添加了数据预处理函数

This commit is contained in:
ZhenyeLi 2024-11-19 16:20:51 +08:00
parent f3a9e625d8
commit 6cb55b59b3
9 changed files with 280 additions and 19 deletions

42
DPL/main.py Normal file
View File

@ -0,0 +1,42 @@
import argparse
import os
import sys
import torch
from model_cls.models import Model as ClsModel
from pathlib import Path
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
def main():
# 命令行参数解析
parser = argparse.ArgumentParser(description="Use an ONNX model for inference.")
# 设置默认值,并允许用户通过命令行进行修改
parser.add_argument('--input-dir', type=str, default='dataset/', help='Directory to input images')
parser.add_argument('--save-dir', type=str, default='detect', help='Directory to save output images')
parser.add_argument('--gpu', action='store_true', help='Use GPU for inference')
args = parser.parse_args()
# 设置设备
device = torch.device('cuda' if args.gpu and torch.cuda.is_available() else 'cpu')
if args.gpu and not torch.cuda.is_available():
print("GPU not available, switching to CPU.")
# 加载模型
model = ClsModel(model_path=args.weights, device=device)
if __name__ == '__main__':
main()

196
DPL/model_cls/preprocess.py Normal file
View File

@ -0,0 +1,196 @@
import argparse
import os
import random
import shutil
import cv2
import numpy as np
import json
from shapely.geometry import Polygon, box
from shapely.affinity import translate
def create_dataset_from_folder(image_folder, label_folder, block_size, output_dir):
"""
批量处理文件夹中的图片和对应标签生成分类模型的数据集
Args:
image_folder (str): 图片文件夹路径
label_folder (str): 标签文件夹路径对应Labelme生成的JSON文件
block_size (tuple): 分块的尺寸 (width, height)
output_dir (str): 输出数据集的根目录
"""
# 创建输出文件夹
has_label_dir = os.path.join(output_dir, "has_label")
no_label_dir = os.path.join(output_dir, "no_label")
os.makedirs(has_label_dir, exist_ok=True)
os.makedirs(no_label_dir, exist_ok=True)
# 遍历图片文件夹
for filename in os.listdir(image_folder):
if filename.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp', '.tif')):
image_path = os.path.join(image_folder, filename)
label_path = os.path.join(label_folder, os.path.splitext(filename)[0] + ".json")
# 检查标签文件是否存在
if not os.path.exists(label_path):
print(f"Label file not found for image: {filename}")
continue
print(f"Processing {filename}...")
process_single_image(image_path, label_path, block_size, has_label_dir, no_label_dir)
def process_single_image(image_path, label_path, block_size, has_label_dir, no_label_dir):
"""
处理单张图片并分块保存到对应的文件夹
Args:
image_path (str): 图片路径
label_path (str): 标签路径
block_size (tuple): 分块的尺寸 (width, height)
has_label_dir (str): 包含标注的分块保存目录
no_label_dir (str): 无标注的分块保存目录
"""
# 加载图片
image = cv2.imread(image_path)
img_height, img_width, _ = image.shape
# 加载Labelme JSON文件
with open(label_path, 'r', encoding='utf-8') as f:
label_data = json.load(f)
# 提取多边形标注
polygons = []
for shape in label_data['shapes']:
if shape['shape_type'] == 'polygon':
points = shape['points']
polygons.append(Polygon(points))
if roi:
x_min, y_min, x_max, y_max = roi
x_min, y_min = max(0, x_min), max(0, y_min)
x_max, y_max = min(img_width, x_max), min(img_height, y_max)
image = image[y_min:y_max, x_min:x_max]
img_height, img_width = y_max - y_min, x_max - x_min
# 偏移标注的多边形
polygons = [translate(poly.intersection(box(x_min, y_min, x_max, y_max)), -x_min, -y_min) for poly in polygons]
# 分割图片并保存到对应的文件夹
block_width, block_height = block_size
block_id = 0
base_name = os.path.splitext(os.path.basename(image_path))[0]
for y in range(0, img_height, block_height):
for x in range(0, img_width, block_width):
# 当前分块的边界框
block_polygon = box(x, y, x + block_width, y + block_height)
# 判断是否与任何标注的多边形相交
contains_label = any(poly.intersects(block_polygon) for poly in polygons)
