迁移项目到CLion

This commit is contained in:
zjc-zjc-123 2024-11-11 17:57:08 +08:00
parent 1eea87feae
commit 6cc26faeab
6 changed files with 286 additions and 67 deletions

4
.gitignore vendored
View File

@ -360,4 +360,6 @@ MigrationBackup/
.ionide/
# Fody - auto-generated XML schema
FodyWeavers.xsd
FodyWeavers.xsd
.idea

26
CMakeLists.txt Normal file
View File

@ -0,0 +1,26 @@
cmake_minimum_required(VERSION 3.29)
project(cotton_color)
set(CMAKE_CXX_STANDARD 17)
# OpenCV
set(OpenCV_DIR "E:/opencv4.10/opencv/build")
# OpenCV
find_package(OpenCV REQUIRED)
add_definitions(-DUNICODE -D_UNICODE)
#
include_directories(${OpenCV_INCLUDE_DIRS})
#
add_executable(cotton_color cotton_color.cpp)
# OpenCV
target_link_libraries(cotton_color ${OpenCV_LIBS} comdlg32)
#
add_executable(cotton_color2 cotton_color2.cpp)
# OpenCV
target_link_libraries(cotton_color2 ${OpenCV_LIBS} comdlg32)

View File

@ -49,5 +49,14 @@ L a* b* 色彩空间检测,检测明黄色、白色。
激进方案 -> 深度学习 - > 区块判别 -> 杂质 |
|
保守方案 -> 深度学习确认 -> 杂质
讨论记录:
暗红色(棉叶)
棉花亮度低
黑线、黑色孔洞
土黄

