run.id}_model",
|
||||
aliases=["latest", "best", "stripped"],
|
||||
)
|
||||
self.wandb.finish_run()
|
||||
|
||||
if self.clearml and not self.opt.evolve:
|
||||
self.clearml.log_summary(dict(zip(self.keys[3:10], results)))
|
||||
[self.clearml.log_plot(title=f.stem, plot_path=f) for f in files]
|
||||
self.clearml.log_model(
|
||||
str(best if best.exists() else last), "Best Model" if best.exists() else "Last Model", epoch
|
||||
)
|
||||
|
||||
if self.comet_logger:
|
||||
final_results = dict(zip(self.keys[3:10], results))
|
||||
self.comet_logger.on_train_end(files, self.save_dir, last, best, epoch, final_results)
|
||||
|
||||
def on_params_update(self, params: dict):
|
||||
"""Updates experiment hyperparameters or configurations in WandB, Comet, or ClearML."""
|
||||
if self.wandb:
|
||||
self.wandb.wandb_run.config.update(params, allow_val_change=True)
|
||||
if self.comet_logger:
|
||||
self.comet_logger.on_params_update(params)
|
||||
if self.clearml:
|
||||
self.clearml.task.connect(params)
|
||||
|
||||
|
||||
class GenericLogger:
|
||||
"""
|
||||
YOLOv5 General purpose logger for non-task specific logging
|
||||
Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...).
|
||||
|
||||
Arguments:
|
||||
opt: Run arguments
|
||||
console_logger: Console logger
|
||||
include: loggers to include
|
||||
"""
|
||||
|
||||
def __init__(self, opt, console_logger, include=("tb", "wandb", "clearml")):
|
||||
"""Initializes a generic logger with optional TensorBoard, W&B, and ClearML support."""
|
||||
self.save_dir = Path(opt.save_dir)
|
||||
self.include = include
|
||||
self.console_logger = console_logger
|
||||
self.csv = self.save_dir / "results.csv" # CSV logger
|
||||
if "tb" in self.include:
|
||||
prefix = colorstr("TensorBoard: ")
|
||||
self.console_logger.info(
|
||||
f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/"
|
||||
)
|
||||
self.tb = SummaryWriter(str(self.save_dir))
|
||||
|
||||
if wandb and "wandb" in self.include:
|
||||
self.wandb = wandb.init(
|
||||
project=web_project_name(str(opt.project)), name=None if opt.name == "exp" else opt.name, config=opt
|
||||
)
|
||||
else:
|
||||
self.wandb = None
|
||||
|
||||
if clearml and "clearml" in self.include:
|
||||
try:
|
||||
# Hyp is not available in classification mode
|
||||
hyp = {} if "hyp" not in opt else opt.hyp
|
||||
self.clearml = ClearmlLogger(opt, hyp)
|
||||
except Exception:
|
||||
self.clearml = None
|
||||
prefix = colorstr("ClearML: ")
|
||||
LOGGER.warning(
|
||||
f"{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging."
|
||||
f" See https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration"
|
||||
)
|
||||
else:
|
||||
self.clearml = None
|
||||
|
||||
def log_metrics(self, metrics, epoch):
|
||||
"""Logs metrics to CSV, TensorBoard, W&B, and ClearML; `metrics` is a dict, `epoch` is an int."""
|
||||
if self.csv:
|
||||
keys, vals = list(metrics.keys()), list(metrics.values())
|
||||
n = len(metrics) + 1 # number of cols
|
||||
s = "" if self.csv.exists() else (("%23s," * n % tuple(["epoch"] + keys)).rstrip(",") + "\n") # header
|
||||
with open(self.csv, "a") as f:
|
||||
f.write(s + ("%23.5g," * n % tuple([epoch] + vals)).rstrip(",") + "\n")
|
||||
|
||||
if self.tb:
|
||||
for k, v in metrics.items():
|
||||
self.tb.add_scalar(k, v, epoch)
|
||||
|
||||
if self.wandb:
|
||||
self.wandb.log(metrics, step=epoch)
|
||||
|
||||
if self.clearml:
|
||||
self.clearml.log_scalars(metrics, epoch)
|
||||
|
||||
def log_images(self, files, name="Images", epoch=0):
|
||||
"""Logs images to all loggers with optional naming and epoch specification."""
|
||||
files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])] # to Path
|
||||
files = [f for f in files if f.exists()] # filter by exists
|
||||
|
||||
if self.tb:
|
||||
for f in files:
|
||||
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats="HWC")
|
||||
|
||||
if self.wandb:
|
||||
self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch)
|
||||
|
||||
if self.clearml:
|
||||
if name == "Results":
|
||||
[self.clearml.log_plot(f.stem, f) for f in files]
|
||||
else:
|
||||
self.clearml.log_debug_samples(files, title=name)
|
||||
|
||||
def log_graph(self, model, imgsz=(640, 640)):
|
||||
"""Logs model graph to all configured loggers with specified input image size."""
|
||||
if self.tb:
|
||||
log_tensorboard_graph(self.tb, model, imgsz)
|
||||
|
||||
def log_model(self, model_path, epoch=0, metadata=None):
|
||||
"""Logs the model to all configured loggers with optional epoch and metadata."""
|
||||
if metadata is None:
|
||||
metadata = {}
|
||||
# Log model to all loggers
|
||||
if self.wandb:
|
||||
art = wandb.Artifact(name=f"run_{wandb.run.id}_model", type="model", metadata=metadata)
|
||||
art.add_file(str(model_path))
|
||||
wandb.log_artifact(art)
|
||||
if self.clearml:
|
||||
self.clearml.log_model(model_path=model_path, model_name=model_path.stem)
|
||||
|
||||
def update_params(self, params):
|
||||
"""Updates logged parameters in WandB and/or ClearML if enabled."""
|
||||
if self.wandb:
|
||||
wandb.run.config.update(params, allow_val_change=True)
|
||||
if self.clearml:
|
||||
self.clearml.task.connect(params)
|
||||
|
||||
|
||||
def log_tensorboard_graph(tb, model, imgsz=(640, 640)):
|
||||
"""Logs the model graph to TensorBoard with specified image size and model."""
|
||||
try:
|
||||
p = next(model.parameters()) # for device, type
|
||||
imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz # expand
|
||||
im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p) # input image (WARNING: must be zeros, not empty)
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore") # suppress jit trace warning
|
||||
tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), [])
|
||||
except Exception as e:
|
||||
LOGGER.warning(f"WARNING ⚠️ TensorBoard graph visualization failure {e}")
|
||||
|
||||
|
||||
def web_project_name(project):
|
||||
"""Converts a local project name to a standardized web project name with optional suffixes."""
|
||||
if not project.startswith("runs/train"):
|
||||
return project
|
||||
suffix = "-Classify" if project.endswith("-cls") else "-Segment" if project.endswith("-seg") else ""
|
||||
return f"YOLOv5{suffix}"
|
||||
@ -1,222 +0,0 @@
|
||||
# ClearML Integration
|
||||
|
||||
<img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_dark.png#gh-light-mode-only" alt="Clear|ML"><img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_light.png#gh-dark-mode-only" alt="Clear|ML">
|
||||
|
||||
## About ClearML
|
||||
|
||||
[ClearML](https://clear.ml/) is an [open-source](https://github.com/allegroai/clearml) toolbox designed to save you time ⏱️.
|
||||
|
||||
🔨 Track every YOLOv5 training run in the <b>experiment manager</b>
|
||||
|
||||
🔧 Version and easily access your custom training data with the integrated ClearML <b>Data Versioning Tool</b>
|
||||
|
||||
🔦 <b>Remotely train and monitor</b> your YOLOv5 training runs using ClearML Agent
|
||||
|
||||
🔬 Get the very best mAP using ClearML <b>Hyperparameter Optimization</b>
|
||||
|
||||
🔭 Turn your newly trained <b>YOLOv5 model into an API</b> with just a few commands using ClearML Serving
|
||||
|
||||
And so much more. It's up to you how many of these tools you want to use, you can stick to the experiment manager, or chain them all together into an impressive pipeline!
|
||||
|
||||

|
||||
|
||||
## 🦾 Setting Things Up
|
||||
|
||||
To keep track of your experiments and/or data, ClearML needs to communicate to a server. You have 2 options to get one:
|
||||
|
||||
Either sign up for free to the [ClearML Hosted Service](https://clear.ml/) or you can set up your own server, see [here](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server). Even the server is open-source, so even if you're dealing with sensitive data, you should be good to go!
|
||||
|
||||
1. Install the `clearml` python package:
|
||||
|
||||
```bash
|
||||
pip install clearml
|
||||
```
|
||||
|
||||
2. Connect the ClearML SDK to the server by [creating credentials](https://app.clear.ml/settings/workspace-configuration) (go right top to Settings -> Workspace -> Create new credentials), then execute the command below and follow the instructions:
|
||||
|
||||
```bash
|
||||
clearml-init
|
||||
```
|
||||
|
||||
That's it! You're done 😎
|
||||
|
||||
## 🚀 Training YOLOv5 With ClearML
|
||||
|
||||
To enable ClearML experiment tracking, simply install the ClearML pip package.
|
||||
|
||||
```bash
|
||||
pip install clearml>=1.2.0
|
||||
```
|
||||
|
||||
This will enable integration with the YOLOv5 training script. Every training run from now on, will be captured and stored by the ClearML experiment manager.
|
||||
|
||||
If you want to change the `project_name` or `task_name`, use the `--project` and `--name` arguments of the `train.py` script, by default the project will be called `YOLOv5` and the task `Training`. PLEASE NOTE: ClearML uses `/` as a delimiter for subprojects, so be careful when using `/` in your project name!
|
||||
|
||||
```bash
|
||||
python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache
|
||||
```
|
||||
|
||||
or with custom project and task name:
|
||||
|
||||
```bash
|
||||
python train.py --project my_project --name my_training --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache
|
||||
```
|
||||
|
||||
This will capture:
|
||||
|
||||
- Source code + uncommitted changes
|
||||
- Installed packages
|
||||
- (Hyper)parameters
|
||||
- Model files (use `--save-period n` to save a checkpoint every n epochs)
|
||||
- Console output
|
||||
- Scalars (mAP_0.5, mAP_0.5:0.95, precision, recall, losses, learning rates, ...)
|
||||
- General info such as machine details, runtime, creation date etc.
|
||||
- All produced plots such as label correlogram and confusion matrix
|
||||
- Images with bounding boxes per epoch
|
||||
- Mosaic per epoch
|
||||
- Validation images per epoch
|
||||
- ...
|
||||
|
||||
That's a lot right? 🤯 Now, we can visualize all of this information in the ClearML UI to get an overview of our training progress. Add custom columns to the table view (such as e.g. mAP_0.5) so you can easily sort on the best performing model. Or select multiple experiments and directly compare them!
|
||||
|
||||
There even more we can do with all of this information, like hyperparameter optimization and remote execution, so keep reading if you want to see how that works!
|
||||
|
||||
## 🔗 Dataset Version Management
|
||||
|
||||
Versioning your data separately from your code is generally a good idea and makes it easy to acquire the latest version too. This repository supports supplying a dataset version ID, and it will make sure to get the data if it's not there yet. Next to that, this workflow also saves the used dataset ID as part of the task parameters, so you will always know for sure which data was used in which experiment!