# 裁剪当前块
block = image[y:y + block_height, x:x + block_width]
# 保存到对应文件夹
folder = has_label_dir if contains_label else no_label_dir
block_filename = os.path.join(folder, f"{base_name}_block_{block_id}.jpg")
cv2.imwrite(block_filename, block)
block_id += 1
print(f"Saved {block_filename} to {'has_label' if contains_label else 'no_label'} folder.")
def split_dataset(input_dir, output_dir, train_ratio=0.7, val_ratio=0.2, test_ratio=0.1):
"""
将分类后的数据集划分为 trainval test 数据集保持来源目录结构
Args:
input_dir (str): 分类结果根目录包含多个子文件夹标签文件夹
output_dir (str): 输出数据集目录将生成 trainval test 文件夹
train_ratio (float): train 集比例或固定数量
val_ratio (float): val 集比例或固定数量
test_ratio (float): test 集比例或固定数量
"""
# 定义输出子目录
train_dir = os.path.join(output_dir, "train")
val_dir = os.path.join(output_dir, "val")
test_dir = os.path.join(output_dir, "test")
# 遍历所有子文件夹(标签文件夹)
for category in os.listdir(input_dir):
category_dir = os.path.join(input_dir, category)
if not os.path.isdir(category_dir): # 忽略非文件夹
continue
# 为当前类别在 train/val/test 创建相同的子文件夹结构
os.makedirs(os.path.join(train_dir, category), exist_ok=True)
os.makedirs(os.path.join(val_dir, category), exist_ok=True)
os.makedirs(os.path.join(test_dir, category), exist_ok=True)
# 获取当前类别下的所有文件
files = os.listdir(category_dir)
random.shuffle(files)
# 计算分割点
total_files = len(files)
if train_ratio < 1:
train_count = int(total_files * train_ratio)
val_count = int(total_files * val_ratio)
test_count = total_files - train_count - val_count
else:
train_count = int(train_ratio)
val_count = int(val_ratio)
test_count = int(test_ratio)
# 确保不超过文件总数
train_count = min(train_count, total_files)
val_count = min(val_count, total_files - train_count)
test_count = min(test_count, total_files - train_count - val_count)
print(f"Category {category}: {train_count} train, {val_count} val, {test_count} test files")
# 划分数据集
train_files = files[:train_count]
val_files = files[train_count:train_count + val_count]
test_files = files[train_count + val_count:]
# 复制文件到对应的子目录
for file in train_files:
shutil.copy(os.path.join(category_dir, file), os.path.join(train_dir, category, file))
for file in val_files:
shutil.copy(os.path.join(category_dir, file), os.path.join(val_dir, category, file))
for file in test_files:
shutil.copy(os.path.join(category_dir, file), os.path.join(test_dir, category, file))
print(f"Category {category} processed. Train: {len(train_files)}, Val: {len(val_files)}, Test: {len(test_files)}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Preprocess images to required shapes")
# 设置默认值,并允许用户通过命令行进行修改
parser.add_argument('--img-dir', type=str, default=r'..\dataset\dgd\test_img', help='Directory to input images')
parser.add_argument('--label-dir', type=str, default=r'..\dataset\dgd\test_img', help='Directory to input labels')
parser.add_argument('--output-dir', type=str, default=r'..\dataset\dgd\runs', help='Directory to save output images')
parser.add_argument('--roi', type=int, nargs=4, default=None, help='ROI region (x_min y_min x_max y_max)')
parser.add_argument('--train-ratio', type=float, default=0.7, help='Train set ratio or count')
parser.add_argument('--val-ratio', type=float, default=0.2, help='Validation set ratio or count')
parser.add_argument('--test-ratio', type=float, default=0.1, help='Test set ratio or count')
args = parser.parse_args()
# 输入文件夹路径
image_folder = args.img_dir
label_folder = args.label_dir
# 输出路径
output_dir = args.output_dir
# 分块大小
block_size = (170, 170) # 替换为希望的分块尺寸 (宽, 高)
roi = tuple(args.roi) if args.roi else None
all_output = os.path.join(output_dir, 'all')
# 批量生成数据集
create_dataset_from_folder(image_folder, label_folder, block_size, all_output)
split_dataset(all_output, output_dir, args.train_ratio, args.val_ratio, args.test_ratio)

