mirror of
https://github.com/Karllzy/cotton_color.git
synced 2025-11-08 18:53:53 +00:00
Merge remote-tracking branch 'origin/YOLO'
This commit is contained in:
commit
49e1e9982c
2
.gitignore
vendored
2
.gitignore
vendored
@ -363,4 +363,4 @@ MigrationBackup/
|
||||
FodyWeavers.xsd
|
||||
|
||||
.idea
|
||||
cmake-build-*
|
||||
cmake-build-*
|
||||
|
||||
437
YOLO/yolov5-master/detect.py
Normal file
437
YOLO/yolov5-master/detect.py
Normal file
@ -0,0 +1,437 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
|
||||
|
||||
Usage - sources:
|
||||
$ python detect.py --weights yolov5s.pt --source 0 # webcam
|
||||
img.jpg # image
|
||||
vid.mp4 # video
|
||||
screen # screenshot
|
||||
path/ # directory
|
||||
list.txt # list of images
|
||||
list.streams # list of streams
|
||||
'path/*.jpg' # glob
|
||||
'https://youtu.be/LNwODJXcvt4' # YouTube
|
||||
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
||||
|
||||
Usage - formats:
|
||||
$ python detect.py --weights yolov5s.pt # PyTorch
|
||||
yolov5s.torchscript # TorchScript
|
||||
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
||||
yolov5s_openvino_model # OpenVINO
|
||||
yolov5s.engine # TensorRT
|
||||
yolov5s.mlpackage # CoreML (macOS-only)
|
||||
yolov5s_saved_model # TensorFlow SavedModel
|
||||
yolov5s.pb # TensorFlow GraphDef
|
||||
yolov5s.tflite # TensorFlow Lite
|
||||
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
|
||||
yolov5s_paddle_model # PaddlePaddle
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import csv
|
||||
import os
|
||||
import platform
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[0] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||
|
||||
from ultralytics.utils.plotting import Annotator, colors, save_one_box
|
||||
|
||||
from models.common import DetectMultiBackend
|
||||
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
|
||||
from utils.general import (
|
||||
LOGGER,
|
||||
Profile,
|
||||
check_file,
|
||||
check_img_size,
|
||||
check_imshow,
|
||||
check_requirements,
|
||||
colorstr,
|
||||
cv2,
|
||||
increment_path,
|
||||
non_max_suppression,
|
||||
print_args,
|
||||
scale_boxes,
|
||||
strip_optimizer,
|
||||
xyxy2xywh,
|
||||
)
|
||||
from utils.torch_utils import select_device, smart_inference_mode
|
||||
|
||||
|
||||
@smart_inference_mode()
|
||||
def run(
|
||||
weights=ROOT / "yolov5s.pt", # model path or triton URL
|
||||
source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam)
|
||||
data=ROOT / "data/coco128.yaml", # dataset.yaml path
|
||||
imgsz=(640, 640), # inference size (height, width)
|
||||
conf_thres=0.25, # confidence threshold
|
||||
iou_thres=0.45, # NMS IOU threshold
|
||||
max_det=1000, # maximum detections per image
|
||||
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
view_img=False, # show results
|
||||
save_txt=False, # save results to *.txt
|
||||
save_format=0, # save boxes coordinates in YOLO format or Pascal-VOC format (0 for YOLO and 1 for Pascal-VOC)
|
||||
save_csv=False, # save results in CSV format
|
||||
save_conf=False, # save confidences in --save-txt labels
|
||||
save_crop=False, # save cropped prediction boxes
|
||||
nosave=False, # do not save images/videos
|
||||
classes=None, # filter by class: --class 0, or --class 0 2 3
|
||||
agnostic_nms=False, # class-agnostic NMS
|
||||
augment=False, # augmented inference
|
||||
visualize=False, # visualize features
|
||||
update=False, # update all models
|
||||
project=ROOT / "runs/detect", # save results to project/name
|
||||
name="exp", # save results to project/name
|
||||
exist_ok=False, # existing project/name ok, do not increment
|
||||
line_thickness=3, # bounding box thickness (pixels)
|
||||
hide_labels=False, # hide labels
|
||||
hide_conf=False, # hide confidences
|
||||
half=False, # use FP16 half-precision inference
|
||||
dnn=False, # use OpenCV DNN for ONNX inference
|
||||
vid_stride=1, # video frame-rate stride
|
||||
):
|
||||
"""
|
||||
Runs YOLOv5 detection inference on various sources like images, videos, directories, streams, etc.
|
||||
|
||||
Args:
|
||||
weights (str | Path): Path to the model weights file or a Triton URL. Default is 'yolov5s.pt'.
|
||||
source (str | Path): Input source, which can be a file, directory, URL, glob pattern, screen capture, or webcam
|
||||
index. Default is 'data/images'.
|
||||
data (str | Path): Path to the dataset YAML file. Default is 'data/coco128.yaml'.
|
||||
imgsz (tuple[int, int]): Inference image size as a tuple (height, width). Default is (640, 640).
|
||||
conf_thres (float): Confidence threshold for detections. Default is 0.25.
|
||||
iou_thres (float): Intersection Over Union (IOU) threshold for non-max suppression. Default is 0.45.
|
||||
max_det (int): Maximum number of detections per image. Default is 1000.
|
||||
device (str): CUDA device identifier (e.g., '0' or '0,1,2,3') or 'cpu'. Default is an empty string, which uses the
|
||||
best available device.
|
||||
view_img (bool): If True, display inference results using OpenCV. Default is False.
|
||||
save_txt (bool): If True, save results in a text file. Default is False.
|
||||
save_csv (bool): If True, save results in a CSV file. Default is False.
|
||||
save_conf (bool): If True, include confidence scores in the saved results. Default is False.
|
||||
save_crop (bool): If True, save cropped prediction boxes. Default is False.
|
||||
nosave (bool): If True, do not save inference images or videos. Default is False.
|
||||
classes (list[int]): List of class indices to filter detections by. Default is None.
|
||||
agnostic_nms (bool): If True, perform class-agnostic non-max suppression. Default is False.
|
||||
augment (bool): If True, use augmented inference. Default is False.
|
||||
visualize (bool): If True, visualize feature maps. Default is False.
|
||||
update (bool): If True, update all models' weights. Default is False.
|
||||
project (str | Path): Directory to save results. Default is 'runs/detect'.
|
||||
name (str): Name of the current experiment; used to create a subdirectory within 'project'. Default is 'exp'.
|
||||
exist_ok (bool): If True, existing directories with the same name are reused instead of being incremented. Default is
|
||||
False.
|
||||
line_thickness (int): Thickness of bounding box lines in pixels. Default is 3.
|
||||
hide_labels (bool): If True, do not display labels on bounding boxes. Default is False.
|
||||
hide_conf (bool): If True, do not display confidence scores on bounding boxes. Default is False.
|
||||
half (bool): If True, use FP16 half-precision inference. Default is False.
|
||||
dnn (bool): If True, use OpenCV DNN backend for ONNX inference. Default is False.
|
||||
vid_stride (int): Stride for processing video frames, to skip frames between processing. Default is 1.