|
||||
|
||||

|
||||
|
||||
### Prepare Your Dataset
|
||||
|
||||
The YOLOv5 repository supports a number of different datasets by using yaml files containing their information. By default datasets are downloaded to the `../datasets` folder in relation to the repository root folder. So if you downloaded the `coco128` dataset using the link in the yaml or with the scripts provided by yolov5, you get this folder structure:
|
||||
|
||||
```
|
||||
..
|
||||
|_ yolov5
|
||||
|_ datasets
|
||||
|_ coco128
|
||||
|_ images
|
||||
|_ labels
|
||||
|_ LICENSE
|
||||
|_ README.txt
|
||||
```
|
||||
|
||||
But this can be any dataset you wish. Feel free to use your own, as long as you keep to this folder structure.
|
||||
|
||||
Next, ⚠️**copy the corresponding yaml file to the root of the dataset folder**⚠️. This yaml files contains the information ClearML will need to properly use the dataset. You can make this yourself too, of course, just follow the structure of the example yamls.
|
||||
|
||||
Basically we need the following keys: `path`, `train`, `test`, `val`, `nc`, `names`.
|
||||
|
||||
```
|
||||
..
|
||||
|_ yolov5
|
||||
|_ datasets
|
||||
|_ coco128
|
||||
|_ images
|
||||
|_ labels
|
||||
|_ coco128.yaml # <---- HERE!
|
||||
|_ LICENSE
|
||||
|_ README.txt
|
||||
```
|
||||
|
||||
### Upload Your Dataset
|
||||
|
||||
To get this dataset into ClearML as a versioned dataset, go to the dataset root folder and run the following command:
|
||||
|
||||
```bash
|
||||
cd coco128
|
||||
clearml-data sync --project YOLOv5 --name coco128 --folder .
|
||||
```
|
||||
|
||||
The command `clearml-data sync` is actually a shorthand command. You could also run these commands one after the other:
|
||||
|
||||
```bash
|
||||
# Optionally add --parent <parent_dataset_id> if you want to base
|
||||
# this version on another dataset version, so no duplicate files are uploaded!
|
||||
clearml-data create --name coco128 --project YOLOv5
|
||||
clearml-data add --files .
|
||||
clearml-data close
|
||||
```
|
||||
|
||||
### Run Training Using A ClearML Dataset
|
||||
|
||||
Now that you have a ClearML dataset, you can very simply use it to train custom YOLOv5 🚀 models!
|
||||
|
||||
```bash
|
||||
python train.py --img 640 --batch 16 --epochs 3 --data clearml://<your_dataset_id> --weights yolov5s.pt --cache
|
||||
```
|
||||
|
||||
## 👀 Hyperparameter Optimization
|
||||
|
||||
Now that we have our experiments and data versioned, it's time to take a look at what we can build on top!
|
||||
|
||||
Using the code information, installed packages and environment details, the experiment itself is now **completely reproducible**. In fact, ClearML allows you to clone an experiment and even change its parameters. We can then just rerun it with these new parameters automatically, this is basically what HPO does!
|
||||
|
||||
To **run hyperparameter optimization locally**, we've included a pre-made script for you. Just make sure a training task has been run at least once, so it is in the ClearML experiment manager, we will essentially clone it and change its hyperparameters.
|
||||
|
||||
You'll need to fill in the ID of this `template task` in the script found at `utils/loggers/clearml/hpo.py` and then just run it :) You can change `task.execute_locally()` to `task.execute()` to put it in a ClearML queue and have a remote agent work on it instead.
|
||||
|
||||
```bash
|
||||
# To use optuna, install it first, otherwise you can change the optimizer to just be RandomSearch
|
||||
pip install optuna
|
||||
python utils/loggers/clearml/hpo.py
|
||||
```
|
||||
|
||||

|
||||
|
||||
## 🤯 Remote Execution (advanced)
|
||||
|
||||
Running HPO locally is really handy, but what if we want to run our experiments on a remote machine instead? Maybe you have access to a very powerful GPU machine on-site, or you have some budget to use cloud GPUs. This is where the ClearML Agent comes into play. Check out what the agent can do here:
|
||||
|
||||
- [YouTube video](https://www.youtube.com/watch?v=MX3BrXnaULs&feature=youtu.be)
|
||||
- [Documentation](https://clear.ml/docs/latest/docs/clearml_agent)
|
||||
|
||||
In short: every experiment tracked by the experiment manager contains enough information to reproduce it on a different machine (installed packages, uncommitted changes etc.). So a ClearML agent does just that: it listens to a queue for incoming tasks and when it finds one, it recreates the environment and runs it while still reporting scalars, plots etc. to the experiment manager.
|
||||
|
||||
You can turn any machine (a cloud VM, a local GPU machine, your own laptop ... ) into a ClearML agent by simply running:
|
||||
|
||||
```bash
|
||||
clearml-agent daemon --queue <queues_to_listen_to> [--docker]
|
||||
```
|
||||
|
||||
### Cloning, Editing And Enqueuing
|
||||
|
||||
With our agent running, we can give it some work. Remember from the HPO section that we can clone a task and edit the hyperparameters? We can do that from the interface too!
|
||||
|
||||
🪄 Clone the experiment by right-clicking it
|
||||
|
||||
🎯 Edit the hyperparameters to what you wish them to be
|
||||
|
||||
⏳ Enqueue the task to any of the queues by right-clicking it
|
||||
|
||||

|
||||
|
||||
### Executing A Task Remotely
|
||||
|
||||
Now you can clone a task like we explained above, or simply mark your current script by adding `task.execute_remotely()` and on execution it will be put into a queue, for the agent to start working on!
|
||||
|
||||
To run the YOLOv5 training script remotely, all you have to do is add this line to the training.py script after the clearml logger has been instantiated:
|
||||
|
||||
```python
|
||||
# ...
|
||||
# Loggers
|
||||
data_dict = None
|
||||
if RANK in {-1, 0}:
|
||||
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
|
||||
if loggers.clearml:
|
||||
loggers.clearml.task.execute_remotely(queue="my_queue") # <------ ADD THIS LINE
|
||||
# Data_dict is either None is user did not choose for ClearML dataset or is filled in by ClearML
|
||||
data_dict = loggers.clearml.data_dict
|
||||
# ...
|
||||
```
|
||||
|
||||
When running the training script after this change, python will run the script up until that line, after which it will package the code and send it to the queue instead!
|
||||
|
||||
### Autoscaling workers
|
||||
|
||||
ClearML comes with autoscalers too! This tool will automatically spin up new remote machines in the cloud of your choice (AWS, GCP, Azure) and turn them into ClearML agents for you whenever there are experiments detected in the queue. Once the tasks are processed, the autoscaler will automatically shut down the remote machines, and you stop paying!
|
||||
|
||||
Check out the autoscalers getting started video below.
|
||||
|
||||
[](https://youtu.be/j4XVMAaUt3E)
|
||||
@ -1,230 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""Main Logger class for ClearML experiment tracking."""
|
||||
|
||||
import glob
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
import matplotlib.image as mpimg
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import yaml
|
||||
from ultralytics.utils.plotting import Annotator, colors
|
||||
|
||||
try:
|
||||
import clearml
|
||||
from clearml import Dataset, Task
|
||||
|
||||
assert hasattr(clearml, "__version__") # verify package import not local dir
|
||||
except (ImportError, AssertionError):
|
||||
clearml = None
|
||||
|
||||
|
||||
def construct_dataset(clearml_info_string):
|
||||
"""Load in a clearml dataset and fill the internal data_dict with its contents."""
|
||||
dataset_id = clearml_info_string.replace("clearml://", "")
|
||||
dataset = Dataset.get(dataset_id=dataset_id)
|
||||
dataset_root_path = Path(dataset.get_local_copy())
|
||||
|
||||
# We'll search for the yaml file definition in the dataset
|
||||
yaml_filenames = list(glob.glob(str(dataset_root_path / "*.yaml")) + glob.glob(str(dataset_root_path / "*.yml")))
|
||||
if len(yaml_filenames) > 1:
|
||||
raise ValueError(
|
||||
"More than one yaml file was found in the dataset root, cannot determine which one contains "
|
||||
"the dataset definition this way."
|
||||
)
|
||||
elif not yaml_filenames:
|
||||
raise ValueError(
|
||||
"No yaml definition found in dataset root path, check that there is a correct yaml file "
|
||||
"inside the dataset root path."
|
||||
)
|
||||
with open(yaml_filenames[0]) as f:
|
||||
dataset_definition = yaml.safe_load(f)
|
||||
|
||||
assert set(
|
||||
dataset_definition.keys()
|
||||
).issuperset(
|
||||
{"train", "test", "val", "nc", "names"}
|
||||
), "The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')"
|
||||
|
||||
data_dict = {
|
||||
"train": (
|
||||
str((dataset_root_path / dataset_definition["train"]).resolve()) if dataset_definition["train"] else None
|
||||
)
|
||||
}
|
||||
data_dict["test"] = (
|
||||
str((dataset_root_path / dataset_definition["test"]).resolve()) if dataset_definition["test"] else None
|
||||
)
|
||||
data_dict["val"] = (
|
||||
str((dataset_root_path / dataset_definition["val"]).resolve()) if dataset_definition["val"] else None
|
||||
)
|
||||
data_dict["nc"] = dataset_definition["nc"]
|
||||
data_dict["names"] = dataset_definition["names"]
|
||||
|
||||
return data_dict
|
||||
|
||||
|
||||
class ClearmlLogger:
|
||||
"""
|
||||
Log training runs, datasets, models, and predictions to ClearML.
|
||||
|
||||
This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default, this information
|
||||
includes hyperparameters, system configuration and metrics, model metrics, code information and basic data metrics
|
||||
and analyses.
|
||||
|
||||
By providing additional command line arguments to train.py, datasets, models and predictions can also be logged.
|
||||
"""
|
||||
|
||||
def __init__(self, opt, hyp):
|
||||
"""
|
||||
- Initialize ClearML Task, this object will capture the experiment
|
||||
- Upload dataset version to ClearML Data if opt.upload_dataset is True.
|
||||
|
||||
Arguments:
|
||||
opt (namespace) -- Commandline arguments for this run
|
||||
hyp (dict) -- Hyperparameters for this run
|
||||
|
||||
"""
|
||||
self.current_epoch = 0
|
||||
# Keep tracked of amount of logged images to enforce a limit
|
||||
self.current_epoch_logged_images = set()
|
||||
# Maximum number of images to log to clearML per epoch
|
||||
self.max_imgs_to_log_per_epoch = 16
|
||||
# Get the interval of epochs when bounding box images should be logged
|
||||
# Only for detection task though!
|
||||
if "bbox_interval" in opt:
|
||||
self.bbox_interval = opt.bbox_interval
|
||||
self.clearml = clearml
|
||||
self.task = None
|
||||
self.data_dict = None
|
||||
if self.clearml:
|
||||
self.task = Task.init(
|
||||
project_name="YOLOv5" if str(opt.project).startswith("runs/") else opt.project,
|
||||
task_name=opt.name if opt.name != "exp" else "Training",
|
||||
tags=["YOLOv5"],
|
||||
output_uri=True,
|
||||
reuse_last_task_id=opt.exist_ok,
|
||||
auto_connect_frameworks={"pytorch": False, "matplotlib": False},
|
||||
# We disconnect pytorch auto-detection, because we added manual model save points in the code
|
||||
)
|
||||
# ClearML's hooks will already grab all general parameters
|
||||
# Only the hyperparameters coming from the yaml config file
|
||||
# will have to be added manually!
|
||||
self.task.connect(hyp, name="Hyperparameters")
|
||||
self.task.connect(opt, name="Args")
|
||||
|
||||
# Make sure the code is easily remotely runnable by setting the docker image to use by the remote agent
|
||||
self.task.set_base_docker(
|
||||
"ultralytics/yolov5:latest",
|
||||
docker_arguments='--ipc=host -e="CLEARML_AGENT_SKIP_PYTHON_ENV_INSTALL=1"',
|
||||
docker_setup_bash_script="pip install clearml",
|
||||
)
|
||||
|
||||
# Get ClearML Dataset Version if requested
|
||||
if opt.data.startswith("clearml://"):
|
||||
# data_dict should have the following keys:
|
||||
# names, nc (number of classes), test, train, val (all three relative paths to ../datasets)
|
||||
self.data_dict = construct_dataset(opt.data)
|
||||
# Set data to data_dict because wandb will crash without this information and opt is the best way
|
||||
# to give it to them
|
||||
opt.data = self.data_dict
|
||||
|
||||
def log_scalars(self, metrics, epoch):
|
||||
"""
|
||||
Log scalars/metrics to ClearML.
