添加地膜识别后的掩膜文件

This commit is contained in:
wrz1-zzzzz 2024-11-18 16:42:35 +08:00
parent 7674b17445
commit 5c9df03c21

137
DPL/yolov5/mask_11.18.py Normal file
View File

@ -0,0 +1,137 @@
import os
import cv2
import numpy as np
import time
def read_yolov5_labels(label_folder):
"""
读取YOLOv5标签文件夹中的标签文件提取每个框的位置
:param label_folder: YOLOv5标签文件夹路径
:return: 返回一个字典格式为 {image_name: [(x_center, y_center, width, height), ...]}
"""
labels = {}
# 遍历YOLOv5结果文件夹中的所有txt文件
for filename in os.listdir(label_folder):
if filename.endswith('.txt'):
image_name = filename.replace('.txt', '')
file_path = os.path.join(label_folder, filename)
# 读取文件并解析检测框
with open(file_path, 'r') as f:
boxes = []
for line in f:
parts = line.strip().split()
if len(parts) < 5: # 检查标签格式是否完整
continue
# 从YOLOv5标签格式解析出数据
class_id = int(parts[0])
x_center = float(parts[1])
y_center = float(parts[2])
width = float(parts[3])
height = float(parts[4])
# 计算框的绝对坐标
boxes.append([x_center, y_center, width, height])
labels[image_name] = boxes
return labels
def generate_mask(image_shape, boxes, width_blocks=24, height_blocks=24):
"""
根据检测框信息生成掩膜返回True和False的矩阵
:param image_shape: 图像的shapeheight, width
:param boxes: 检测框信息格式为 [(x_center, y_center, width, height), ...]
:param width_blocks: 图像宽度分块数
:param height_blocks: 图像高度分块数
:return: 掩膜矩阵 (height, width)True表示框内区域False表示其他区域
"""
height, width = image_shape
# 创建一个与图像大小相同的全False矩阵
mask = np.zeros((height, width), dtype=bool)
# 遍历每个框,更新掩膜矩阵
for box in boxes:
x_center, y_center, width_box, height_box = box
# 转换为绝对坐标
x1 = int((x_center - width_box / 2) * width)
y1 = int((y_center - height_box / 2) * height)
x2 = int((x_center + width_box / 2) * width)
y2 = int((y_center + height_box / 2) * height)
# 确保框不超出图像边界
x1 = max(0, x1)
y1 = max(0, y1)
x2 = min(width, x2)
y2 = min(height, y2)
# 将检测框区域标记为True
mask[y1:y2, x1:x2] = True
return mask
def process_images_and_generate_masks(image_folder, label_folder, output_folder, width_blocks=24, height_blocks=24):
"""
处理图像文件夹生成掩膜并保存为True和False的矩阵
:param image_folder: 输入图像文件夹路径
:param label_folder: YOLOv5标签文件夹路径
:param output_folder: 输出掩膜矩阵保存文件夹路径
:param width_blocks: 图像宽度分块数
:param height_blocks: 图像高度分块数
:return: None
"""
# 确保输出文件夹存在
if not os.path.exists(output_folder):
os.makedirs(output_folder)
# 读取YOLOv5标签文件
labels = read_yolov5_labels(label_folder)
# 遍历图像文件夹中的图片
for filename in os.listdir(image_folder):
if filename.endswith(('.jpg', '.png', '.bmp')):
image_path = os.path.join(image_folder, filename)
image_name = filename.replace('.jpg', '').replace('.png', '').replace('.bmp', '')
# 获取对应的标签框
boxes = labels.get(image_name, [])
if not boxes:
print(f"未找到检测框信息:{image_name}")
continue
# 读取图片
image = cv2.imread(image_path)
if image is None:
print(f"无法读取图片: {image_path}")
continue
# 获取图像的尺寸 (height, width)
height, width = image.shape[:2]
# 记录处理时间
start_time = time.time()
# 生成掩膜
mask = generate_mask((height, width), boxes, width_blocks, height_blocks)
# 计算处理时间
processing_time = time.time() - start_time
print(f"处理图片 {image_name} 耗时: {processing_time:.4f}")
# 保存掩膜矩阵到文件
mask_filename = f"{image_name}_mask.npy"
mask_path = os.path.join(output_folder, mask_filename)
np.save(mask_path, mask)
print(f"保存掩膜: {mask_filename}")
# 测试代码
if __name__ == "__main__":
image_folder = "runs/detect/exp6" # 输入图像文件夹路径
label_folder = "runs/detect/labels" # YOLOv5标签文件夹路径
output_folder = "datasets/mask" # 输出掩膜矩阵保存文件夹路径
process_images_and_generate_masks(image_folder, label_folder, output_folder)