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
Examples:
|
||||
```python
|
||||
from ultralytics import run
|
||||
|
||||
# Run inference on an image
|
||||
run(source='data/images/example.jpg', weights='yolov5s.pt', device='0')
|
||||
|
||||
# Run inference on a video with specific confidence threshold
|
||||
run(source='data/videos/example.mp4', weights='yolov5s.pt', conf_thres=0.4, device='0')
|
||||
```
|
||||
"""
|
||||
source = str(source)
|
||||
save_img = not nosave and not source.endswith(".txt") # save inference images
|
||||
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
||||
is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
|
||||
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
|
||||
screenshot = source.lower().startswith("screen")
|
||||
if is_url and is_file:
|
||||
source = check_file(source) # download
|
||||
|
||||
# Directories
|
||||
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
||||
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
||||
|
||||
# Load model
|
||||
device = select_device(device)
|
||||
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
||||
stride, names, pt = model.stride, model.names, model.pt
|
||||
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||
|
||||
# Dataloader
|
||||
bs = 1 # batch_size
|
||||
if webcam:
|
||||
view_img = check_imshow(warn=True)
|
||||
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
||||
bs = len(dataset)
|
||||
elif screenshot:
|
||||
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
||||
else:
|
||||
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
||||
vid_path, vid_writer = [None] * bs, [None] * bs
|
||||
|
||||
# Run inference
|
||||
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
|
||||
seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
|
||||
for path, im, im0s, vid_cap, s in dataset:
|
||||
with dt[0]:
|
||||
im = torch.from_numpy(im).to(model.device)
|
||||
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
||||
im /= 255 # 0 - 255 to 0.0 - 1.0
|
||||
if len(im.shape) == 3:
|
||||
im = im[None] # expand for batch dim
|
||||
if model.xml and im.shape[0] > 1:
|
||||
ims = torch.chunk(im, im.shape[0], 0)
|
||||
|
||||
# Inference
|
||||
with dt[1]:
|
||||
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
||||
if model.xml and im.shape[0] > 1:
|
||||
pred = None
|
||||
for image in ims:
|
||||
if pred is None:
|
||||
pred = model(image, augment=augment, visualize=visualize).unsqueeze(0)
|
||||
else:
|
||||
pred = torch.cat((pred, model(image, augment=augment, visualize=visualize).unsqueeze(0)), dim=0)
|
||||
pred = [pred, None]
|
||||
else:
|
||||
pred = model(im, augment=augment, visualize=visualize)
|
||||
# NMS
|
||||
with dt[2]:
|
||||
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
||||
|
||||
# Second-stage classifier (optional)
|
||||
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
|
||||
|
||||
# Define the path for the CSV file
|
||||
csv_path = save_dir / "predictions.csv"
|
||||
|
||||
# Create or append to the CSV file
|
||||
def write_to_csv(image_name, prediction, confidence):
|
||||
"""Writes prediction data for an image to a CSV file, appending if the file exists."""
|
||||
data = {"Image Name": image_name, "Prediction": prediction, "Confidence": confidence}
|
||||
with open(csv_path, mode="a", newline="") as f:
|
||||
writer = csv.DictWriter(f, fieldnames=data.keys())
|
||||
if not csv_path.is_file():
|
||||
writer.writeheader()
|
||||
writer.writerow(data)
|
||||
|
||||
# Process predictions
|
||||
for i, det in enumerate(pred): # per image
|
||||
seen += 1
|
||||
if webcam: # batch_size >= 1
|
||||
p, im0, frame = path[i], im0s[i].copy(), dataset.count
|
||||
s += f"{i}: "
|
||||
else:
|
||||
p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
|
||||
|
||||
p = Path(p) # to Path
|
||||
save_path = str(save_dir / p.name) # im.jpg
|
||||
txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt
|
||||
s += "{:g}x{:g} ".format(*im.shape[2:]) # print string
|
||||
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
||||
imc = im0.copy() if save_crop else im0 # for save_crop
|
||||
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
|
||||
if len(det):
|
||||
# Rescale boxes from img_size to im0 size
|
||||
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
|
||||
|
||||
# Print results
|
||||
for c in det[:, 5].unique():
|
||||
n = (det[:, 5] == c).sum() # detections per class
|
||||
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
||||
|
||||
# Write results
|
||||
for *xyxy, conf, cls in reversed(det):
|
||||
c = int(cls) # integer class
|
||||
label = names[c] if hide_conf else f"{names[c]}"
|
||||
confidence = float(conf)
|
||||
confidence_str = f"{confidence:.2f}"
|
||||
|
||||
if save_csv:
|
||||
write_to_csv(p.name, label, confidence_str)
|
||||
|
||||
if save_txt: # Write to file
|
||||
if save_format == 0:
|
||||
coords = (
|
||||
(xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
|
||||
) # normalized xywh
|
||||
else:
|
||||
coords = (torch.tensor(xyxy).view(1, 4) / gn).view(-1).tolist() # xyxy
|
||||
line = (cls, *coords, conf) if save_conf else (cls, *coords) # label format
|
||||
with open(f"{txt_path}.txt", "a") as f:
|
||||
f.write(("%g " * len(line)).rstrip() % line + "\n")
|
||||
|
||||
if save_img or save_crop or view_img: # Add bbox to image
|
||||
c = int(cls) # integer class
|
||||
label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}")
|
||||
annotator.box_label(xyxy, label, color=colors(c, True))
|
||||
if save_crop:
|
||||
save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)
|
||||
|
||||
# Stream results
|
||||
im0 = annotator.result()
|
||||
if view_img:
|
||||
if platform.system() == "Linux" and p not in windows:
|
||||
windows.append(p)
|
||||
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
||||
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
||||
cv2.imshow(str(p), im0)
|
||||
cv2.waitKey(1) # 1 millisecond
|
||||
|
||||
# Save results (image with detections)
|
||||
if save_img:
|
||||
if dataset.mode == "image":
|
||||
cv2.imwrite(save_path, im0)
|
||||
else: # 'video' or 'stream'
|
||||
if vid_path[i] != save_path: # new video
|
||||
vid_path[i] = save_path
|
||||
if isinstance(vid_writer[i], cv2.VideoWriter):
|
||||
vid_writer[i].release() # release previous video writer
|
||||
if vid_cap: # video
|
||||
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
||||
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
else: # stream
|
||||
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
||||
save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos
|
||||
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
|
||||
vid_writer[i].write(im0)
|
||||
|
||||
# Print time (inference-only)
|
||||
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
|
||||
|
||||
# Print results
|
||||
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
|
||||
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
|
||||
if save_txt or save_img:
|
||||
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
|
||||
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
||||
if update:
|
||||
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
|
||||
|
||||
|
||||
def parse_opt():
|
||||
"""
|
||||
Parse command-line arguments for YOLOv5 detection, allowing custom inference options and model configurations.
|
||||
|
||||
Args:
|
||||
--weights (str | list[str], optional): Model path or Triton URL. Defaults to ROOT / 'yolov5s.pt'.
|
||||
--source (str, optional): File/dir/URL/glob/screen/0(webcam). Defaults to ROOT / 'data/images'.
|
||||
--data (str, optional): Dataset YAML path. Provides dataset configuration information.
|
||||
--imgsz (list[int], optional): Inference size (height, width). Defaults to [640].
|
||||
--conf-thres (float, optional): Confidence threshold. Defaults to 0.25.
|
||||
--iou-thres (float, optional): NMS IoU threshold. Defaults to 0.45.
|
||||
--max-det (int, optional): Maximum number of detections per image. Defaults to 1000.
|
||||
--device (str, optional): CUDA device, i.e., '0' or '0,1,2,3' or 'cpu'. Defaults to "".
|
||||
--view-img (bool, optional): Flag to display results. Defaults to False.
|
||||
--save-txt (bool, optional): Flag to save results to *.txt files. Defaults to False.
|
||||
--save-csv (bool, optional): Flag to save results in CSV format. Defaults to False.
|
||||
--save-conf (bool, optional): Flag to save confidences in labels saved via --save-txt. Defaults to False.
|
||||
--save-crop (bool, optional): Flag to save cropped prediction boxes. Defaults to False.
|
||||
--nosave (bool, optional): Flag to prevent saving images/videos. Defaults to False.
|
||||
--classes (list[int], optional): List of classes to filter results by, e.g., '--classes 0 2 3'. Defaults to None.
|
||||
--agnostic-nms (bool, optional): Flag for class-agnostic NMS. Defaults to False.
|
||||
--augment (bool, optional): Flag for augmented inference. Defaults to False.
|
||||
--visualize (bool, optional): Flag for visualizing features. Defaults to False.
|
||||
--update (bool, optional): Flag to update all models in the model directory. Defaults to False.
|
||||
--project (str, optional): Directory to save results. Defaults to ROOT / 'runs/detect'.
|
||||
--name (str, optional): Sub-directory name for saving results within --project. Defaults to 'exp'.
|
||||
--exist-ok (bool, optional): Flag to allow overwriting if the project/name already exists. Defaults to False.
|
||||
--line-thickness (int, optional): Thickness (in pixels) of bounding boxes. Defaults to 3.
|
||||
--hide-labels (bool, optional): Flag to hide labels in the output. Defaults to False.
|
||||
--hide-conf (bool, optional): Flag to hide confidences in the output. Defaults to False.
|
||||
--half (bool, optional): Flag to use FP16 half-precision inference. Defaults to False.
|
||||
--dnn (bool, optional): Flag to use OpenCV DNN for ONNX inference. Defaults to False.
|
||||
--vid-stride (int, optional): Video frame-rate stride, determining the number of frames to skip in between
|
||||
consecutive frames. Defaults to 1.