|
||||
|
||||
Arguments:
|
||||
metrics (dict) Metrics in dict format: {"metrics/mAP": 0.8, ...}
|
||||
epoch (int) iteration number for the current set of metrics
|
||||
"""
|
||||
for k, v in metrics.items():
|
||||
title, series = k.split("/")
|
||||
self.task.get_logger().report_scalar(title, series, v, epoch)
|
||||
|
||||
def log_model(self, model_path, model_name, epoch=0):
|
||||
"""
|
||||
Log model weights to ClearML.
|
||||
|
||||
Arguments:
|
||||
model_path (PosixPath or str) Path to the model weights
|
||||
model_name (str) Name of the model visible in ClearML
|
||||
epoch (int) Iteration / epoch of the model weights
|
||||
"""
|
||||
self.task.update_output_model(
|
||||
model_path=str(model_path), name=model_name, iteration=epoch, auto_delete_file=False
|
||||
)
|
||||
|
||||
def log_summary(self, metrics):
|
||||
"""
|
||||
Log final metrics to a summary table.
|
||||
|
||||
Arguments:
|
||||
metrics (dict) Metrics in dict format: {"metrics/mAP": 0.8, ...}
|
||||
"""
|
||||
for k, v in metrics.items():
|
||||
self.task.get_logger().report_single_value(k, v)
|
||||
|
||||
def log_plot(self, title, plot_path):
|
||||
"""
|
||||
Log image as plot in the plot section of ClearML.
|
||||
|
||||
Arguments:
|
||||
title (str) Title of the plot
|
||||
plot_path (PosixPath or str) Path to the saved image file
|
||||
"""
|
||||
img = mpimg.imread(plot_path)
|
||||
fig = plt.figure()
|
||||
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect="auto", xticks=[], yticks=[]) # no ticks
|
||||
ax.imshow(img)
|
||||
|
||||
self.task.get_logger().report_matplotlib_figure(title, "", figure=fig, report_interactive=False)
|
||||
|
||||
def log_debug_samples(self, files, title="Debug Samples"):
|
||||
"""
|
||||
Log files (images) as debug samples in the ClearML task.
|
||||
|
||||
Arguments:
|
||||
files (List(PosixPath)) a list of file paths in PosixPath format
|
||||
title (str) A title that groups together images with the same values
|
||||
"""
|
||||
for f in files:
|
||||
if f.exists():
|
||||
it = re.search(r"_batch(\d+)", f.name)
|
||||
iteration = int(it.groups()[0]) if it else 0
|
||||
self.task.get_logger().report_image(
|
||||
title=title, series=f.name.replace(f"_batch{iteration}", ""), local_path=str(f), iteration=iteration
|
||||
)
|
||||
|
||||
def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_threshold=0.25):
|
||||
"""
|
||||
Draw the bounding boxes on a single image and report the result as a ClearML debug sample.
|
||||
|
||||
Arguments:
|
||||
image_path (PosixPath) the path the original image file
|
||||
boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
||||
class_names (dict): dict containing mapping of class int to class name
|
||||
image (Tensor): A torch tensor containing the actual image data
|
||||
"""
|
||||
if (
|
||||
len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch
|
||||
and self.current_epoch >= 0
|
||||
and (self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images)
|
||||
):
|
||||
im = np.ascontiguousarray(np.moveaxis(image.mul(255).clamp(0, 255).byte().cpu().numpy(), 0, 2))
|
||||
annotator = Annotator(im=im, pil=True)
|
||||
for i, (conf, class_nr, box) in enumerate(zip(boxes[:, 4], boxes[:, 5], boxes[:, :4])):
|
||||
color = colors(i)
|
||||
|
||||
class_name = class_names[int(class_nr)]
|
||||
confidence_percentage = round(float(conf) * 100, 2)
|
||||
label = f"{class_name}: {confidence_percentage}%"
|
||||
|
||||
if conf > conf_threshold:
|
||||
annotator.rectangle(box.cpu().numpy(), outline=color)
|
||||
annotator.box_label(box.cpu().numpy(), label=label, color=color)
|
||||
|
||||
annotated_image = annotator.result()
|
||||
self.task.get_logger().report_image(
|
||||
title="Bounding Boxes", series=image_path.name, iteration=self.current_epoch, image=annotated_image
|
||||
)
|
||||
self.current_epoch_logged_images.add(image_path)
|
||||
@ -1,90 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
from clearml import Task
|
||||
|
||||
# Connecting ClearML with the current process,
|
||||
# from here on everything is logged automatically
|
||||
from clearml.automation import HyperParameterOptimizer, UniformParameterRange
|
||||
from clearml.automation.optuna import OptimizerOptuna
|
||||
|
||||
task = Task.init(
|
||||
project_name="Hyper-Parameter Optimization",
|
||||
task_name="YOLOv5",
|
||||
task_type=Task.TaskTypes.optimizer,
|
||||
reuse_last_task_id=False,
|
||||
)
|
||||
|
||||
# Example use case:
|
||||
optimizer = HyperParameterOptimizer(
|
||||
# This is the experiment we want to optimize
|
||||
base_task_id="<your_template_task_id>",
|
||||
# here we define the hyper-parameters to optimize
|
||||
# Notice: The parameter name should exactly match what you see in the UI: <section_name>/<parameter>
|
||||
# For Example, here we see in the base experiment a section Named: "General"
|
||||
# under it a parameter named "batch_size", this becomes "General/batch_size"
|
||||
# If you have `argparse` for example, then arguments will appear under the "Args" section,
|
||||
# and you should instead pass "Args/batch_size"
|
||||
hyper_parameters=[
|
||||
UniformParameterRange("Hyperparameters/lr0", min_value=1e-5, max_value=1e-1),
|
||||
UniformParameterRange("Hyperparameters/lrf", min_value=0.01, max_value=1.0),
|
||||
UniformParameterRange("Hyperparameters/momentum", min_value=0.6, max_value=0.98),
|
||||
UniformParameterRange("Hyperparameters/weight_decay", min_value=0.0, max_value=0.001),
|
||||
UniformParameterRange("Hyperparameters/warmup_epochs", min_value=0.0, max_value=5.0),
|
||||
UniformParameterRange("Hyperparameters/warmup_momentum", min_value=0.0, max_value=0.95),
|
||||
UniformParameterRange("Hyperparameters/warmup_bias_lr", min_value=0.0, max_value=0.2),
|
||||
UniformParameterRange("Hyperparameters/box", min_value=0.02, max_value=0.2),
|
||||
UniformParameterRange("Hyperparameters/cls", min_value=0.2, max_value=4.0),
|
||||
UniformParameterRange("Hyperparameters/cls_pw", min_value=0.5, max_value=2.0),
|
||||
UniformParameterRange("Hyperparameters/obj", min_value=0.2, max_value=4.0),
|
||||
UniformParameterRange("Hyperparameters/obj_pw", min_value=0.5, max_value=2.0),
|
||||
UniformParameterRange("Hyperparameters/iou_t", min_value=0.1, max_value=0.7),
|
||||
UniformParameterRange("Hyperparameters/anchor_t", min_value=2.0, max_value=8.0),
|
||||
UniformParameterRange("Hyperparameters/fl_gamma", min_value=0.0, max_value=4.0),
|
||||
UniformParameterRange("Hyperparameters/hsv_h", min_value=0.0, max_value=0.1),
|
||||
UniformParameterRange("Hyperparameters/hsv_s", min_value=0.0, max_value=0.9),
|
||||
UniformParameterRange("Hyperparameters/hsv_v", min_value=0.0, max_value=0.9),
|
||||
UniformParameterRange("Hyperparameters/degrees", min_value=0.0, max_value=45.0),
|
||||
UniformParameterRange("Hyperparameters/translate", min_value=0.0, max_value=0.9),
|
||||
UniformParameterRange("Hyperparameters/scale", min_value=0.0, max_value=0.9),
|
||||
UniformParameterRange("Hyperparameters/shear", min_value=0.0, max_value=10.0),
|
||||
UniformParameterRange("Hyperparameters/perspective", min_value=0.0, max_value=0.001),
|
||||
UniformParameterRange("Hyperparameters/flipud", min_value=0.0, max_value=1.0),
|
||||
UniformParameterRange("Hyperparameters/fliplr", min_value=0.0, max_value=1.0),
|
||||
UniformParameterRange("Hyperparameters/mosaic", min_value=0.0, max_value=1.0),
|
||||
UniformParameterRange("Hyperparameters/mixup", min_value=0.0, max_value=1.0),
|
||||
UniformParameterRange("Hyperparameters/copy_paste", min_value=0.0, max_value=1.0),
|
||||
],
|
||||
# this is the objective metric we want to maximize/minimize
|
||||
objective_metric_title="metrics",
|
||||
objective_metric_series="mAP_0.5",
|
||||
# now we decide if we want to maximize it or minimize it (accuracy we maximize)
|
||||
objective_metric_sign="max",
|
||||
# let us limit the number of concurrent experiments,
|
||||
# this in turn will make sure we don't bombard the scheduler with experiments.
|
||||
# if we have an auto-scaler connected, this, by proxy, will limit the number of machine
|
||||
max_number_of_concurrent_tasks=1,
|
||||
# this is the optimizer class (actually doing the optimization)
|
||||
# Currently, we can choose from GridSearch, RandomSearch or OptimizerBOHB (Bayesian optimization Hyper-Band)
|
||||
optimizer_class=OptimizerOptuna,
|
||||
# If specified only the top K performing Tasks will be kept, the others will be automatically archived
|
||||
save_top_k_tasks_only=5, # 5,
|
||||
compute_time_limit=None,
|
||||
total_max_jobs=20,
|
||||
min_iteration_per_job=None,
|
||||
max_iteration_per_job=None,
|
||||
)
|
||||
|
||||
# report every 10 seconds, this is way too often, but we are testing here
|
||||
optimizer.set_report_period(10 / 60)
|
||||
# You can also use the line below instead to run all the optimizer tasks locally, without using queues or agent
|
||||
# an_optimizer.start_locally(job_complete_callback=job_complete_callback)
|
||||
# set the time limit for the optimization process (2 hours)
|
||||
optimizer.set_time_limit(in_minutes=120.0)
|
||||
# Start the optimization process in the local environment
|
||||
optimizer.start_locally()
|
||||
# wait until process is done (notice we are controlling the optimization process in the background)
|
||||
optimizer.wait()
|
||||
# make sure background optimization stopped
|
||||
optimizer.stop()
|
||||
|
||||
print("We are done, good bye")
|
||||
@ -1,250 +0,0 @@
|
||||
<img src="https://cdn.comet.ml/img/notebook_logo.png">
|
||||
|
||||
# YOLOv5 with Comet
|
||||
|
||||
This guide will cover how to use YOLOv5 with [Comet](https://bit.ly/yolov5-readme-comet2)
|
||||
|
||||
# About Comet
|
||||
|
||||
Comet builds tools that help data scientists, engineers, and team leaders accelerate and optimize machine learning and deep learning models.