View File

@ -1,135 +1,157 @@
#include <opencv2/opencv.hpp>
#include <opencv2/opencv.hpp>
#include <iostream>
#include <map>
#include <string>
#include <windows.h>
#include <commdlg.h> // 包含文件对话框相关的函数
#include <commdlg.h> // 包含文件对话框相关的函数
using namespace cv;
using namespace std;
/**
* @brief
* @brief
*
* BGR HSV (S)
*
*
* @param inputImage cv::Mat BGR
* @param outputImage cv::Mat
* @param saturationThreshold int 0 255
*
*
* @note
*
* @param inputImage cv::Mat BGR
* @param outputImage cv::Mat
* @param params
*/
/**
* @brief
*
* @param inputImage cv::Mat BGR
* @param outputImage cv::Mat
* @param params
*/
void vibrantColorDetection(const Mat& inputImage, Mat& outputImage, const map<string, int>& params) {
// 从参数映射中获取饱和度阈值
// 从参数映射中获取饱和度阈值
int saturationThreshold = params.at("saturationThreshold");
// 将输入图像从 BGR 转换为 HSV
// 将输入图像从 BGR 转换为 HSV
Mat hsvImage;
cvtColor(inputImage, hsvImage, COLOR_BGR2HSV);
// 分离 HSV 图像的各个通道
// 分离 HSV 图像的各个通道
Mat channels[3];
split(hsvImage, channels);
// 获取饱和度通道 (S)
// 获取饱和度通道 (S)
Mat saturation = channels[1];
// 创建输出图像,将饱和度大于阈值的区域标记为杂质
// 创建输出图像,将饱和度大于阈值的区域标记为杂质
outputImage = Mat::zeros(inputImage.size(), CV_8UC1);
// 对饱和度图像应用阈值处理
// 对饱和度图像应用阈值处理
threshold(saturation, outputImage, saturationThreshold, 255, THRESH_BINARY);
}
/**
* @brief
*
* @return std::wstring
*/
std::wstring openFileDialog() {
// 初始化文件选择对话框
OPENFILENAMEW ofn; // 使用宽字符版本的结构
wchar_t szFile[260] = {0}; // 存储选择的文件路径
string openFileDialog() {
// 初始化文件选择对话框
OPENFILENAME ofn; // 文件对话框结构
wchar_t szFile[260]; // 存储选择的文件路径
// 设置 OPENFILENAME 结构的默认值
// 设置 OPENFILENAMEW 结构的默认值
ZeroMemory(&ofn, sizeof(ofn));
ofn.lStructSize = sizeof(ofn);
ofn.hwndOwner = NULL;
ofn.lpstrFile = szFile;
ofn.lpstrFile = szFile; // 设置文件路径缓冲区
ofn.nMaxFile = sizeof(szFile) / sizeof(szFile[0]);
ofn.lpstrFilter = L"Image Files\0*.BMP;*.JPG;*.JPEG;*.PNG;*.GIF\0All Files\0*.*\0";
ofn.nFilterIndex = 1;
ofn.lpstrFileTitle = NULL;
ofn.lpstrFileTitle = NULL; // 不需要单独的文件名
ofn.nMaxFileTitle = 0;
ofn.lpstrInitialDir = NULL;
ofn.lpstrTitle = L"Select an image file";
ofn.lpstrInitialDir = NULL; // 使用默认初始目录
ofn.lpstrTitle = L"Select an image file"; // 对话框标题
ofn.Flags = OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST;
// 打开文件选择对话框
if (GetOpenFileName(&ofn) == TRUE) {
// 将 wchar_t 转换为 string
wstring ws(szFile);
string filePath(ws.begin(), ws.end());
return filePath;
// 打开文件选择对话框
if (GetOpenFileNameW(&ofn) == TRUE) {
return szFile; // 返回选中的文件路径
}
return ""; // 如果用户取消,返回空字符串
return L""; // 如果用户取消,返回空字符串
}
/**
* @brief Unicode
*
* @return cv::Mat Mat
*/
Mat readImage() {
// 读取输入图像
string imagePath = openFileDialog();
// 读取输入图像路径
std::wstring imagePath = openFileDialog();
if (imagePath.empty()) {
cout << "No file selected or user cancelled." << endl;
wcout << L"No file selected or user cancelled." << endl;
return Mat();
}
// 使用 OpenCV 读取选中的图片
Mat image = imread(imagePath);
// 使用 Windows API 打开文件
HANDLE hFile = CreateFileW(imagePath.c_str(), GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hFile == INVALID_HANDLE_VALUE) {
wcout << L"Error: Could not open file." << endl;
return Mat();
}
// 获取文件大小
LARGE_INTEGER fileSize;
if (!GetFileSizeEx(hFile, &fileSize)) {
wcout << L"Error: Could not get file size." << endl;
CloseHandle(hFile);
return Mat();
}
if (fileSize.QuadPart > MAXDWORD) {
wcout << L"Error: File size too large." << endl;
CloseHandle(hFile);
return Mat();
}
DWORD dwFileSize = static_cast<DWORD>(fileSize.QuadPart);
// 读取文件内容到缓冲区
std::vector<BYTE> buffer(dwFileSize);
DWORD bytesRead = 0;
if (!ReadFile(hFile, buffer.data(), dwFileSize, &bytesRead, NULL) || bytesRead != dwFileSize) {
wcout << L"Error: Could not read file." << endl;
CloseHandle(hFile);
return Mat();
}
CloseHandle(hFile);
// 使用 OpenCV 从内存缓冲区读取图像
Mat image = imdecode(buffer, IMREAD_COLOR);
if (image.empty()) {
cout << "Error: Could not load image." << endl;
wcout << L"Error: Could not decode image." << endl;
return Mat();
}
return image;
}
int main() {
// 读取输入图像
Mat inputImage = readImage();
// 读取输入图像
Mat inputImage = readImage();
if (inputImage.empty()) {
cout << "Error: Could not load image." << endl;
return -1;
}
// 创建输出图像
// 创建输出图像
Mat outputImage;
// 使用 map 模拟 JSON 参数传递
// 使用 map 模拟参数传递
map<string, int> params;
params["saturationThreshold"] = 100; // 设置饱和度阈值为100
params["saturationThreshold"] = 100; // 设置饱和度阈值为 100
// 调用鲜艳颜色检测函数
// 调用鲜艳颜色检测函数
vibrantColorDetection(inputImage, outputImage, params);
// 显示原图和检测到的鲜艳区域
// 显示原图和检测到的鲜艳区域
imshow("Original Image", inputImage);
imshow("Detected Vibrant Colors", outputImage);
// 等待用户按键
// 等待用户按键
waitKey(0);
return 0;
}
}

View File

@ -104,10 +104,13 @@
<SDLCheck>true</SDLCheck>
<PreprocessorDefinitions>_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<ConformanceMode>true</ConformanceMode>
<AdditionalIncludeDirectories>$(mil_path64)\..\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
<AdditionalLibraryDirectories>$(mil_path64)\..\lib\</AdditionalLibraryDirectories>
<AdditionalDependencies>mil.lib;Mil3d.lib;milim.lib;miledge.lib;%(AdditionalDependencies)</AdditionalDependencies>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
@ -118,14 +121,14 @@
<SDLCheck>true</SDLCheck>
<PreprocessorDefinitions>NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<ConformanceMode>true</ConformanceMode>
<AdditionalIncludeDirectories>C:\Users\ZLSDKJ\source\opencv\build\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalIncludeDirectories>C:\Users\zjc\source\opencv\build\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
<GenerateDebugInformation>true</GenerateDebugInformation>
<AdditionalLibraryDirectories>C:\Users\ZLSDKJ\source\opencv\build\x64\vc16\lib;%(AdditionalLibraryDirectories)</AdditionalLibraryDirectories>
<AdditionalLibraryDirectories>C:\Users\zjc\source\opencv\build\x64\vc16\lib;%(AdditionalLibraryDirectories)</AdditionalLibraryDirectories>
<AdditionalDependencies>Comdlg32.lib;opencv_world4100.lib;%(AdditionalDependencies)</AdditionalDependencies>
</Link>
</ItemDefinitionGroup>