|
||||
|
||||
Returns:
|
||||
argparse.Namespace: Parsed command-line arguments as an argparse.Namespace object.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics import YOLOv5
|
||||
args = YOLOv5.parse_opt()
|
||||
```
|
||||
"""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "runs/train/exp9/weights/best.pt", help="model path or triton URL")
|
||||
parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
|
||||
parser.add_argument("--data", type=str, default=ROOT / "data/dimo2.yaml", help="(optional) dataset.yaml path")
|
||||
parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
|
||||
parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold")
|
||||
parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold")
|
||||
parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image")
|
||||
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
||||
parser.add_argument("--view-img", action="store_true", help="show results")
|
||||
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
|
||||
parser.add_argument(
|
||||
"--save-format",
|
||||
type=int,
|
||||
default=0,
|
||||
help="whether to save boxes coordinates in YOLO format or Pascal-VOC format when save-txt is True, 0 for YOLO and 1 for Pascal-VOC",
|
||||
)
|
||||
parser.add_argument("--save-csv", action="store_true", help="save results in CSV format")
|
||||
parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
|
||||
parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes")
|
||||
parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
|
||||
parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")
|
||||
parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS")
|
||||
parser.add_argument("--augment", action="store_true", help="augmented inference")
|
||||
parser.add_argument("--visualize", action="store_true", help="visualize features")
|
||||
parser.add_argument("--update", action="store_true", help="update all models")
|
||||
parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name")
|
||||
parser.add_argument("--name", default="exp", help="save results to project/name")
|
||||
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
|
||||
parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)")
|
||||
parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels")
|
||||
parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences")
|
||||
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
|
||||
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
|
||||
parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
|
||||
opt = parser.parse_args()
|
||||
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
||||
print_args(vars(opt))
|
||||
return opt
|
||||
|
||||
|
||||
def main(opt):
|
||||
"""
|
||||
Executes YOLOv5 model inference based on provided command-line arguments, validating dependencies before running.
|
||||
|
||||
Args:
|
||||
opt (argparse.Namespace): Command-line arguments for YOLOv5 detection. See function `parse_opt` for details.
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
Note:
|
||||
This function performs essential pre-execution checks and initiates the YOLOv5 detection process based on user-specified
|
||||
options. Refer to the usage guide and examples for more information about different sources and formats at:
|
||||
https://github.com/ultralytics/ultralytics
|
||||
|
||||
Example usage:
|
||||
|
||||
```python
|
||||
if __name__ == "__main__":
|
||||
opt = parse_opt()
|
||||
main(opt)
|
||||
```
|
||||
"""
|
||||
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
|
||||
run(**vars(opt))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
opt = parse_opt()
|
||||
main(opt)
|
||||
1546
YOLO/yolov5-master/export.py
Normal file
1546
YOLO/yolov5-master/export.py
Normal file
File diff suppressed because it is too large
Load Diff
BIN
YOLO/yolov5-master/model/11.12.onnx
Normal file
BIN
YOLO/yolov5-master/model/11.12.onnx
Normal file
Binary file not shown.
49
YOLO/yolov5-master/requirements.txt
Normal file
49
YOLO/yolov5-master/requirements.txt
Normal file
@ -0,0 +1,49 @@
|
||||
# YOLOv5 requirements
|
||||
# Usage: pip install -r requirements.txt
|
||||
|
||||
# Base ------------------------------------------------------------------------
|
||||
gitpython>=3.1.30
|
||||
matplotlib>=3.3
|
||||
numpy>=1.23.5
|
||||
opencv-python>=4.1.1
|
||||
pillow>=10.3.0
|
||||
psutil # system resources
|
||||
PyYAML>=5.3.1
|
||||
requests>=2.32.2
|
||||
scipy>=1.4.1
|
||||
thop>=0.1.1 # FLOPs computation
|
||||
torch>=1.8.0 # see https://pytorch.org/get-started/locally (recommended)
|
||||
torchvision>=0.9.0
|
||||
tqdm>=4.66.3
|
||||
ultralytics>=8.2.34 # https://ultralytics.com
|
||||
# protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012
|
||||
|
||||
# Logging ---------------------------------------------------------------------
|
||||
# tensorboard>=2.4.1
|
||||
# clearml>=1.2.0
|
||||
# comet
|
||||
|
||||
# Plotting --------------------------------------------------------------------
|
||||
pandas>=1.1.4
|
||||
seaborn>=0.11.0
|
||||
|
||||
# Export ----------------------------------------------------------------------
|
||||
# coremltools>=6.0 # CoreML export
|
||||
# onnx>=1.10.0 # ONNX export
|
||||
# onnx-simplifier>=0.4.1 # ONNX simplifier
|
||||
# nvidia-pyindex # TensorRT export
|
||||
# nvidia-tensorrt # TensorRT export
|
||||
# scikit-learn<=1.1.2 # CoreML quantization
|
||||
# tensorflow>=2.4.0,<=2.13.1 # TF exports (-cpu, -aarch64, -macos)
|
||||
# tensorflowjs>=3.9.0 # TF.js export
|
||||
# openvino-dev>=2023.0 # OpenVINO export
|
||||
|
||||
# Deploy ----------------------------------------------------------------------
|
||||
setuptools>=70.0.0 # Snyk vulnerability fix
|
||||
# tritonclient[all]~=2.24.0
|
||||
|
||||
# Extras ----------------------------------------------------------------------
|
||||
# ipython # interactive notebook
|
||||
# mss # screenshots
|
||||
# albumentations>=1.0.3
|
||||
# pycocotools>=2.0.6 # COCO mAP
|
||||
987
YOLO/yolov5-master/train.py
Normal file
987
YOLO/yolov5-master/train.py
Normal file
@ -0,0 +1,987 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Train a YOLOv5 model on a custom dataset. Models and datasets download automatically from the latest YOLOv5 release.
|
||||
|
||||
Usage - Single-GPU training:
|
||||
$ python train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (recommended)
|
||||
$ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch
|
||||
|
||||
Usage - Multi-GPU DDP training:
|
||||
$ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3
|
||||
|
||||
Models: https://github.com/ultralytics/yolov5/tree/master/models
|
||||
Datasets: https://github.com/ultralytics/yolov5/tree/master/data
|
||||
Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timedelta
|
||||
from pathlib import Path
|
||||
|
||||
os.environ["GIT_PYTHON_REFRESH"] = "quiet"
|
||||
try:
|
||||
import comet_ml # must be imported before torch (if installed)
|
||||
except ImportError:
|
||||
comet_ml = None
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
import yaml
|
||||
from torch.optim import lr_scheduler
|
||||
from tqdm import tqdm
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[0] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||
|
||||
import val as validate # for end-of-epoch mAP
|
||||
from models.experimental import attempt_load
|
||||
from models.yolo import Model
|
||||
from utils.autoanchor import check_anchors
|
||||
from utils.autobatch import check_train_batch_size
|
||||
from utils.callbacks import Callbacks
|
||||
from utils.dataloaders import create_dataloader
|
||||
from utils.downloads import attempt_download, is_url
|
||||
from utils.general import (
|
||||
LOGGER,
|
||||
TQDM_BAR_FORMAT,
|
||||
check_amp,
|
||||
check_dataset,
|
||||
check_file,
|
||||
check_git_info,
|
||||
check_git_status,
|
||||
check_img_size,
|
||||
check_requirements,
|
||||
check_suffix,
|
||||
check_yaml,
|
||||
colorstr,
|
||||
get_latest_run,
|
||||
increment_path,
|
||||
init_seeds,
|
||||
intersect_dicts,
|
||||
labels_to_class_weights,
|
||||
labels_to_image_weights,
|
||||
methods,
|
||||
one_cycle,
|
||||
print_args,
|
||||
print_mutation,
|
||||
strip_optimizer,
|
||||
yaml_save,
|
||||
)
|
||||
from utils.loggers import LOGGERS, Loggers
|
||||
from utils.loggers.comet.comet_utils import check_comet_resume
|
||||
from utils.loss import ComputeLoss
|
||||
from utils.metrics import fitness
|
||||
from utils.plots import plot_evolve
|
||||
from utils.torch_utils import (
|
||||
EarlyStopping,
|
||||
ModelEMA,
|
||||
de_parallel,
|
||||
select_device,
|
||||
smart_DDP,
|
||||
smart_optimizer,
|
||||
smart_resume,
|
||||
torch_distributed_zero_first,
|
||||
)
|
||||
|
||||
LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
||||
RANK = int(os.getenv("RANK", -1))
|
||||
WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
|
||||
GIT_INFO = check_git_info()
|
||||
|
||||
|
||||
def train(hyp, opt, device, callbacks):
|
||||
"""
|
||||
Train a YOLOv5 model on a custom dataset using specified hyperparameters, options, and device, managing datasets,
|
||||
model architecture, loss computation, and optimizer steps.
|
||||
|
||||
Args:
|
||||
hyp (str | dict): Path to the hyperparameters YAML file or a dictionary of hyperparameters.
|
||||
opt (argparse.Namespace): Parsed command-line arguments containing training options.
|
||||
device (torch.device): Device on which training occurs, e.g., 'cuda' or 'cpu'.
|
||||
callbacks (Callbacks): Callback functions for various training events.