|
||||
|
||||
Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!
|
||||
|
||||
# Getting Started
|
||||
|
||||
## Install Comet
|
||||
|
||||
```shell
|
||||
pip install comet_ml
|
||||
```
|
||||
|
||||
## Configure Comet Credentials
|
||||
|
||||
There are two ways to configure Comet with YOLOv5.
|
||||
|
||||
You can either set your credentials through environment variables
|
||||
|
||||
**Environment Variables**
|
||||
|
||||
```shell
|
||||
export COMET_API_KEY=<Your Comet API Key>
|
||||
export COMET_PROJECT_NAME=<Your Comet Project Name> # This will default to 'yolov5'
|
||||
```
|
||||
|
||||
Or create a `.comet.config` file in your working directory and set your credentials there.
|
||||
|
||||
**Comet Configuration File**
|
||||
|
||||
```
|
||||
[comet]
|
||||
api_key=<Your Comet API Key>
|
||||
project_name=<Your Comet Project Name> # This will default to 'yolov5'
|
||||
```
|
||||
|
||||
## Run the Training Script
|
||||
|
||||
```shell
|
||||
# Train YOLOv5s on COCO128 for 5 epochs
|
||||
python train.py --img 640 --batch 16 --epochs 5 --data coco128.yaml --weights yolov5s.pt
|
||||
```
|
||||
|
||||
That's it! Comet will automatically log your hyperparameters, command line arguments, training and validation metrics. You can visualize and analyze your runs in the Comet UI
|
||||
|
||||
<img width="1920" alt="yolo-ui" src="https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png">
|
||||
|
||||
# Try out an Example!
|
||||
|
||||
Check out an example of a [completed run here](https://www.comet.com/examples/comet-example-yolov5/a0e29e0e9b984e4a822db2a62d0cb357?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&xAxis=step&utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)
|
||||
|
||||
Or better yet, try it out yourself in this Colab Notebook
|
||||
|
||||
[](https://colab.research.google.com/github/comet-ml/comet-examples/blob/master/integrations/model-training/yolov5/notebooks/Comet_and_YOLOv5.ipynb)
|
||||
|
||||
# Log automatically
|
||||
|
||||
By default, Comet will log the following items
|
||||
|
||||
## Metrics
|
||||
|
||||
- Box Loss, Object Loss, Classification Loss for the training and validation data
|
||||
- mAP_0.5, mAP_0.5:0.95 metrics for the validation data.
|
||||
- Precision and Recall for the validation data
|
||||
|
||||
## Parameters
|
||||
|
||||
- Model Hyperparameters
|
||||
- All parameters passed through the command line options
|
||||
|
||||
## Visualizations
|
||||
|
||||
- Confusion Matrix of the model predictions on the validation data
|
||||
- Plots for the PR and F1 curves across all classes
|
||||
- Correlogram of the Class Labels
|
||||
|
||||
# Configure Comet Logging
|
||||
|
||||
Comet can be configured to log additional data either through command line flags passed to the training script or through environment variables.
|
||||
|
||||
```shell
|
||||
export COMET_MODE=online # Set whether to run Comet in 'online' or 'offline' mode. Defaults to online
|
||||
export COMET_MODEL_NAME=<your model name> #Set the name for the saved model. Defaults to yolov5
|
||||
export COMET_LOG_CONFUSION_MATRIX=false # Set to disable logging a Comet Confusion Matrix. Defaults to true
|
||||
export COMET_MAX_IMAGE_UPLOADS=<number of allowed images to upload to Comet> # Controls how many total image predictions to log to Comet. Defaults to 100.
|
||||
export COMET_LOG_PER_CLASS_METRICS=true # Set to log evaluation metrics for each detected class at the end of training. Defaults to false
|
||||
export COMET_DEFAULT_CHECKPOINT_FILENAME=<your checkpoint filename> # Set this if you would like to resume training from a different checkpoint. Defaults to 'last.pt'
|
||||
export COMET_LOG_BATCH_LEVEL_METRICS=true # Set this if you would like to log training metrics at the batch level. Defaults to false.
|
||||
export COMET_LOG_PREDICTIONS=true # Set this to false to disable logging model predictions
|
||||
```
|
||||
|
||||
## Logging Checkpoints with Comet
|
||||
|
||||
Logging Models to Comet is disabled by default. To enable it, pass the `save-period` argument to the training script. This will save the logged checkpoints to Comet based on the interval value provided by `save-period`
|
||||
|
||||
```shell
|
||||
python train.py \
|
||||
--img 640 \
|
||||
--batch 16 \
|
||||
--epochs 5 \
|
||||
--data coco128.yaml \
|
||||
--weights yolov5s.pt \
|
||||
--save-period 1
|
||||
```
|
||||
|
||||
## Logging Model Predictions
|
||||
|
||||
By default, model predictions (images, ground truth labels and bounding boxes) will be logged to Comet.
|
||||
|
||||
You can control the frequency of logged predictions and the associated images by passing the `bbox_interval` command line argument. Predictions can be visualized using Comet's Object Detection Custom Panel. This frequency corresponds to every Nth batch of data per epoch. In the example below, we are logging every 2nd batch of data for each epoch.
|
||||
|
||||
**Note:** The YOLOv5 validation dataloader will default to a batch size of 32, so you will have to set the logging frequency accordingly.
|
||||
|
||||
Here is an [example project using the Panel](https://www.comet.com/examples/comet-example-yolov5?shareable=YcwMiJaZSXfcEXpGOHDD12vA1&utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)
|
||||
|
||||
```shell
|
||||
python train.py \
|
||||
--img 640 \
|
||||
--batch 16 \
|
||||
--epochs 5 \
|
||||
--data coco128.yaml \
|
||||
--weights yolov5s.pt \
|
||||
--bbox_interval 2
|
||||
```
|
||||
|
||||
### Controlling the number of Prediction Images logged to Comet
|
||||
|
||||
When logging predictions from YOLOv5, Comet will log the images associated with each set of predictions. By default a maximum of 100 validation images are logged. You can increase or decrease this number using the `COMET_MAX_IMAGE_UPLOADS` environment variable.
|
||||
|
||||
```shell
|
||||
env COMET_MAX_IMAGE_UPLOADS=200 python train.py \
|
||||
--img 640 \
|
||||
--batch 16 \
|
||||
--epochs 5 \
|
||||
--data coco128.yaml \
|
||||
--weights yolov5s.pt \
|
||||
--bbox_interval 1
|
||||
```
|
||||
|
||||
### Logging Class Level Metrics
|
||||
|
||||
Use the `COMET_LOG_PER_CLASS_METRICS` environment variable to log mAP, precision, recall, f1 for each class.
|
||||
|
||||
```shell
|
||||
env COMET_LOG_PER_CLASS_METRICS=true python train.py \
|
||||
--img 640 \
|
||||
--batch 16 \
|
||||
--epochs 5 \
|
||||
--data coco128.yaml \
|
||||
--weights yolov5s.pt
|
||||
```
|
||||
|
||||
## Uploading a Dataset to Comet Artifacts
|
||||
|
||||
If you would like to store your data using [Comet Artifacts](https://www.comet.com/docs/v2/guides/data-management/using-artifacts/#learn-more?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github), you can do so using the `upload_dataset` flag.
|
||||
|
||||
The dataset be organized in the way described in the [YOLOv5 documentation](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/). The dataset config `yaml` file must follow the same format as that of the `coco128.yaml` file.
|
||||
|
||||
```shell
|
||||
python train.py \
|
||||
--img 640 \
|
||||
--batch 16 \
|
||||
--epochs 5 \
|
||||
--data coco128.yaml \
|
||||
--weights yolov5s.pt \
|
||||
--upload_dataset
|
||||
```
|
||||
|
||||
You can find the uploaded dataset in the Artifacts tab in your Comet Workspace <img width="1073" alt="artifact-1" src="https://user-images.githubusercontent.com/7529846/186929193-162718bf-ec7b-4eb9-8c3b-86b3763ef8ea.png">
|
||||
|
||||
You can preview the data directly in the Comet UI. <img width="1082" alt="artifact-2" src="https://user-images.githubusercontent.com/7529846/186929215-432c36a9-c109-4eb0-944b-84c2786590d6.png">
|
||||
|
||||
Artifacts are versioned and also support adding metadata about the dataset. Comet will automatically log the metadata from your dataset `yaml` file <img width="963" alt="artifact-3" src="https://user-images.githubusercontent.com/7529846/186929256-9d44d6eb-1a19-42de-889a-bcbca3018f2e.png">
|
||||
|
||||
### Using a saved Artifact
|
||||
|
||||
If you would like to use a dataset from Comet Artifacts, set the `path` variable in your dataset `yaml` file to point to the following Artifact resource URL.
|
||||
|
||||
```
|
||||
# contents of artifact.yaml file
|
||||
path: "comet://<workspace name>/<artifact name>:<artifact version or alias>"
|
||||
```
|
||||
|
||||
Then pass this file to your training script in the following way
|
||||
|
||||
```shell
|
||||
python train.py \
|
||||
--img 640 \
|
||||
--batch 16 \
|
||||
--epochs 5 \
|
||||
--data artifact.yaml \
|
||||
--weights yolov5s.pt
|
||||
```
|
||||
|
||||
Artifacts also allow you to track the lineage of data as it flows through your Experimentation workflow. Here you can see a graph that shows you all the experiments that have used your uploaded dataset. <img width="1391" alt="artifact-4" src="https://user-images.githubusercontent.com/7529846/186929264-4c4014fa-fe51-4f3c-a5c5-f6d24649b1b4.png">
|
||||
|
||||
## Resuming a Training Run
|
||||
|
||||
If your training run is interrupted for any reason, e.g. disrupted internet connection, you can resume the run using the `resume` flag and the Comet Run Path.
|
||||
|
||||
The Run Path has the following format `comet://<your workspace name>/<your project name>/<experiment id>`.
|
||||
|
||||
This will restore the run to its state before the interruption, which includes restoring the model from a checkpoint, restoring all hyperparameters and training arguments and downloading Comet dataset Artifacts if they were used in the original run. The resumed run will continue logging to the existing Experiment in the Comet UI
|
||||
|
||||
```shell
|
||||
python train.py \
|
||||
--resume "comet://<your run path>"
|
||||
```
|
||||
|
||||
## Hyperparameter Search with the Comet Optimizer
|
||||
|
||||
YOLOv5 is also integrated with Comet's Optimizer, making is simple to visualize hyperparameter sweeps in the Comet UI.