157
cotton_color2.cpp Normal file
View File

@ -0,0 +1,157 @@
#include <opencv2/opencv.hpp>
#include <iostream>
#include <map>
#include <string>
#include <windows.h>
#include <commdlg.h> // 包含文件对话框相关的函数
using namespace cv;
using namespace std;
/**
* @brief
*
* @param inputImage cv::Mat BGR
* @param outputImage cv::Mat
* @param params
*/
void vibrantColorDetection(const Mat& inputImage, Mat& outputImage, const map<string, int>& params) {
// 从参数映射中获取饱和度阈值
int saturationThreshold = params.at("saturationThreshold");
// 将输入图像从 BGR 转换为 HSV
Mat hsvImage;
cvtColor(inputImage, hsvImage, COLOR_BGR2HSV);
// 分离 HSV 图像的各个通道
Mat channels[3];
split(hsvImage, channels);
// 获取饱和度通道 (S)
Mat saturation = channels[1];
// 创建输出图像,将饱和度大于阈值的区域标记为杂质
outputImage = Mat::zeros(inputImage.size(), CV_8UC1);
// 对饱和度图像应用阈值处理
threshold(saturation, outputImage, saturationThreshold, 255, THRESH_BINARY);
}
/**
* @brief
*
* @return std::wstring
*/
std::wstring openFileDialog() {
// 初始化文件选择对话框
OPENFILENAMEW ofn; // 使用宽字符版本的结构
wchar_t szFile[260] = {0}; // 存储选择的文件路径
// 设置 OPENFILENAMEW 结构的默认值
ZeroMemory(&ofn, sizeof(ofn));
ofn.lStructSize = sizeof(ofn);
ofn.hwndOwner = NULL;
ofn.lpstrFile = szFile; // 设置文件路径缓冲区
ofn.nMaxFile = sizeof(szFile) / sizeof(szFile[0]);
ofn.lpstrFilter = L"Image Files\0*.BMP;*.JPG;*.JPEG;*.PNG;*.GIF\0All Files\0*.*\0";
ofn.nFilterIndex = 1;
ofn.lpstrFileTitle = NULL; // 不需要单独的文件名
ofn.nMaxFileTitle = 0;
ofn.lpstrInitialDir = NULL; // 使用默认初始目录
ofn.lpstrTitle = L"Select an image file"; // 对话框标题
ofn.Flags = OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST;
// 打开文件选择对话框
if (GetOpenFileNameW(&ofn) == TRUE) {
return szFile; // 返回选中的文件路径
}
return L""; // 如果用户取消,返回空字符串
}
/**
* @brief Unicode
*
* @return cv::Mat Mat
*/
Mat readImage() {
// 读取输入图像路径
std::wstring imagePath = openFileDialog();
if (imagePath.empty()) {
wcout << L"No file selected or user cancelled." << endl;
return Mat();
}
// 使用 Windows API 打开文件
HANDLE hFile = CreateFileW(imagePath.c_str(), GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hFile == INVALID_HANDLE_VALUE) {
wcout << L"Error: Could not open file." << endl;
return Mat();
}
// 获取文件大小
LARGE_INTEGER fileSize;
if (!GetFileSizeEx(hFile, &fileSize)) {
wcout << L"Error: Could not get file size." << endl;
CloseHandle(hFile);
return Mat();
}
if (fileSize.QuadPart > MAXDWORD) {
wcout << L"Error: File size too large." << endl;
CloseHandle(hFile);
return Mat();
}
DWORD dwFileSize = static_cast<DWORD>(fileSize.QuadPart);
// 读取文件内容到缓冲区
std::vector<BYTE> buffer(dwFileSize);
DWORD bytesRead = 0;
if (!ReadFile(hFile, buffer.data(), dwFileSize, &bytesRead, NULL) || bytesRead != dwFileSize) {
wcout << L"Error: Could not read file." << endl;
CloseHandle(hFile);
return Mat();
}
CloseHandle(hFile);
// 使用 OpenCV 从内存缓冲区读取图像
Mat image = imdecode(buffer, IMREAD_COLOR);
if (image.empty()) {
wcout << L"Error: Could not decode image." << endl;
return Mat();
}
return image;
}
int main() {
// 读取输入图像
Mat inputImage = readImage();
if (inputImage.empty()) {
cout << "Error: Could not load image." << endl;
return -1;
}
// 创建输出图像
Mat outputImage;
// 使用 map 模拟参数传递
map<string, int> params;
params["saturationThreshold"] = 100; // 设置饱和度阈值为 100
// 调用鲜艳颜色检测函数
vibrantColorDetection(inputImage, outputImage, params);
// 显示原图和检测到的鲜艳区域
imshow("Original Image", inputImage);
imshow("Detected Vibrant Colors", outputImage);
// 等待用户按键
waitKey(0);
return 0;
}