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
Models and datasets download automatically from the latest YOLOv5 release.
|
||||
|
||||
Example:
|
||||
Single-GPU training:
|
||||
```bash
|
||||
$ python train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (recommended)
|
||||
$ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch
|
||||
```
|
||||
|
||||
Multi-GPU DDP training:
|
||||
```bash
|
||||
$ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights
|
||||
yolov5s.pt --img 640 --device 0,1,2,3
|
||||
```
|
||||
|
||||
For more usage details, refer to:
|
||||
- Models: https://github.com/ultralytics/yolov5/tree/master/models
|
||||
- Datasets: https://github.com/ultralytics/yolov5/tree/master/data
|
||||
- Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
|
||||
"""
|
||||
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = (
|
||||
Path(opt.save_dir),
|
||||
opt.epochs,
|
||||
opt.batch_size,
|
||||
opt.weights,
|
||||
opt.single_cls,
|
||||
opt.evolve,
|
||||
opt.data,
|
||||
opt.cfg,
|
||||
opt.resume,
|
||||
opt.noval,
|
||||
opt.nosave,
|
||||
opt.workers,
|
||||
opt.freeze,
|
||||
)
|
||||
callbacks.run("on_pretrain_routine_start")
|
||||
|
||||
# Directories
|
||||
w = save_dir / "weights" # weights dir
|
||||
(w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
|
||||
last, best = w / "last.pt", w / "best.pt"
|
||||
|
||||
# Hyperparameters
|
||||
if isinstance(hyp, str):
|
||||
with open(hyp, errors="ignore") as f:
|
||||
hyp = yaml.safe_load(f) # load hyps dict
|
||||
LOGGER.info(colorstr("hyperparameters: ") + ", ".join(f"{k}={v}" for k, v in hyp.items()))
|
||||
opt.hyp = hyp.copy() # for saving hyps to checkpoints
|
||||
|
||||
# Save run settings
|
||||
if not evolve:
|
||||
yaml_save(save_dir / "hyp.yaml", hyp)
|
||||
yaml_save(save_dir / "opt.yaml", vars(opt))
|
||||
|
||||
# Loggers
|
||||
data_dict = None
|
||||
if RANK in {-1, 0}:
|
||||
include_loggers = list(LOGGERS)
|
||||
if getattr(opt, "ndjson_console", False):
|
||||
include_loggers.append("ndjson_console")
|
||||
if getattr(opt, "ndjson_file", False):
|
||||
include_loggers.append("ndjson_file")
|
||||
|
||||
loggers = Loggers(
|
||||
save_dir=save_dir,
|
||||
weights=weights,
|
||||
opt=opt,
|
||||
hyp=hyp,
|
||||
logger=LOGGER,
|
||||
include=tuple(include_loggers),
|
||||
)
|
||||
|
||||
# Register actions
|
||||
for k in methods(loggers):
|
||||
callbacks.register_action(k, callback=getattr(loggers, k))
|
||||
|
||||
# Process custom dataset artifact link
|
||||
data_dict = loggers.remote_dataset
|
||||
if resume: # If resuming runs from remote artifact
|
||||
weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
|
||||
|
||||
# Config
|
||||
plots = not evolve and not opt.noplots # create plots
|
||||
cuda = device.type != "cpu"
|
||||
init_seeds(opt.seed + 1 + RANK, deterministic=True)
|
||||
with torch_distributed_zero_first(LOCAL_RANK):
|
||||
data_dict = data_dict or check_dataset(data) # check if None
|
||||
train_path, val_path = data_dict["train"], data_dict["val"]
|
||||
nc = 1 if single_cls else int(data_dict["nc"]) # number of classes
|
||||
names = {0: "item"} if single_cls and len(data_dict["names"]) != 1 else data_dict["names"] # class names
|
||||
is_coco = isinstance(val_path, str) and val_path.endswith("coco/val2017.txt") # COCO dataset
|
||||
|
||||
# Model
|
||||
check_suffix(weights, ".pt") # check weights
|
||||
pretrained = weights.endswith(".pt")
|
||||
if pretrained:
|
||||
with torch_distributed_zero_first(LOCAL_RANK):
|
||||
weights = attempt_download(weights) # download if not found locally
|
||||
ckpt = torch.load(weights, map_location="cpu") # load checkpoint to CPU to avoid CUDA memory leak
|
||||
model = Model(cfg or ckpt["model"].yaml, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device) # create
|
||||
exclude = ["anchor"] if (cfg or hyp.get("anchors")) and not resume else [] # exclude keys
|
||||
csd = ckpt["model"].float().state_dict() # checkpoint state_dict as FP32
|
||||
csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
|
||||
model.load_state_dict(csd, strict=False) # load
|
||||
LOGGER.info(f"Transferred {len(csd)}/{len(model.state_dict())} items from {weights}") # report
|
||||
else:
|
||||
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device) # create
|
||||
amp = check_amp(model) # check AMP
|
||||
|
||||
# Freeze
|
||||
freeze = [f"model.{x}." for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
|
||||
for k, v in model.named_parameters():
|
||||
v.requires_grad = True # train all layers
|
||||
# v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
|
||||
if any(x in k for x in freeze):
|
||||
LOGGER.info(f"freezing {k}")
|
||||
v.requires_grad = False
|
||||
|
||||
# Image size
|
||||
gs = max(int(model.stride.max()), 32) # grid size (max stride)
|
||||
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
|
||||
|
||||
# Batch size
|
||||
if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
|
||||
batch_size = check_train_batch_size(model, imgsz, amp)
|
||||
loggers.on_params_update({"batch_size": batch_size})
|
||||
|
||||
# Optimizer
|
||||
nbs = 64 # nominal batch size
|
||||
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
|
||||
hyp["weight_decay"] *= batch_size * accumulate / nbs # scale weight_decay
|
||||
optimizer = smart_optimizer(model, opt.optimizer, hyp["lr0"], hyp["momentum"], hyp["weight_decay"])
|
||||
|
||||
# Scheduler
|
||||
if opt.cos_lr:
|
||||
lf = one_cycle(1, hyp["lrf"], epochs) # cosine 1->hyp['lrf']
|
||||
else:
|
||||
|
||||
def lf(x):
|
||||
"""Linear learning rate scheduler function with decay calculated by epoch proportion."""
|
||||
return (1 - x / epochs) * (1.0 - hyp["lrf"]) + hyp["lrf"] # linear
|
||||
|
||||
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
|
||||
|
||||
# EMA
|
||||
ema = ModelEMA(model) if RANK in {-1, 0} else None
|
||||
|
||||
# Resume
|
||||
best_fitness, start_epoch = 0.0, 0
|
||||
if pretrained:
|
||||
if resume:
|
||||
best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
|
||||
del ckpt, csd
|
||||
|
||||
# DP mode
|
||||
if cuda and RANK == -1 and torch.cuda.device_count() > 1:
|
||||
LOGGER.warning(
|
||||
"WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n"
|
||||
"See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started."