|
||||
|
||||
### Configuring an Optimizer Sweep
|
||||
|
||||
To configure the Comet Optimizer, you will have to create a JSON file with the information about the sweep. An example file has been provided in `utils/loggers/comet/optimizer_config.json`
|
||||
|
||||
```shell
|
||||
python utils/loggers/comet/hpo.py \
|
||||
--comet_optimizer_config "utils/loggers/comet/optimizer_config.json"
|
||||
```
|
||||
|
||||
The `hpo.py` script accepts the same arguments as `train.py`. If you wish to pass additional arguments to your sweep simply add them after the script.
|
||||
|
||||
```shell
|
||||
python utils/loggers/comet/hpo.py \
|
||||
--comet_optimizer_config "utils/loggers/comet/optimizer_config.json" \
|
||||
--save-period 1 \
|
||||
--bbox_interval 1
|
||||
```
|
||||
|
||||
### Running a Sweep in Parallel
|
||||
|
||||
```shell
|
||||
comet optimizer -j <set number of workers> utils/loggers/comet/hpo.py \
|
||||
utils/loggers/comet/optimizer_config.json"
|
||||
```
|
||||
|
||||
### Visualizing Results
|
||||
|
||||
Comet provides a number of ways to visualize the results of your sweep. Take a look at a [project with a completed sweep here](https://www.comet.com/examples/comet-example-yolov5/view/PrlArHGuuhDTKC1UuBmTtOSXD/panels?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)
|
||||
|
||||
<img width="1626" alt="hyperparameter-yolo" src="https://user-images.githubusercontent.com/7529846/186914869-7dc1de14-583f-4323-967b-c9a66a29e495.png">
|
||||
@ -1,551 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
import glob
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[3] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
|
||||
try:
|
||||
import comet_ml
|
||||
|
||||
# Project Configuration
|
||||
config = comet_ml.config.get_config()
|
||||
COMET_PROJECT_NAME = config.get_string(os.getenv("COMET_PROJECT_NAME"), "comet.project_name", default="yolov5")
|
||||
except ImportError:
|
||||
comet_ml = None
|
||||
COMET_PROJECT_NAME = None
|
||||
|
||||
import PIL
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
import yaml
|
||||
|
||||
from utils.dataloaders import img2label_paths
|
||||
from utils.general import check_dataset, scale_boxes, xywh2xyxy
|
||||
from utils.metrics import box_iou
|
||||
|
||||
COMET_PREFIX = "comet://"
|
||||
|
||||
COMET_MODE = os.getenv("COMET_MODE", "online")
|
||||
|
||||
# Model Saving Settings
|
||||
COMET_MODEL_NAME = os.getenv("COMET_MODEL_NAME", "yolov5")
|
||||
|
||||
# Dataset Artifact Settings
|
||||
COMET_UPLOAD_DATASET = os.getenv("COMET_UPLOAD_DATASET", "false").lower() == "true"
|
||||
|
||||
# Evaluation Settings
|
||||
COMET_LOG_CONFUSION_MATRIX = os.getenv("COMET_LOG_CONFUSION_MATRIX", "true").lower() == "true"
|
||||
COMET_LOG_PREDICTIONS = os.getenv("COMET_LOG_PREDICTIONS", "true").lower() == "true"
|
||||
COMET_MAX_IMAGE_UPLOADS = int(os.getenv("COMET_MAX_IMAGE_UPLOADS", 100))
|
||||
|
||||
# Confusion Matrix Settings
|
||||
CONF_THRES = float(os.getenv("CONF_THRES", 0.001))
|
||||
IOU_THRES = float(os.getenv("IOU_THRES", 0.6))
|
||||
|
||||
# Batch Logging Settings
|
||||
COMET_LOG_BATCH_METRICS = os.getenv("COMET_LOG_BATCH_METRICS", "false").lower() == "true"
|
||||
COMET_BATCH_LOGGING_INTERVAL = os.getenv("COMET_BATCH_LOGGING_INTERVAL", 1)
|
||||
COMET_PREDICTION_LOGGING_INTERVAL = os.getenv("COMET_PREDICTION_LOGGING_INTERVAL", 1)
|
||||
COMET_LOG_PER_CLASS_METRICS = os.getenv("COMET_LOG_PER_CLASS_METRICS", "false").lower() == "true"
|
||||
|
||||
RANK = int(os.getenv("RANK", -1))
|
||||
|
||||
to_pil = T.ToPILImage()
|
||||
|
||||
|
||||
class CometLogger:
|
||||
"""Log metrics, parameters, source code, models and much more with Comet."""
|
||||
|
||||
def __init__(self, opt, hyp, run_id=None, job_type="Training", **experiment_kwargs) -> None:
|
||||
"""Initializes CometLogger with given options, hyperparameters, run ID, job type, and additional experiment
|
||||
arguments.
|
||||
"""
|
||||
self.job_type = job_type
|
||||
self.opt = opt
|
||||
self.hyp = hyp
|
||||
|
||||
# Comet Flags
|
||||
self.comet_mode = COMET_MODE
|
||||
|
||||
self.save_model = opt.save_period > -1
|
||||
self.model_name = COMET_MODEL_NAME
|
||||
|
||||
# Batch Logging Settings
|
||||
self.log_batch_metrics = COMET_LOG_BATCH_METRICS
|
||||
self.comet_log_batch_interval = COMET_BATCH_LOGGING_INTERVAL
|
||||
|
||||
# Dataset Artifact Settings
|
||||
self.upload_dataset = self.opt.upload_dataset or COMET_UPLOAD_DATASET
|
||||
self.resume = self.opt.resume
|
||||
|
||||
# Default parameters to pass to Experiment objects
|
||||
self.default_experiment_kwargs = {
|
||||
"log_code": False,
|
||||
"log_env_gpu": True,
|
||||
"log_env_cpu": True,
|
||||
"project_name": COMET_PROJECT_NAME,
|
||||
}
|
||||
self.default_experiment_kwargs.update(experiment_kwargs)
|
||||
self.experiment = self._get_experiment(self.comet_mode, run_id)
|
||||
self.experiment.set_name(self.opt.name)
|
||||
|
||||
self.data_dict = self.check_dataset(self.opt.data)
|
||||
self.class_names = self.data_dict["names"]
|
||||
self.num_classes = self.data_dict["nc"]
|
||||
|
||||
self.logged_images_count = 0
|
||||
self.max_images = COMET_MAX_IMAGE_UPLOADS
|
||||
|
||||
if run_id is None:
|
||||
self.experiment.log_other("Created from", "YOLOv5")
|
||||
if not isinstance(self.experiment, comet_ml.OfflineExperiment):
|
||||
workspace, project_name, experiment_id = self.experiment.url.split("/")[-3:]
|
||||
self.experiment.log_other(
|
||||
"Run Path",
|
||||
f"{workspace}/{project_name}/{experiment_id}",
|
||||
)
|
||||
self.log_parameters(vars(opt))
|
||||
self.log_parameters(self.opt.hyp)
|
||||
self.log_asset_data(
|
||||
self.opt.hyp,
|
||||
name="hyperparameters.json",
|
||||
metadata={"type": "hyp-config-file"},
|
||||
)
|
||||
self.log_asset(
|
||||
f"{self.opt.save_dir}/opt.yaml",
|
||||
metadata={"type": "opt-config-file"},
|
||||
)
|
||||
|
||||
self.comet_log_confusion_matrix = COMET_LOG_CONFUSION_MATRIX
|
||||
|
||||
if hasattr(self.opt, "conf_thres"):
|
||||
self.conf_thres = self.opt.conf_thres
|
||||
else:
|
||||
self.conf_thres = CONF_THRES
|
||||
if hasattr(self.opt, "iou_thres"):
|
||||
self.iou_thres = self.opt.iou_thres
|
||||
else:
|
||||
self.iou_thres = IOU_THRES
|
||||
|
||||
self.log_parameters({"val_iou_threshold": self.iou_thres, "val_conf_threshold": self.conf_thres})
|
||||
|
||||
self.comet_log_predictions = COMET_LOG_PREDICTIONS
|
||||
if self.opt.bbox_interval == -1:
|
||||
self.comet_log_prediction_interval = 1 if self.opt.epochs < 10 else self.opt.epochs // 10
|
||||
else:
|
||||
self.comet_log_prediction_interval = self.opt.bbox_interval
|
||||
|
||||
if self.comet_log_predictions:
|
||||
self.metadata_dict = {}
|
||||
self.logged_image_names = []
|
||||
|
||||
self.comet_log_per_class_metrics = COMET_LOG_PER_CLASS_METRICS
|
||||
|
||||
self.experiment.log_others(
|
||||
{
|
||||
"comet_mode": COMET_MODE,
|
||||
"comet_max_image_uploads": COMET_MAX_IMAGE_UPLOADS,
|
||||
"comet_log_per_class_metrics": COMET_LOG_PER_CLASS_METRICS,
|
||||
"comet_log_batch_metrics": COMET_LOG_BATCH_METRICS,
|
||||
"comet_log_confusion_matrix": COMET_LOG_CONFUSION_MATRIX,
|
||||
"comet_model_name": COMET_MODEL_NAME,
|
||||
}
|
||||
)
|
||||
|
||||
# Check if running the Experiment with the Comet Optimizer
|
||||
if hasattr(self.opt, "comet_optimizer_id"):
|
||||
self.experiment.log_other("optimizer_id", self.opt.comet_optimizer_id)
|
||||
self.experiment.log_other("optimizer_objective", self.opt.comet_optimizer_objective)
|
||||
self.experiment.log_other("optimizer_metric", self.opt.comet_optimizer_metric)
|
||||
self.experiment.log_other("optimizer_parameters", json.dumps(self.hyp))
|
||||
|
||||
def _get_experiment(self, mode, experiment_id=None):
|
||||
"""Returns a new or existing Comet.ml experiment based on mode and optional experiment_id."""
|
||||
if mode == "offline":
|
||||
return (
|
||||
comet_ml.ExistingOfflineExperiment(
|
||||
previous_experiment=experiment_id,
|
||||
**self.default_experiment_kwargs,
|
||||
)
|
||||
if experiment_id is not None
|
||||
else comet_ml.OfflineExperiment(
|
||||
**self.default_experiment_kwargs,
|
||||
)
|
||||
)
|
||||
try:
|
||||
if experiment_id is not None:
|
||||
return comet_ml.ExistingExperiment(
|
||||
previous_experiment=experiment_id,
|
||||
**self.default_experiment_kwargs,
|
||||
)
|
||||
|
||||
return comet_ml.Experiment(**self.default_experiment_kwargs)
|
||||
|
||||
except ValueError:
|
||||
logger.warning(
|
||||
"COMET WARNING: "
|
||||
"Comet credentials have not been set. "
|
||||
"Comet will default to offline logging. "
|
||||
"Please set your credentials to enable online logging."
|
||||
)
|
||||
return self._get_experiment("offline", experiment_id)
|
||||
|
||||
return
|
||||
|
||||
def log_metrics(self, log_dict, **kwargs):
|
||||
"""Logs metrics to the current experiment, accepting a dictionary of metric names and values."""
|
||||
self.experiment.log_metrics(log_dict, **kwargs)
|
||||
|
||||
def log_parameters(self, log_dict, **kwargs):
|
||||
"""Logs parameters to the current experiment, accepting a dictionary of parameter names and values."""
|
||||
self.experiment.log_parameters(log_dict, **kwargs)
|
||||
|
||||
def log_asset(self, asset_path, **kwargs):
|
||||
"""Logs a file or directory as an asset to the current experiment."""