View File

@ -1,6 +1,8 @@
import os
import argparse
import time
from datetime import datetime
import torch
import torch.nn as nn
import torch.optim as optim
@ -10,7 +12,7 @@ import matplotlib.pyplot as plt
# 设置 cudnn 优化
torch.backends.cudnn.benchmark = True
plt.ion()
def get_next_model_name(save_dir, base_name, ext):
"""
@ -131,37 +133,58 @@ def train_model(model, criterion, optimizer, scheduler, dataloaders, dataset_siz
return model
# 参数解析部分
parser = argparse.ArgumentParser(description="Train a ResNet18 model on custom dataset.")
parser.add_argument('--data-dir', type=str, default='dataset', help='Path to the dataset directory.')
parser.add_argument('--model-save-dir', type=str, default='model', help='Directory to save the trained model.')
parser.add_argument('--batch-size', type=int, default=8, help='Batch size for training.')
parser.add_argument('--epochs', type=int, default=5, help='Number of training epochs.')
parser.add_argument('--lr', type=float, default=0.0005, help='Learning rate.')
parser.add_argument('--momentum', type=float, default=0.95, help='Momentum for SGD.')
parser.add_argument('--step-size', type=int, default=5, help='Step size for LR scheduler.')
parser.add_argument('--gamma', type=float, default=0.2, help='Gamma for LR scheduler.')
parser.add_argument('--num-classes', type=int, default=2, help='Number of output classes.')
parser.add_argument('--model-base-name', type=str, default='best_model', help='Base name for saved models.')
def main(args):
"""Main function to train the model based on command-line arguments."""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dataloaders, dataset_sizes, class_names = get_data_loaders(args.data_dir, args.batch_size)
model = models.resnet18(weights='IMAGENET1K_V1')
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, args.num_classes)
if args.model_name == 'resnet18':
model = models.resnet18(weights='IMAGENET1K_V1')
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, args.num_classes)
elif args.model_name == 'resnet50':
model = models.resnet50(weights='IMAGENET1K_V1')
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, args.num_classes)
elif args.model_name == 'alexnet':
model = models.alexnet(pretrained=True)
num_ftrs = model.classifier[-1].in_features
model.classifier[-1] = nn.Linear(num_ftrs, args.num_classes)
elif args.model_name == 'vgg16':
model = models.vgg16(pretrained=True)
num_ftrs = model.classifier[-1].in_features
model.classifier[-1] = nn.Linear(num_ftrs, args.num_classes)
elif args.model_name == 'densenet':
model = models.densenet121(pretrained=True)
num_ftrs = model.classifier.in_features
model.classifier = nn.Linear(num_ftrs, args.num_classes)
elif args.model_name == 'inceptionv3':
model = models.inception_v3(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, args.num_classes)
model = model.to(device)
# training start time and model info
model_base_name = f"{args.model_name}_bs{args.batch_size}_ep{args.epochs}_{datetime.now().strftime('%y_%m_%d')}.pt"
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
train_model(model, criterion, optimizer, scheduler, dataloaders, dataset_sizes, device,
args.epochs, args.model_save_dir, args.model_base_name)
args.epochs, args.model_save_dir, model_base_name)
if __name__ == '__main__':
# 参数解析部分
parser = argparse.ArgumentParser(description="Train a ResNet18 model on custom dataset.")
parser.add_argument('--model_name', type=str, default='resnet18', help='Which model to train as base model')
parser.add_argument('--data-dir', type=str, default='dataset', help='Path to the dataset directory.')
parser.add_argument('--model-save-dir', type=str, default='model', help='Directory to save the trained model.')
parser.add_argument('--batch-size', type=int, default=8, help='Batch size for training.')
parser.add_argument('--epochs', type=int, default=5, help='Number of training epochs.')
parser.add_argument('--lr', type=float, default=0.0005, help='Learning rate.')
parser.add_argument('--momentum', type=float, default=0.95, help='Momentum for SGD.')
parser.add_argument('--step-size', type=int, default=5, help='Step size for LR scheduler.')
parser.add_argument('--gamma', type=float, default=0.2, help='Gamma for LR scheduler.')
parser.add_argument('--num-classes', type=int, default=2, help='Number of output classes.')
args = parser.parse_args()
main(args)

0
DPL/model_cls/utils.py Normal file
View File