|
||||
)
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
# SyncBatchNorm
|
||||
if opt.sync_bn and cuda and RANK != -1:
|
||||
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
||||
LOGGER.info("Using SyncBatchNorm()")
|
||||
|
||||
# Trainloader
|
||||
train_loader, dataset = create_dataloader(
|
||||
train_path,
|
||||
imgsz,
|
||||
batch_size // WORLD_SIZE,
|
||||
gs,
|
||||
single_cls,
|
||||
hyp=hyp,
|
||||
augment=True,
|
||||
cache=None if opt.cache == "val" else opt.cache,
|
||||
rect=opt.rect,
|
||||
rank=LOCAL_RANK,
|
||||
workers=workers,
|
||||
image_weights=opt.image_weights,
|
||||
quad=opt.quad,
|
||||
prefix=colorstr("train: "),
|
||||
shuffle=True,
|
||||
seed=opt.seed,
|
||||
)
|
||||
labels = np.concatenate(dataset.labels, 0)
|
||||
mlc = int(labels[:, 0].max()) # max label class
|
||||
assert mlc < nc, f"Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}"
|
||||
|
||||
# Process 0
|
||||
if RANK in {-1, 0}:
|
||||
val_loader = create_dataloader(
|
||||
val_path,
|
||||
imgsz,
|
||||
batch_size // WORLD_SIZE * 2,
|
||||
gs,
|
||||
single_cls,
|
||||
hyp=hyp,
|
||||
cache=None if noval else opt.cache,
|
||||
rect=True,
|
||||
rank=-1,
|
||||
workers=workers * 2,
|
||||
pad=0.5,
|
||||
prefix=colorstr("val: "),
|
||||
)[0]
|
||||
|
||||
if not resume:
|
||||
if not opt.noautoanchor:
|
||||
check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz) # run AutoAnchor
|
||||
model.half().float() # pre-reduce anchor precision
|
||||
|
||||
callbacks.run("on_pretrain_routine_end", labels, names)
|
||||
|
||||
# DDP mode
|
||||
if cuda and RANK != -1:
|
||||
model = smart_DDP(model)
|
||||
|
||||
# Model attributes
|
||||
nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
|
||||
hyp["box"] *= 3 / nl # scale to layers
|
||||
hyp["cls"] *= nc / 80 * 3 / nl # scale to classes and layers
|
||||
hyp["obj"] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
|
||||
hyp["label_smoothing"] = opt.label_smoothing
|
||||
model.nc = nc # attach number of classes to model
|
||||
model.hyp = hyp # attach hyperparameters to model
|
||||
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
|
||||
model.names = names
|
||||
|
||||
# Start training
|
||||
t0 = time.time()
|
||||
nb = len(train_loader) # number of batches
|
||||
nw = max(round(hyp["warmup_epochs"] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
|
||||
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
|
||||
last_opt_step = -1
|
||||
maps = np.zeros(nc) # mAP per class
|
||||
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||||
scheduler.last_epoch = start_epoch - 1 # do not move
|
||||
scaler = torch.cuda.amp.GradScaler(enabled=amp)
|
||||
stopper, stop = EarlyStopping(patience=opt.patience), False
|
||||
compute_loss = ComputeLoss(model) # init loss class
|
||||
callbacks.run("on_train_start")
|
||||
LOGGER.info(
|
||||
f'Image sizes {imgsz} train, {imgsz} val\n'
|
||||
f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
|
||||
f"Logging results to {colorstr('bold', save_dir)}\n"
|
||||
f'Starting training for {epochs} epochs...'
|
||||
)
|
||||
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
||||
callbacks.run("on_train_epoch_start")
|
||||
model.train()
|
||||
|
||||
# Update image weights (optional, single-GPU only)
|
||||
if opt.image_weights:
|
||||
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
|
||||
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
|
||||
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
|
||||
|
||||
# Update mosaic border (optional)
|
||||
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
|
||||
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
|
||||
|
||||
mloss = torch.zeros(3, device=device) # mean losses
|
||||
if RANK != -1:
|
||||
train_loader.sampler.set_epoch(epoch)
|
||||
pbar = enumerate(train_loader)
|
||||
LOGGER.info(("\n" + "%11s" * 7) % ("Epoch", "GPU_mem", "box_loss", "obj_loss", "cls_loss", "Instances", "Size"))
|
||||
if RANK in {-1, 0}:
|
||||
pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
|
||||
optimizer.zero_grad()
|
||||
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
||||
callbacks.run("on_train_batch_start")
|
||||
ni = i + nb * epoch # number integrated batches (since train start)
|
||||
imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
|
||||
|
||||
# Warmup
|
||||
if ni <= nw:
|
||||
xi = [0, nw] # x interp
|
||||
# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
|
||||
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
|
||||
for j, x in enumerate(optimizer.param_groups):
|
||||
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
||||
x["lr"] = np.interp(ni, xi, [hyp["warmup_bias_lr"] if j == 0 else 0.0, x["initial_lr"] * lf(epoch)])
|
||||
if "momentum" in x:
|
||||
x["momentum"] = np.interp(ni, xi, [hyp["warmup_momentum"], hyp["momentum"]])
|
||||
|
||||
# Multi-scale
|
||||
if opt.multi_scale:
|
||||
sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs # size
|
||||
sf = sz / max(imgs.shape[2:]) # scale factor
|
||||
if sf != 1:
|
||||
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
|
||||
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
|
||||
|
||||
# Forward
|
||||
with torch.cuda.amp.autocast(amp):
|
||||
pred = model(imgs) # forward
|
||||
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
|
||||
if RANK != -1:
|
||||
loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
|
||||
if opt.quad:
|
||||
loss *= 4.0
|
||||
|
||||
# Backward
|
||||
scaler.scale(loss).backward()
|
||||
|
||||
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
|
||||
if ni - last_opt_step >= accumulate:
|
||||
scaler.unscale_(optimizer) # unscale gradients
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
|
||||
scaler.step(optimizer) # optimizer.step
|
||||
scaler.update()
|
||||
optimizer.zero_grad()
|
||||
if ema:
|
||||
ema.update(model)
|
||||
last_opt_step = ni
|
||||
|
||||
# Log
|
||||
if RANK in {-1, 0}:
|
||||
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
||||
mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G" # (GB)
|
||||
pbar.set_description(
|
||||
("%11s" * 2 + "%11.4g" * 5)
|
||||
% (f"{epoch}/{epochs - 1}", mem, *mloss, targets.shape[0], imgs.shape[-1])
|
||||
)
|
||||
callbacks.run("on_train_batch_end", model, ni, imgs, targets, paths, list(mloss))
|
||||
if callbacks.stop_training:
|
||||
return
|
||||
# end batch ------------------------------------------------------------------------------------------------
|
||||
|
||||
# Scheduler
|
||||
lr = [x["lr"] for x in optimizer.param_groups] # for loggers
|
||||
scheduler.step()
|
||||
|
||||
if RANK in {-1, 0}:
|
||||
# mAP
|
||||
callbacks.run("on_train_epoch_end", epoch=epoch)
|
||||
ema.update_attr(model, include=["yaml", "nc", "hyp", "names", "stride", "class_weights"])
|
||||
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
|
||||
if not noval or final_epoch: # Calculate mAP
|
||||
results, maps, _ = validate.run(
|
||||
data_dict,
|
||||
batch_size=batch_size // WORLD_SIZE * 2,
|
||||
imgsz=imgsz,
|
||||
half=amp,
|
||||
model=ema.ema,
|
||||
single_cls=single_cls,
|
||||
dataloader=val_loader,
|
||||
save_dir=save_dir,
|
||||
plots=False,
|
||||
callbacks=callbacks,
|
||||
compute_loss=compute_loss,
|
||||
)
|
||||
|
||||
# Update best mAP
|
||||
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
|
||||
stop = stopper(epoch=epoch, fitness=fi) # early stop check
|
||||
if fi > best_fitness:
|
||||
best_fitness = fi
|
||||
log_vals = list(mloss) + list(results) + lr
|
||||
callbacks.run("on_fit_epoch_end", log_vals, epoch, best_fitness, fi)
|
||||
|
||||
# Save model
|
||||
if (not nosave) or (final_epoch and not evolve): # if save
|
||||
ckpt = {
|
||||
"epoch": epoch,
|
||||
"best_fitness": best_fitness,
|
||||
"model": deepcopy(de_parallel(model)).half(),
|
||||
"ema": deepcopy(ema.ema).half(),
|
||||
"updates": ema.updates,
|
||||
"optimizer": optimizer.state_dict(),
|
||||
"opt": vars(opt),
|
||||
"git": GIT_INFO, # {remote, branch, commit} if a git repo
|
||||
"date": datetime.now().isoformat(),
|
||||
}
|
||||
|
||||
# Save last, best and delete
|
||||
torch.save(ckpt, last)
|
||||
if best_fitness == fi:
|
||||
torch.save(ckpt, best)
|
||||
if opt.save_period > 0 and epoch % opt.save_period == 0:
|
||||
torch.save(ckpt, w / f"epoch{epoch}.pt")
|
||||
del ckpt
|
||||
callbacks.run("on_model_save", last, epoch, final_epoch, best_fitness, fi)
|
||||
|
||||
# EarlyStopping
|
||||
if RANK != -1: # if DDP training
|
||||
broadcast_list = [stop if RANK == 0 else None]
|
||||
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
|
||||
if RANK != 0:
|
||||
stop = broadcast_list[0]
|
||||
if stop:
|
||||
break # must break all DDP ranks
|
||||
|
||||
# end epoch ----------------------------------------------------------------------------------------------------
|
||||
# end training -----------------------------------------------------------------------------------------------------
|
||||
if RANK in {-1, 0}:
|
||||
LOGGER.info(f"\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.")