|
||||
self.experiment.log_asset(asset_path, **kwargs)
|
||||
|
||||
def log_asset_data(self, asset, **kwargs):
|
||||
"""Logs in-memory data as an asset to the current experiment, with optional kwargs."""
|
||||
self.experiment.log_asset_data(asset, **kwargs)
|
||||
|
||||
def log_image(self, img, **kwargs):
|
||||
"""Logs an image to the current experiment with optional kwargs."""
|
||||
self.experiment.log_image(img, **kwargs)
|
||||
|
||||
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
|
||||
"""Logs model checkpoint to experiment with path, options, epoch, fitness, and best model flag."""
|
||||
if not self.save_model:
|
||||
return
|
||||
|
||||
model_metadata = {
|
||||
"fitness_score": fitness_score[-1],
|
||||
"epochs_trained": epoch + 1,
|
||||
"save_period": opt.save_period,
|
||||
"total_epochs": opt.epochs,
|
||||
}
|
||||
|
||||
model_files = glob.glob(f"{path}/*.pt")
|
||||
for model_path in model_files:
|
||||
name = Path(model_path).name
|
||||
|
||||
self.experiment.log_model(
|
||||
self.model_name,
|
||||
file_or_folder=model_path,
|
||||
file_name=name,
|
||||
metadata=model_metadata,
|
||||
overwrite=True,
|
||||
)
|
||||
|
||||
def check_dataset(self, data_file):
|
||||
"""Validates the dataset configuration by loading the YAML file specified in `data_file`."""
|
||||
with open(data_file) as f:
|
||||
data_config = yaml.safe_load(f)
|
||||
|
||||
path = data_config.get("path")
|
||||
if path and path.startswith(COMET_PREFIX):
|
||||
path = data_config["path"].replace(COMET_PREFIX, "")
|
||||
return self.download_dataset_artifact(path)
|
||||
self.log_asset(self.opt.data, metadata={"type": "data-config-file"})
|
||||
|
||||
return check_dataset(data_file)
|
||||
|
||||
def log_predictions(self, image, labelsn, path, shape, predn):
|
||||
"""Logs predictions with IOU filtering, given image, labels, path, shape, and predictions."""
|
||||
if self.logged_images_count >= self.max_images:
|
||||
return
|
||||
detections = predn[predn[:, 4] > self.conf_thres]
|
||||
iou = box_iou(labelsn[:, 1:], detections[:, :4])
|
||||
mask, _ = torch.where(iou > self.iou_thres)
|
||||
if len(mask) == 0:
|
||||
return
|
||||
|
||||
filtered_detections = detections[mask]
|
||||
filtered_labels = labelsn[mask]
|
||||
|
||||
image_id = path.split("/")[-1].split(".")[0]
|
||||
image_name = f"{image_id}_curr_epoch_{self.experiment.curr_epoch}"
|
||||
if image_name not in self.logged_image_names:
|
||||
native_scale_image = PIL.Image.open(path)
|
||||
self.log_image(native_scale_image, name=image_name)
|
||||
self.logged_image_names.append(image_name)
|
||||
|
||||
metadata = [
|
||||
{
|
||||
"label": f"{self.class_names[int(cls)]}-gt",
|
||||
"score": 100,
|
||||
"box": {"x": xyxy[0], "y": xyxy[1], "x2": xyxy[2], "y2": xyxy[3]},
|
||||
}
|
||||
for cls, *xyxy in filtered_labels.tolist()
|
||||
]
|
||||
metadata.extend(
|
||||
{
|
||||
"label": f"{self.class_names[int(cls)]}",
|
||||
"score": conf * 100,
|
||||
"box": {"x": xyxy[0], "y": xyxy[1], "x2": xyxy[2], "y2": xyxy[3]},
|
||||
}
|
||||
for *xyxy, conf, cls in filtered_detections.tolist()
|
||||
)
|
||||
self.metadata_dict[image_name] = metadata
|
||||
self.logged_images_count += 1
|
||||
|
||||
return
|
||||
|
||||
def preprocess_prediction(self, image, labels, shape, pred):
|
||||
"""Processes prediction data, resizing labels and adding dataset metadata."""
|
||||
nl, _ = labels.shape[0], pred.shape[0]
|
||||
|
||||
# Predictions
|
||||
if self.opt.single_cls:
|
||||
pred[:, 5] = 0
|
||||
|
||||
predn = pred.clone()
|
||||
scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1])
|
||||
|
||||
labelsn = None
|
||||
if nl:
|
||||
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
|
||||
scale_boxes(image.shape[1:], tbox, shape[0], shape[1]) # native-space labels
|
||||
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
|
||||
scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1]) # native-space pred
|
||||
|
||||
return predn, labelsn
|
||||
|
||||
def add_assets_to_artifact(self, artifact, path, asset_path, split):
|
||||
"""Adds image and label assets to a wandb artifact given dataset split and paths."""
|
||||
img_paths = sorted(glob.glob(f"{asset_path}/*"))
|
||||
label_paths = img2label_paths(img_paths)
|
||||
|
||||
for image_file, label_file in zip(img_paths, label_paths):
|
||||
image_logical_path, label_logical_path = map(lambda x: os.path.relpath(x, path), [image_file, label_file])
|
||||
|
||||
try:
|
||||
artifact.add(
|
||||
image_file,
|
||||
logical_path=image_logical_path,
|
||||
metadata={"split": split},
|
||||
)
|
||||
artifact.add(
|
||||
label_file,
|
||||
logical_path=label_logical_path,
|
||||
metadata={"split": split},
|
||||
)
|
||||
except ValueError as e:
|
||||
logger.error("COMET ERROR: Error adding file to Artifact. Skipping file.")
|
||||
logger.error(f"COMET ERROR: {e}")
|
||||
continue
|
||||
|
||||
return artifact
|
||||
|
||||
def upload_dataset_artifact(self):
|
||||
"""Uploads a YOLOv5 dataset as an artifact to the Comet.ml platform."""
|
||||
dataset_name = self.data_dict.get("dataset_name", "yolov5-dataset")
|
||||
path = str((ROOT / Path(self.data_dict["path"])).resolve())
|
||||
|
||||
metadata = self.data_dict.copy()
|
||||
for key in ["train", "val", "test"]:
|
||||
split_path = metadata.get(key)
|
||||
if split_path is not None:
|
||||
metadata[key] = split_path.replace(path, "")
|
||||
|
||||
artifact = comet_ml.Artifact(name=dataset_name, artifact_type="dataset", metadata=metadata)
|
||||
for key in metadata.keys():
|
||||
if key in ["train", "val", "test"]:
|
||||
if isinstance(self.upload_dataset, str) and (key != self.upload_dataset):
|
||||
continue
|
||||
|
||||
asset_path = self.data_dict.get(key)
|
||||
if asset_path is not None:
|
||||
artifact = self.add_assets_to_artifact(artifact, path, asset_path, key)
|
||||
|
||||
self.experiment.log_artifact(artifact)
|
||||
|
||||
return
|
||||
|
||||
def download_dataset_artifact(self, artifact_path):
|
||||
"""Downloads a dataset artifact to a specified directory using the experiment's logged artifact."""
|
||||
logged_artifact = self.experiment.get_artifact(artifact_path)
|
||||
artifact_save_dir = str(Path(self.opt.save_dir) / logged_artifact.name)
|
||||
logged_artifact.download(artifact_save_dir)
|
||||
|
||||
metadata = logged_artifact.metadata
|
||||
data_dict = metadata.copy()
|
||||
data_dict["path"] = artifact_save_dir
|
||||
|
||||
metadata_names = metadata.get("names")
|
||||
if isinstance(metadata_names, dict):
|
||||
data_dict["names"] = {int(k): v for k, v in metadata.get("names").items()}
|
||||
elif isinstance(metadata_names, list):
|
||||
data_dict["names"] = {int(k): v for k, v in zip(range(len(metadata_names)), metadata_names)}
|
||||
else:
|
||||
raise "Invalid 'names' field in dataset yaml file. Please use a list or dictionary"
|
||||
|
||||
return self.update_data_paths(data_dict)
|
||||
|
||||
def update_data_paths(self, data_dict):
|
||||
"""Updates data paths in the dataset dictionary, defaulting 'path' to an empty string if not present."""
|
||||
path = data_dict.get("path", "")
|
||||
|
||||
for split in ["train", "val", "test"]:
|
||||
if data_dict.get(split):
|
||||
split_path = data_dict.get(split)
|
||||
data_dict[split] = (
|
||||
f"{path}/{split_path}" if isinstance(split, str) else [f"{path}/{x}" for x in split_path]
|
||||
)
|
||||
|
||||
return data_dict
|
||||
|
||||
def on_pretrain_routine_end(self, paths):
|
||||
"""Called at the end of pretraining routine to handle paths if training is not being resumed."""
|
||||
if self.opt.resume:
|
||||
return
|
||||
|
||||
for path in paths:
|
||||
self.log_asset(str(path))
|
||||
|
||||
if self.upload_dataset and not self.resume:
|
||||
self.upload_dataset_artifact()
|
||||
|
||||
return
|
||||
|
||||
def on_train_start(self):
|
||||
"""Logs hyperparameters at the start of training."""
|
||||
self.log_parameters(self.hyp)
|
||||
|
||||
def on_train_epoch_start(self):
|
||||
"""Called at the start of each training epoch."""
|
||||
return
|
||||
|
||||
def on_train_epoch_end(self, epoch):
|
||||
"""Updates the current epoch in the experiment tracking at the end of each epoch."""
|
||||
self.experiment.curr_epoch = epoch
|
||||
|
||||
return
|
||||
|
||||
def on_train_batch_start(self):
|
||||
"""Called at the start of each training batch."""
|
||||
return
|
||||
|
||||
def on_train_batch_end(self, log_dict, step):
|
||||
"""Callback function that updates and logs metrics at the end of each training batch if conditions are met."""
|
||||
self.experiment.curr_step = step
|
||||
if self.log_batch_metrics and (step % self.comet_log_batch_interval == 0):
|
||||
self.log_metrics(log_dict, step=step)
|
||||
|
||||
return
|
||||
|
||||
def on_train_end(self, files, save_dir, last, best, epoch, results):
|
||||
"""Logs metadata and optionally saves model files at the end of training."""
|
||||
if self.comet_log_predictions:
|
||||
curr_epoch = self.experiment.curr_epoch
|
||||
self.experiment.log_asset_data(self.metadata_dict, "image-metadata.json", epoch=curr_epoch)
|
||||
|
||||
for f in files:
|
||||
self.log_asset(f, metadata={"epoch": epoch})
|
||||
self.log_asset(f"{save_dir}/results.csv", metadata={"epoch": epoch})
|
||||
|
||||
if not self.opt.evolve:
|
||||
model_path = str(best if best.exists() else last)
|
||||
name = Path(model_path).name
|
||||
if self.save_model:
|
||||
self.experiment.log_model(
|
||||
self.model_name,
|
||||
file_or_folder=model_path,
|
||||
file_name=name,
|
||||
overwrite=True,
|
||||
)
|
||||
|
||||
# Check if running Experiment with Comet Optimizer
|
||||
if hasattr(self.opt, "comet_optimizer_id"):
|
||||
metric = results.get(self.opt.comet_optimizer_metric)
|
||||
self.experiment.log_other("optimizer_metric_value", metric)
|
||||
|
||||
self.finish_run()
|
||||
|
||||
def on_val_start(self):
|
||||
"""Called at the start of validation, currently a placeholder with no functionality."""