|
||||
for f in last, best:
|
||||
if f.exists():
|
||||
strip_optimizer(f) # strip optimizers
|
||||
if f is best:
|
||||
LOGGER.info(f"\nValidating {f}...")
|
||||
results, _, _ = validate.run(
|
||||
data_dict,
|
||||
batch_size=batch_size // WORLD_SIZE * 2,
|
||||
imgsz=imgsz,
|
||||
model=attempt_load(f, device).half(),
|
||||
iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65
|
||||
single_cls=single_cls,
|
||||
dataloader=val_loader,
|
||||
save_dir=save_dir,
|
||||
save_json=is_coco,
|
||||
verbose=True,
|
||||
plots=plots,
|
||||
callbacks=callbacks,
|
||||
compute_loss=compute_loss,
|
||||
) # val best model with plots
|
||||
if is_coco:
|
||||
callbacks.run("on_fit_epoch_end", list(mloss) + list(results) + lr, epoch, best_fitness, fi)
|
||||
|
||||
callbacks.run("on_train_end", last, best, epoch, results)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
return results
|
||||
|
||||
|
||||
def parse_opt(known=False):
|
||||
"""
|
||||
Parse command-line arguments for YOLOv5 training, validation, and testing.
|
||||
|
||||
Args:
|
||||
known (bool, optional): If True, parses known arguments, ignoring the unknown. Defaults to False.
|
||||
|
||||
Returns:
|
||||
(argparse.Namespace): Parsed command-line arguments containing options for YOLOv5 execution.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics.yolo import parse_opt
|
||||
opt = parse_opt()
|
||||
print(opt)
|
||||
```
|
||||
|
||||
Links:
|
||||
- Models: https://github.com/ultralytics/yolov5/tree/master/models
|
||||
- Datasets: https://github.com/ultralytics/yolov5/tree/master/data
|
||||
- Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
|
||||
"""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="initial weights path")
|
||||
parser.add_argument("--cfg", type=str, default="", help="model.yaml path")
|
||||
parser.add_argument("--data", type=str, default=ROOT / "data/dimo3.yaml", help="dataset.yaml path")
|
||||
parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path")
|
||||
parser.add_argument("--epochs", type=int, default=100, help="total training epochs")
|
||||
parser.add_argument("--batch-size", type=int, default=4, help="total batch size for all GPUs, -1 for autobatch")
|
||||
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)")
|
||||
parser.add_argument("--rect", action="store_true", help="rectangular training")
|
||||
parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training")
|
||||
parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
|
||||
parser.add_argument("--noval", action="store_true", help="only validate final epoch")
|
||||
parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")
|
||||
parser.add_argument("--noplots", action="store_true", help="save no plot files")
|
||||
parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations")
|
||||
parser.add_argument(
|
||||
"--evolve_population", type=str, default=ROOT / "data/hyps", help="location for loading population"
|
||||
)
|
||||
parser.add_argument("--resume_evolve", type=str, default=None, help="resume evolve from last generation")
|
||||
parser.add_argument("--bucket", type=str, default="", help="gsutil bucket")
|
||||
parser.add_argument("--cache", type=str, nargs="?", const="ram", help="image --cache ram/disk")
|
||||
parser.add_argument("--image-weights", action="store_true", help="use weighted image selection for training")
|
||||
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
||||
parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%")
|
||||
parser.add_argument("--single-cls", action="store_true", help="train multi-class data as single-class")
|
||||
parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer")
|
||||
parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode")
|
||||
parser.add_argument("--workers", type=int, default=0, help="max dataloader workers (per RANK in DDP mode)")
|
||||
parser.add_argument("--project", default=ROOT / "runs/train", help="save to project/name")
|
||||
parser.add_argument("--name", default="exp", help="save to project/name")
|
||||
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
|
||||
parser.add_argument("--quad", action="store_true", help="quad dataloader")
|
||||
parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler")
|
||||
parser.add_argument("--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon")
|
||||
parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)")
|
||||
parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2")
|
||||
parser.add_argument("--save-period", type=int, default=-1, help="Save checkpoint every x epochs (disabled if < 1)")
|
||||
parser.add_argument("--seed", type=int, default=0, help="Global training seed")
|
||||
parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")
|
||||
|
||||
# Logger arguments
|
||||
parser.add_argument("--entity", default=None, help="Entity")
|
||||
parser.add_argument("--upload_dataset", nargs="?", const=True, default=False, help='Upload data, "val" option')
|
||||
parser.add_argument("--bbox_interval", type=int, default=-1, help="Set bounding-box image logging interval")
|
||||
parser.add_argument("--artifact_alias", type=str, default="latest", help="Version of dataset artifact to use")
|
||||
|
||||
# NDJSON logging
|
||||
parser.add_argument("--ndjson-console", action="store_true", help="Log ndjson to console")
|
||||
parser.add_argument("--ndjson-file", action="store_true", help="Log ndjson to file")
|
||||
|
||||
return parser.parse_known_args()[0] if known else parser.parse_args()
|
||||
|
||||
|
||||
def main(opt, callbacks=Callbacks()):
|
||||
"""
|
||||
Runs the main entry point for training or hyperparameter evolution with specified options and optional callbacks.
|
||||
|
||||
Args:
|
||||
opt (argparse.Namespace): The command-line arguments parsed for YOLOv5 training and evolution.
|
||||
callbacks (ultralytics.utils.callbacks.Callbacks, optional): Callback functions for various training stages.
|
||||
Defaults to Callbacks().