|
||||
return
|
||||
|
||||
def on_val_batch_start(self):
|
||||
"""Placeholder called at the start of a validation batch with no current functionality."""
|
||||
return
|
||||
|
||||
def on_val_batch_end(self, batch_i, images, targets, paths, shapes, outputs):
|
||||
"""Callback executed at the end of a validation batch, conditionally logs predictions to Comet ML."""
|
||||
if not (self.comet_log_predictions and ((batch_i + 1) % self.comet_log_prediction_interval == 0)):
|
||||
return
|
||||
|
||||
for si, pred in enumerate(outputs):
|
||||
if len(pred) == 0:
|
||||
continue
|
||||
|
||||
image = images[si]
|
||||
labels = targets[targets[:, 0] == si, 1:]
|
||||
shape = shapes[si]
|
||||
path = paths[si]
|
||||
predn, labelsn = self.preprocess_prediction(image, labels, shape, pred)
|
||||
if labelsn is not None:
|
||||
self.log_predictions(image, labelsn, path, shape, predn)
|
||||
|
||||
return
|
||||
|
||||
def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
|
||||
"""Logs per-class metrics to Comet.ml after validation if enabled and more than one class exists."""
|
||||
if self.comet_log_per_class_metrics and self.num_classes > 1:
|
||||
for i, c in enumerate(ap_class):
|
||||
class_name = self.class_names[c]
|
||||
self.experiment.log_metrics(
|
||||
{
|
||||
"mAP@.5": ap50[i],
|
||||
"mAP@.5:.95": ap[i],
|
||||
"precision": p[i],
|
||||
"recall": r[i],
|
||||
"f1": f1[i],
|
||||
"true_positives": tp[i],
|
||||
"false_positives": fp[i],
|
||||
"support": nt[c],
|
||||
},
|
||||
prefix=class_name,
|
||||
)
|
||||
|
||||
if self.comet_log_confusion_matrix:
|
||||
epoch = self.experiment.curr_epoch
|
||||
class_names = list(self.class_names.values())
|
||||
class_names.append("background")
|
||||
num_classes = len(class_names)
|
||||
|
||||
self.experiment.log_confusion_matrix(
|
||||
matrix=confusion_matrix.matrix,
|
||||
max_categories=num_classes,
|
||||
labels=class_names,
|
||||
epoch=epoch,
|
||||
column_label="Actual Category",
|
||||
row_label="Predicted Category",
|
||||
file_name=f"confusion-matrix-epoch-{epoch}.json",
|
||||
)
|
||||
|
||||
def on_fit_epoch_end(self, result, epoch):
|
||||
"""Logs metrics at the end of each training epoch."""
|
||||
self.log_metrics(result, epoch=epoch)
|
||||
|
||||
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
|
||||
"""Callback to save model checkpoints periodically if conditions are met."""
|
||||
if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
|
||||
self.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
|
||||
|
||||
def on_params_update(self, params):
|
||||
"""Logs updated parameters during training."""
|
||||
self.log_parameters(params)
|
||||
|
||||
def finish_run(self):
|
||||
"""Ends the current experiment and logs its completion."""
|
||||
self.experiment.end()
|
||||
@ -1,151 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
import logging
|
||||
import os
|
||||
from urllib.parse import urlparse
|
||||
|
||||
try:
|
||||
import comet_ml
|
||||
except ImportError:
|
||||
comet_ml = None
|
||||
|
||||
import yaml
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
COMET_PREFIX = "comet://"
|
||||
COMET_MODEL_NAME = os.getenv("COMET_MODEL_NAME", "yolov5")
|
||||
COMET_DEFAULT_CHECKPOINT_FILENAME = os.getenv("COMET_DEFAULT_CHECKPOINT_FILENAME", "last.pt")
|
||||
|
||||
|
||||
def download_model_checkpoint(opt, experiment):
|
||||
"""Downloads YOLOv5 model checkpoint from Comet ML experiment, updating `opt.weights` with download path."""
|
||||
model_dir = f"{opt.project}/{experiment.name}"
|
||||
os.makedirs(model_dir, exist_ok=True)
|
||||
|
||||
model_name = COMET_MODEL_NAME
|
||||
model_asset_list = experiment.get_model_asset_list(model_name)
|
||||
|
||||
if len(model_asset_list) == 0:
|
||||
logger.error(f"COMET ERROR: No checkpoints found for model name : {model_name}")
|
||||
return
|
||||
|
||||
model_asset_list = sorted(
|
||||
model_asset_list,
|
||||
key=lambda x: x["step"],
|
||||
reverse=True,
|
||||
)
|
||||
logged_checkpoint_map = {asset["fileName"]: asset["assetId"] for asset in model_asset_list}
|
||||
|
||||
resource_url = urlparse(opt.weights)
|
||||
checkpoint_filename = resource_url.query
|
||||
|
||||
if checkpoint_filename:
|
||||
asset_id = logged_checkpoint_map.get(checkpoint_filename)
|
||||
else:
|
||||
asset_id = logged_checkpoint_map.get(COMET_DEFAULT_CHECKPOINT_FILENAME)
|
||||
checkpoint_filename = COMET_DEFAULT_CHECKPOINT_FILENAME
|
||||
|
||||
if asset_id is None:
|
||||
logger.error(f"COMET ERROR: Checkpoint {checkpoint_filename} not found in the given Experiment")
|
||||
return
|
||||
|
||||
try:
|
||||
logger.info(f"COMET INFO: Downloading checkpoint {checkpoint_filename}")
|
||||
asset_filename = checkpoint_filename
|
||||
|
||||
model_binary = experiment.get_asset(asset_id, return_type="binary", stream=False)
|
||||
model_download_path = f"{model_dir}/{asset_filename}"
|
||||
with open(model_download_path, "wb") as f:
|
||||
f.write(model_binary)
|
||||
|
||||
opt.weights = model_download_path
|
||||
|
||||
except Exception as e:
|
||||
logger.warning("COMET WARNING: Unable to download checkpoint from Comet")
|
||||
logger.exception(e)
|
||||
|
||||
|
||||
def set_opt_parameters(opt, experiment):
|
||||
"""
|
||||
Update the opts Namespace with parameters from Comet's ExistingExperiment when resuming a run.
|
||||
|
||||
Args:
|
||||
opt (argparse.Namespace): Namespace of command line options
|
||||
experiment (comet_ml.APIExperiment): Comet API Experiment object
|
||||
"""
|
||||
asset_list = experiment.get_asset_list()
|
||||
resume_string = opt.resume
|
||||
|
||||
for asset in asset_list:
|
||||
if asset["fileName"] == "opt.yaml":
|
||||
asset_id = asset["assetId"]
|
||||
asset_binary = experiment.get_asset(asset_id, return_type="binary", stream=False)
|
||||
opt_dict = yaml.safe_load(asset_binary)
|
||||
for key, value in opt_dict.items():
|
||||
setattr(opt, key, value)
|
||||
opt.resume = resume_string
|
||||
|
||||
# Save hyperparameters to YAML file
|
||||
# Necessary to pass checks in training script
|
||||
save_dir = f"{opt.project}/{experiment.name}"
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
|
||||
hyp_yaml_path = f"{save_dir}/hyp.yaml"
|
||||
with open(hyp_yaml_path, "w") as f:
|
||||
yaml.dump(opt.hyp, f)
|
||||
opt.hyp = hyp_yaml_path
|
||||
|
||||
|
||||
def check_comet_weights(opt):
|
||||
"""
|
||||
Downloads model weights from Comet and updates the weights path to point to saved weights location.
|
||||
|
||||
Args:
|
||||
opt (argparse.Namespace): Command Line arguments passed
|
||||
to YOLOv5 training script
|
||||
|
||||
Returns:
|
||||
None/bool: Return True if weights are successfully downloaded
|
||||
else return None
|
||||
"""
|
||||
if comet_ml is None:
|
||||
return
|
||||
|
||||
if isinstance(opt.weights, str) and opt.weights.startswith(COMET_PREFIX):
|
||||
api = comet_ml.API()
|
||||
resource = urlparse(opt.weights)
|
||||
experiment_path = f"{resource.netloc}{resource.path}"
|
||||
experiment = api.get(experiment_path)
|
||||
download_model_checkpoint(opt, experiment)
|
||||
return True
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def check_comet_resume(opt):
|
||||
"""
|
||||
Restores run parameters to its original state based on the model checkpoint and logged Experiment parameters.
|
||||
|
||||
Args:
|
||||
opt (argparse.Namespace): Command Line arguments passed
|
||||
to YOLOv5 training script
|
||||
|
||||
Returns:
|
||||
None/bool: Return True if the run is restored successfully
|
||||
else return None
|
||||
"""
|
||||
if comet_ml is None:
|
||||
return
|
||||
|
||||
if isinstance(opt.resume, str) and opt.resume.startswith(COMET_PREFIX):
|
||||
api = comet_ml.API()
|
||||
resource = urlparse(opt.resume)
|
||||
experiment_path = f"{resource.netloc}{resource.path}"
|
||||
experiment = api.get(experiment_path)
|
||||
set_opt_parameters(opt, experiment)
|
||||
download_model_checkpoint(opt, experiment)
|
||||
|
||||
return True
|
||||
|
||||
return None
|
||||
@ -1,126 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import comet_ml
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[3] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
|
||||
from train import train
|
||||
from utils.callbacks import Callbacks
|
||||
from utils.general import increment_path
|
||||
from utils.torch_utils import select_device
|
||||
|
||||
# Project Configuration
|
||||
config = comet_ml.config.get_config()
|
||||
COMET_PROJECT_NAME = config.get_string(os.getenv("COMET_PROJECT_NAME"), "comet.project_name", default="yolov5")
|
||||
|
||||
|
||||
def get_args(known=False):
|
||||
"""Parses command-line arguments for YOLOv5 training, supporting configuration of weights, data paths,
|
||||
hyperparameters, and more.
|
||||
"""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="initial weights path")
|
||||
parser.add_argument("--cfg", type=str, default="", help="model.yaml path")
|
||||
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
|
||||
parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path")
|
||||
parser.add_argument("--epochs", type=int, default=300, help="total training epochs")
|
||||
parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch")
|
||||
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)")
|
||||
parser.add_argument("--rect", action="store_true", help="rectangular training")
|
||||
parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training")
|
||||
parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
|
||||
parser.add_argument("--noval", action="store_true", help="only validate final epoch")
|
||||
parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")
|
||||
parser.add_argument("--noplots", action="store_true", help="save no plot files")
|
||||
parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations")
|
||||
parser.add_argument("--bucket", type=str, default="", help="gsutil bucket")
|
||||
parser.add_argument("--cache", type=str, nargs="?", const="ram", help='--cache images in "ram" (default) or "disk"')
|
||||
parser.add_argument("--image-weights", action="store_true", help="use weighted image selection for training")
|
||||
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
||||
parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%")
|
||||
parser.add_argument("--single-cls", action="store_true", help="train multi-class data as single-class")
|
||||
parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer")
|
||||
parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode")
|
||||
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
|
||||
parser.add_argument("--project", default=ROOT / "runs/train", help="save to project/name")
|
||||
parser.add_argument("--name", default="exp", help="save to project/name")
|
||||
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
|
||||
parser.add_argument("--quad", action="store_true", help="quad dataloader")
|
||||
parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler")
|
||||
parser.add_argument("--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon")
|
||||
parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)")
|
||||
parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2")
|
||||
parser.add_argument("--save-period", type=int, default=-1, help="Save checkpoint every x epochs (disabled if < 1)")
|
||||
parser.add_argument("--seed", type=int, default=0, help="Global training seed")
|
||||
parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")
|
||||
|
||||
# Weights & Biases arguments
|
||||
parser.add_argument("--entity", default=None, help="W&B: Entity")
|
||||
parser.add_argument("--upload_dataset", nargs="?", const=True, default=False, help='W&B: Upload data, "val" option')
|
||||
parser.add_argument("--bbox_interval", type=int, default=-1, help="W&B: Set bounding-box image logging interval")
|
||||
parser.add_argument("--artifact_alias", type=str, default="latest", help="W&B: Version of dataset artifact to use")
|
||||
|
||||
# Comet Arguments
|
||||
parser.add_argument("--comet_optimizer_config", type=str, help="Comet: Path to a Comet Optimizer Config File.")