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
Note:
|
||||
For detailed usage, refer to:
|
||||
https://github.com/ultralytics/yolov5/tree/master/models
|
||||
"""
|
||||
if RANK in {-1, 0}:
|
||||
print_args(vars(opt))
|
||||
check_git_status()
|
||||
check_requirements(ROOT / "requirements.txt")
|
||||
|
||||
# Resume (from specified or most recent last.pt)
|
||||
if opt.resume and not check_comet_resume(opt) and not opt.evolve:
|
||||
last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
|
||||
opt_yaml = last.parent.parent / "opt.yaml" # train options yaml
|
||||
opt_data = opt.data # original dataset
|
||||
if opt_yaml.is_file():
|
||||
with open(opt_yaml, errors="ignore") as f:
|
||||
d = yaml.safe_load(f)
|
||||
else:
|
||||
d = torch.load(last, map_location="cpu")["opt"]
|
||||
opt = argparse.Namespace(**d) # replace
|
||||
opt.cfg, opt.weights, opt.resume = "", str(last), True # reinstate
|
||||
if is_url(opt_data):
|
||||
opt.data = check_file(opt_data) # avoid HUB resume auth timeout
|
||||
else:
|
||||
opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = (
|
||||
check_file(opt.data),
|
||||
check_yaml(opt.cfg),
|
||||
check_yaml(opt.hyp),
|
||||
str(opt.weights),
|
||||
str(opt.project),
|
||||
) # checks
|
||||
assert len(opt.cfg) or len(opt.weights), "either --cfg or --weights must be specified"
|
||||
if opt.evolve:
|
||||
if opt.project == str(ROOT / "runs/train"): # if default project name, rename to runs/evolve
|
||||
opt.project = str(ROOT / "runs/evolve")
|
||||
opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
|
||||
if opt.name == "cfg":
|
||||
opt.name = Path(opt.cfg).stem # use model.yaml as name
|
||||
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
|
||||
|
||||
# DDP mode
|
||||
device = select_device(opt.device, batch_size=opt.batch_size)
|
||||
if LOCAL_RANK != -1:
|
||||
msg = "is not compatible with YOLOv5 Multi-GPU DDP training"
|
||||
assert not opt.image_weights, f"--image-weights {msg}"
|
||||
assert not opt.evolve, f"--evolve {msg}"
|
||||
assert opt.batch_size != -1, f"AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size"
|
||||
assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE"
|
||||
assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command"
|
||||
torch.cuda.set_device(LOCAL_RANK)
|
||||
device = torch.device("cuda", LOCAL_RANK)
|
||||
dist.init_process_group(
|
||||
backend="nccl" if dist.is_nccl_available() else "gloo", timeout=timedelta(seconds=10800)
|
||||
)
|
||||
|
||||
# Train
|
||||
if not opt.evolve:
|
||||
train(opt.hyp, opt, device, callbacks)
|
||||
|
||||
# Evolve hyperparameters (optional)
|
||||
else:
|
||||
# Hyperparameter evolution metadata (including this hyperparameter True-False, lower_limit, upper_limit)
|
||||
meta = {
|
||||
"lr0": (False, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
|
||||
"lrf": (False, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
|
||||
"momentum": (False, 0.6, 0.98), # SGD momentum/Adam beta1
|
||||
"weight_decay": (False, 0.0, 0.001), # optimizer weight decay
|
||||
"warmup_epochs": (False, 0.0, 5.0), # warmup epochs (fractions ok)
|
||||
"warmup_momentum": (False, 0.0, 0.95), # warmup initial momentum
|
||||
"warmup_bias_lr": (False, 0.0, 0.2), # warmup initial bias lr
|
||||
"box": (False, 0.02, 0.2), # box loss gain
|
||||
"cls": (False, 0.2, 4.0), # cls loss gain
|
||||
"cls_pw": (False, 0.5, 2.0), # cls BCELoss positive_weight
|
||||
"obj": (False, 0.2, 4.0), # obj loss gain (scale with pixels)
|
||||
"obj_pw": (False, 0.5, 2.0), # obj BCELoss positive_weight
|
||||
"iou_t": (False, 0.1, 0.7), # IoU training threshold
|
||||
"anchor_t": (False, 2.0, 8.0), # anchor-multiple threshold
|
||||
"anchors": (False, 2.0, 10.0), # anchors per output grid (0 to ignore)
|
||||
"fl_gamma": (False, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
|
||||
"hsv_h": (True, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
||||
"hsv_s": (True, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
||||
"hsv_v": (True, 0.0, 0.9), # image HSV-Value augmentation (fraction)
|
||||
"degrees": (True, 0.0, 45.0), # image rotation (+/- deg)
|
||||
"translate": (True, 0.0, 0.9), # image translation (+/- fraction)
|
||||
"scale": (True, 0.0, 0.9), # image scale (+/- gain)
|
||||
"shear": (True, 0.0, 10.0), # image shear (+/- deg)
|
||||
"perspective": (True, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
||||
"flipud": (True, 0.0, 1.0), # image flip up-down (probability)
|
||||
"fliplr": (True, 0.0, 1.0), # image flip left-right (probability)
|
||||
"mosaic": (True, 0.0, 1.0), # image mosaic (probability)
|
||||
"mixup": (True, 0.0, 1.0), # image mixup (probability)
|
||||
"copy_paste": (True, 0.0, 1.0), # segment copy-paste (probability)
|
||||
}
|
||||
|
||||
# GA configs
|
||||
pop_size = 50
|
||||
mutation_rate_min = 0.01
|
||||
mutation_rate_max = 0.5
|
||||
crossover_rate_min = 0.5
|
||||
crossover_rate_max = 1
|
||||
min_elite_size = 2
|
||||
max_elite_size = 5
|
||||
tournament_size_min = 2
|
||||
tournament_size_max = 10
|
||||
|
||||
with open(opt.hyp, errors="ignore") as f:
|
||||
hyp = yaml.safe_load(f) # load hyps dict
|
||||
if "anchors" not in hyp: # anchors commented in hyp.yaml
|
||||
hyp["anchors"] = 3
|
||||
if opt.noautoanchor:
|
||||
del hyp["anchors"], meta["anchors"]
|
||||
opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
|
||||
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
|
||||
evolve_yaml, evolve_csv = save_dir / "hyp_evolve.yaml", save_dir / "evolve.csv"
|
||||
if opt.bucket:
|
||||
# download evolve.csv if exists
|
||||
subprocess.run(
|
||||
[
|
||||
"gsutil",
|
||||
"cp",
|
||||
f"gs://{opt.bucket}/evolve.csv",
|
||||
str(evolve_csv),
|
||||
]
|
||||
)
|
||||
|
||||
# Delete the items in meta dictionary whose first value is False
|
||||
del_ = [item for item, value_ in meta.items() if value_[0] is False]
|
||||
hyp_GA = hyp.copy() # Make a copy of hyp dictionary
|
||||
for item in del_:
|
||||
del meta[item] # Remove the item from meta dictionary
|
||||
del hyp_GA[item] # Remove the item from hyp_GA dictionary
|
||||
|
||||
# Set lower_limit and upper_limit arrays to hold the search space boundaries
|
||||
lower_limit = np.array([meta[k][1] for k in hyp_GA.keys()])
|
||||
upper_limit = np.array([meta[k][2] for k in hyp_GA.keys()])
|
||||
|
||||
# Create gene_ranges list to hold the range of values for each gene in the population
|
||||
gene_ranges = [(lower_limit[i], upper_limit[i]) for i in range(len(upper_limit))]
|
||||
|
||||
# Initialize the population with initial_values or random values
|
||||
initial_values = []
|
||||
|
||||
# If resuming evolution from a previous checkpoint
|
||||
if opt.resume_evolve is not None:
|
||||
assert os.path.isfile(ROOT / opt.resume_evolve), "evolve population path is wrong!"
|
||||
with open(ROOT / opt.resume_evolve, errors="ignore") as f:
|
||||
evolve_population = yaml.safe_load(f)
|
||||
for value in evolve_population.values():
|
||||
value = np.array([value[k] for k in hyp_GA.keys()])
|
||||
initial_values.append(list(value))
|
||||
|
||||
# If not resuming from a previous checkpoint, generate initial values from .yaml files in opt.evolve_population
|
||||
else:
|
||||
yaml_files = [f for f in os.listdir(opt.evolve_population) if f.endswith(".yaml")]
|
||||
for file_name in yaml_files:
|
||||
with open(os.path.join(opt.evolve_population, file_name)) as yaml_file:
|
||||
value = yaml.safe_load(yaml_file)
|
||||
value = np.array([value[k] for k in hyp_GA.keys()])
|
||||
initial_values.append(list(value))
|
||||
|
||||
# Generate random values within the search space for the rest of the population
|
||||
if initial_values is None:
|
||||
population = [generate_individual(gene_ranges, len(hyp_GA)) for _ in range(pop_size)]
|
||||
elif pop_size > 1:
|
||||
population = [generate_individual(gene_ranges, len(hyp_GA)) for _ in range(pop_size - len(initial_values))]
|
||||
for initial_value in initial_values:
|
||||
population = [initial_value] + population
|
||||
|
||||
# Run the genetic algorithm for a fixed number of generations
|
||||
list_keys = list(hyp_GA.keys())
|
||||
for generation in range(opt.evolve):
|
||||
if generation >= 1:
|
||||
save_dict = {}
|
||||
for i in range(len(population)):
|
||||
little_dict = {list_keys[j]: float(population[i][j]) for j in range(len(population[i]))}
|
||||
save_dict[f"gen{str(generation)}number{str(i)}"] = little_dict
|
||||
|
||||
with open(save_dir / "evolve_population.yaml", "w") as outfile:
|
||||
yaml.dump(save_dict, outfile, default_flow_style=False)
|
||||
|
||||
# Adaptive elite size
|
||||
elite_size = min_elite_size + int((max_elite_size - min_elite_size) * (generation / opt.evolve))