|
||||
parser.add_argument("--comet_optimizer_id", type=str, help="Comet: ID of the Comet Optimizer sweep.")
|
||||
parser.add_argument("--comet_optimizer_objective", type=str, help="Comet: Set to 'minimize' or 'maximize'.")
|
||||
parser.add_argument("--comet_optimizer_metric", type=str, help="Comet: Metric to Optimize.")
|
||||
parser.add_argument(
|
||||
"--comet_optimizer_workers",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Comet: Number of Parallel Workers to use with the Comet Optimizer.",
|
||||
)
|
||||
|
||||
return parser.parse_known_args()[0] if known else parser.parse_args()
|
||||
|
||||
|
||||
def run(parameters, opt):
|
||||
"""Executes YOLOv5 training with given hyperparameters and options, setting up device and training directories."""
|
||||
hyp_dict = {k: v for k, v in parameters.items() if k not in ["epochs", "batch_size"]}
|
||||
|
||||
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
|
||||
opt.batch_size = parameters.get("batch_size")
|
||||
opt.epochs = parameters.get("epochs")
|
||||
|
||||
device = select_device(opt.device, batch_size=opt.batch_size)
|
||||
train(hyp_dict, opt, device, callbacks=Callbacks())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
opt = get_args(known=True)
|
||||
|
||||
opt.weights = str(opt.weights)
|
||||
opt.cfg = str(opt.cfg)
|
||||
opt.data = str(opt.data)
|
||||
opt.project = str(opt.project)
|
||||
|
||||
optimizer_id = os.getenv("COMET_OPTIMIZER_ID")
|
||||
if optimizer_id is None:
|
||||
with open(opt.comet_optimizer_config) as f:
|
||||
optimizer_config = json.load(f)
|
||||
optimizer = comet_ml.Optimizer(optimizer_config)
|
||||
else:
|
||||
optimizer = comet_ml.Optimizer(optimizer_id)
|
||||
|
||||
opt.comet_optimizer_id = optimizer.id
|
||||
status = optimizer.status()
|
||||
|
||||
opt.comet_optimizer_objective = status["spec"]["objective"]
|
||||
opt.comet_optimizer_metric = status["spec"]["metric"]
|
||||
|
||||
logger.info("COMET INFO: Starting Hyperparameter Sweep")
|
||||
for parameter in optimizer.get_parameters():
|
||||
run(parameter["parameters"], opt)
|
||||
@ -1,210 +0,0 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
|
||||
# WARNING ⚠️ wandb is deprecated and will be removed in future release.
|
||||
# See supported integrations at https://github.com/ultralytics/yolov5#integrations
|
||||
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
|
||||
from utils.general import LOGGER, colorstr
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[3] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
RANK = int(os.getenv("RANK", -1))
|
||||
DEPRECATION_WARNING = (
|
||||
f"{colorstr('wandb')}: WARNING ⚠️ wandb is deprecated and will be removed in a future release. "
|
||||
f'See supported integrations at https://github.com/ultralytics/yolov5#integrations.'
|
||||
)
|
||||
|
||||
try:
|
||||
import wandb
|
||||
|
||||
assert hasattr(wandb, "__version__") # verify package import not local dir
|
||||
LOGGER.warning(DEPRECATION_WARNING)
|
||||
except (ImportError, AssertionError):
|
||||
wandb = None
|
||||
|
||||
|
||||
class WandbLogger:
|
||||
"""
|
||||
Log training runs, datasets, models, and predictions to Weights & Biases.
|
||||
|
||||
This logger sends information to W&B at wandb.ai. By default, this information includes hyperparameters, system
|
||||
configuration and metrics, model metrics, and basic data metrics and analyses.
|
||||
|
||||
By providing additional command line arguments to train.py, datasets, models and predictions can also be logged.
|
||||
|
||||
For more on how this logger is used, see the Weights & Biases documentation:
|
||||
https://docs.wandb.com/guides/integrations/yolov5
|
||||
"""
|
||||
|
||||
def __init__(self, opt, run_id=None, job_type="Training"):
|
||||
"""
|
||||
- Initialize WandbLogger instance
|
||||
- Upload dataset if opt.upload_dataset is True
|
||||
- Setup training processes if job_type is 'Training'.
|
||||
|
||||
Arguments:
|
||||
opt (namespace) -- Commandline arguments for this run
|
||||
run_id (str) -- Run ID of W&B run to be resumed
|
||||
job_type (str) -- To set the job_type for this run
|
||||
|
||||
"""
|
||||
# Pre-training routine --
|
||||
self.job_type = job_type
|
||||
self.wandb, self.wandb_run = wandb, wandb.run if wandb else None
|
||||
self.val_artifact, self.train_artifact = None, None
|
||||
self.train_artifact_path, self.val_artifact_path = None, None
|
||||
self.result_artifact = None
|
||||
self.val_table, self.result_table = None, None
|
||||
self.max_imgs_to_log = 16
|
||||
self.data_dict = None
|
||||
if self.wandb:
|
||||
self.wandb_run = wandb.run or wandb.init(
|
||||
config=opt,
|
||||
resume="allow",
|
||||
project="YOLOv5" if opt.project == "runs/train" else Path(opt.project).stem,
|
||||
entity=opt.entity,
|
||||
name=opt.name if opt.name != "exp" else None,
|
||||
job_type=job_type,
|
||||
id=run_id,
|
||||
allow_val_change=True,
|
||||
)
|
||||
|
||||
if self.wandb_run and self.job_type == "Training":
|
||||
if isinstance(opt.data, dict):
|
||||
# This means another dataset manager has already processed the dataset info (e.g. ClearML)
|
||||
# and they will have stored the already processed dict in opt.data
|
||||
self.data_dict = opt.data
|
||||
self.setup_training(opt)
|
||||
|
||||
def setup_training(self, opt):
|
||||
"""
|
||||
Setup the necessary processes for training YOLO models:
|
||||
- Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
|
||||
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
|
||||
- Setup log_dict, initialize bbox_interval.
|
||||
|
||||
Arguments:
|
||||
opt (namespace) -- commandline arguments for this run
|
||||
|
||||
"""
|
||||
self.log_dict, self.current_epoch = {}, 0
|
||||
self.bbox_interval = opt.bbox_interval
|
||||
if isinstance(opt.resume, str):
|
||||
model_dir, _ = self.download_model_artifact(opt)
|
||||
if model_dir:
|
||||
self.weights = Path(model_dir) / "last.pt"
|
||||
config = self.wandb_run.config
|
||||
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = (
|
||||
str(self.weights),
|
||||
config.save_period,
|
||||
config.batch_size,
|
||||
config.bbox_interval,
|
||||
config.epochs,
|
||||
config.hyp,
|
||||
config.imgsz,
|
||||
)
|
||||
|
||||
if opt.bbox_interval == -1:
|
||||
self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
|
||||
if opt.evolve or opt.noplots:
|
||||
self.bbox_interval = opt.bbox_interval = opt.epochs + 1 # disable bbox_interval
|
||||
|
||||
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
|
||||
"""
|
||||
Log the model checkpoint as W&B artifact.
|
||||
|
||||
Arguments:
|
||||
path (Path) -- Path of directory containing the checkpoints
|
||||
opt (namespace) -- Command line arguments for this run
|
||||
epoch (int) -- Current epoch number
|
||||
fitness_score (float) -- fitness score for current epoch
|
||||
best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
|
||||
"""
|
||||
model_artifact = wandb.Artifact(
|
||||
f"run_{wandb.run.id}_model",
|
||||
type="model",
|
||||
metadata={
|
||||
"original_url": str(path),
|
||||
"epochs_trained": epoch + 1,
|
||||
"save period": opt.save_period,
|
||||
"project": opt.project,
|
||||
"total_epochs": opt.epochs,
|
||||
"fitness_score": fitness_score,
|
||||
},
|
||||
)
|
||||
model_artifact.add_file(str(path / "last.pt"), name="last.pt")
|
||||
wandb.log_artifact(
|
||||
model_artifact,
|
||||
aliases=[
|
||||
"latest",
|
||||
"last",
|
||||
f"epoch {str(self.current_epoch)}",
|
||||
"best" if best_model else "",
|
||||
],
|
||||
)
|
||||
LOGGER.info(f"Saving model artifact on epoch {epoch + 1}")
|
||||
|
||||
def val_one_image(self, pred, predn, path, names, im):
|
||||
"""Evaluates model prediction for a single image, returning metrics and visualizations."""
|
||||
pass
|
||||
|
||||
def log(self, log_dict):
|
||||
"""
|
||||
Save the metrics to the logging dictionary.
|
||||
|
||||
Arguments:
|
||||
log_dict (Dict) -- metrics/media to be logged in current step
|
||||
"""
|
||||
if self.wandb_run:
|
||||
for key, value in log_dict.items():
|
||||
self.log_dict[key] = value
|
||||
|
||||
def end_epoch(self):
|
||||
"""
|
||||
Commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
|
||||
|
||||
Arguments:
|
||||
best_result (boolean): Boolean representing if the result of this evaluation is best or not
|
||||
"""
|
||||
if self.wandb_run:
|
||||
with all_logging_disabled():
|
||||
try:
|
||||
wandb.log(self.log_dict)
|
||||
except BaseException as e:
|
||||
LOGGER.info(
|
||||
f"An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}"
|
||||
)
|
||||
self.wandb_run.finish()
|
||||
self.wandb_run = None
|
||||
self.log_dict = {}
|
||||
|
||||
def finish_run(self):
|
||||
"""Log metrics if any and finish the current W&B run."""
|
||||
if self.wandb_run:
|
||||
if self.log_dict:
|
||||
with all_logging_disabled():
|
||||
wandb.log(self.log_dict)
|
||||
wandb.run.finish()
|
||||
LOGGER.warning(DEPRECATION_WARNING)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def all_logging_disabled(highest_level=logging.CRITICAL):
|
||||
"""Source - https://gist.github.com/simon-weber/7853144
|
||||
A context manager that will prevent any logging messages triggered during the body from being processed.
|
||||
:param highest_level: the maximum logging level in use.
|
||||
This would only need to be changed if a custom level greater than CRITICAL is defined.
|
||||
"""
|
||||
previous_level = logging.root.manager.disable
|
||||
logging.disable(highest_level)
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
logging.disable(previous_level)
|
||||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user