|
||||
# Evaluate the fitness of each individual in the population
|
||||
fitness_scores = []
|
||||
for individual in population:
|
||||
for key, value in zip(hyp_GA.keys(), individual):
|
||||
hyp_GA[key] = value
|
||||
hyp.update(hyp_GA)
|
||||
results = train(hyp.copy(), opt, device, callbacks)
|
||||
callbacks = Callbacks()
|
||||
# Write mutation results
|
||||
keys = (
|
||||
"metrics/precision",
|
||||
"metrics/recall",
|
||||
"metrics/mAP_0.5",
|
||||
"metrics/mAP_0.5:0.95",
|
||||
"val/box_loss",
|
||||
"val/obj_loss",
|
||||
"val/cls_loss",
|
||||
)
|
||||
print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)
|
||||
fitness_scores.append(results[2])
|
||||
|
||||
# Select the fittest individuals for reproduction using adaptive tournament selection
|
||||
selected_indices = []
|
||||
for _ in range(pop_size - elite_size):
|
||||
# Adaptive tournament size
|
||||
tournament_size = max(
|
||||
max(2, tournament_size_min),
|
||||
int(min(tournament_size_max, pop_size) - (generation / (opt.evolve / 10))),
|
||||
)
|
||||
# Perform tournament selection to choose the best individual
|
||||
tournament_indices = random.sample(range(pop_size), tournament_size)
|
||||
tournament_fitness = [fitness_scores[j] for j in tournament_indices]
|
||||
winner_index = tournament_indices[tournament_fitness.index(max(tournament_fitness))]
|
||||
selected_indices.append(winner_index)
|
||||
|
||||
# Add the elite individuals to the selected indices
|
||||
elite_indices = [i for i in range(pop_size) if fitness_scores[i] in sorted(fitness_scores)[-elite_size:]]
|
||||
selected_indices.extend(elite_indices)
|
||||
# Create the next generation through crossover and mutation
|
||||
next_generation = []
|
||||
for _ in range(pop_size):
|
||||
parent1_index = selected_indices[random.randint(0, pop_size - 1)]
|
||||
parent2_index = selected_indices[random.randint(0, pop_size - 1)]
|
||||
# Adaptive crossover rate
|
||||
crossover_rate = max(
|
||||
crossover_rate_min, min(crossover_rate_max, crossover_rate_max - (generation / opt.evolve))
|
||||
)
|
||||
if random.uniform(0, 1) < crossover_rate:
|
||||
crossover_point = random.randint(1, len(hyp_GA) - 1)
|
||||
child = population[parent1_index][:crossover_point] + population[parent2_index][crossover_point:]
|
||||
else:
|
||||
child = population[parent1_index]
|
||||
# Adaptive mutation rate
|
||||
mutation_rate = max(
|
||||
mutation_rate_min, min(mutation_rate_max, mutation_rate_max - (generation / opt.evolve))
|
||||
)
|
||||
for j in range(len(hyp_GA)):
|
||||
if random.uniform(0, 1) < mutation_rate:
|
||||
child[j] += random.uniform(-0.1, 0.1)
|
||||
child[j] = min(max(child[j], gene_ranges[j][0]), gene_ranges[j][1])
|
||||
next_generation.append(child)
|
||||
# Replace the old population with the new generation
|
||||
population = next_generation
|
||||
# Print the best solution found
|
||||
best_index = fitness_scores.index(max(fitness_scores))
|
||||
best_individual = population[best_index]
|
||||
print("Best solution found:", best_individual)
|
||||
# Plot results
|
||||
plot_evolve(evolve_csv)
|
||||
LOGGER.info(
|
||||
f'Hyperparameter evolution finished {opt.evolve} generations\n'
|
||||
f"Results saved to {colorstr('bold', save_dir)}\n"
|
||||
f'Usage example: $ python train.py --hyp {evolve_yaml}'
|
||||
)
|
||||
|
||||
|
||||
def generate_individual(input_ranges, individual_length):
|
||||
"""
|
||||
Generate an individual with random hyperparameters within specified ranges.
|
||||
|
||||
Args:
|
||||
input_ranges (list[tuple[float, float]]): List of tuples where each tuple contains the lower and upper bounds
|
||||
for the corresponding gene (hyperparameter).
|
||||
individual_length (int): The number of genes (hyperparameters) in the individual.
|
||||
|
||||
Returns:
|
||||
list[float]: A list representing a generated individual with random gene values within the specified ranges.
|
||||
|
||||
Example:
|
||||
```python
|
||||
input_ranges = [(0.01, 0.1), (0.1, 1.0), (0.9, 2.0)]
|
||||
individual_length = 3
|
||||
individual = generate_individual(input_ranges, individual_length)
|
||||
print(individual) # Output: [0.035, 0.678, 1.456] (example output)
|
||||
```
|
||||
|
||||
Note:
|
||||
The individual returned will have a length equal to `individual_length`, with each gene value being a floating-point
|
||||
number within its specified range in `input_ranges`.
|
||||
"""
|
||||
individual = []
|
||||
for i in range(individual_length):
|
||||
lower_bound, upper_bound = input_ranges[i]
|
||||
individual.append(random.uniform(lower_bound, upper_bound))
|
||||
return individual
|
||||
|
||||
|
||||
def run(**kwargs):
|
||||
"""
|
||||
Execute YOLOv5 training with specified options, allowing optional overrides through keyword arguments.
|
||||
|
||||
Args:
|
||||
weights (str, optional): Path to initial weights. Defaults to ROOT / 'yolov5s.pt'.
|
||||
cfg (str, optional): Path to model YAML configuration. Defaults to an empty string.
|
||||
data (str, optional): Path to dataset YAML configuration. Defaults to ROOT / 'data/coco128.yaml'.
|
||||
hyp (str, optional): Path to hyperparameters YAML configuration. Defaults to ROOT / 'data/hyps/hyp.scratch-low.yaml'.
|
||||
epochs (int, optional): Total number of training epochs. Defaults to 100.
|
||||
batch_size (int, optional): Total batch size for all GPUs. Use -1 for automatic batch size determination. Defaults to 16.
|
||||
imgsz (int, optional): Image size (pixels) for training and validation. Defaults to 640.
|
||||
rect (bool, optional): Use rectangular training. Defaults to False.
|
||||
resume (bool | str, optional): Resume most recent training with an optional path. Defaults to False.
|
||||
nosave (bool, optional): Only save the final checkpoint. Defaults to False.
|
||||
noval (bool, optional): Only validate at the final epoch. Defaults to False.
|
||||
noautoanchor (bool, optional): Disable AutoAnchor. Defaults to False.
|
||||
noplots (bool, optional): Do not save plot files. Defaults to False.
|
||||
evolve (int, optional): Evolve hyperparameters for a specified number of generations. Use 300 if provided without a
|
||||
value.
|
||||
evolve_population (str, optional): Directory for loading population during evolution. Defaults to ROOT / 'data/ hyps'.
|
||||
resume_evolve (str, optional): Resume hyperparameter evolution from the last generation. Defaults to None.
|
||||
bucket (str, optional): gsutil bucket for saving checkpoints. Defaults to an empty string.
|
||||
cache (str, optional): Cache image data in 'ram' or 'disk'. Defaults to None.
|
||||
image_weights (bool, optional): Use weighted image selection for training. Defaults to False.
|
||||
device (str, optional): CUDA device identifier, e.g., '0', '0,1,2,3', or 'cpu'. Defaults to an empty string.
|
||||
multi_scale (bool, optional): Use multi-scale training, varying image size by ±50%. Defaults to False.
|
||||
single_cls (bool, optional): Train with multi-class data as single-class. Defaults to False.
|
||||
optimizer (str, optional): Optimizer type, choices are ['SGD', 'Adam', 'AdamW']. Defaults to 'SGD'.
|
||||
sync_bn (bool, optional): Use synchronized BatchNorm, only available in DDP mode. Defaults to False.
|
||||
workers (int, optional): Maximum dataloader workers per rank in DDP mode. Defaults to 8.
|
||||
project (str, optional): Directory for saving training runs. Defaults to ROOT / 'runs/train'.
|
||||
name (str, optional): Name for saving the training run. Defaults to 'exp'.
|
||||
exist_ok (bool, optional): Allow existing project/name without incrementing. Defaults to False.
|
||||
quad (bool, optional): Use quad dataloader. Defaults to False.
|
||||
cos_lr (bool, optional): Use cosine learning rate scheduler. Defaults to False.
|
||||
label_smoothing (float, optional): Label smoothing epsilon value. Defaults to 0.0.
|
||||
patience (int, optional): Patience for early stopping, measured in epochs without improvement. Defaults to 100.
|
||||
freeze (list, optional): Layers to freeze, e.g., backbone=10, first 3 layers = [0, 1, 2]. Defaults to [0].
|
||||
save_period (int, optional): Frequency in epochs to save checkpoints. Disabled if < 1. Defaults to -1.
|
||||
seed (int, optional): Global training random seed. Defaults to 0.
|
||||
local_rank (int, optional): Automatic DDP Multi-GPU argument. Do not modify. Defaults to -1.
|
||||
|
||||
Returns:
|
||||
None: The function initiates YOLOv5 training or hyperparameter evolution based on the provided options.
|
||||
|
||||
Examples:
|
||||
```python
|
||||
import train
|
||||
train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
|
||||
```
|
||||
|
||||
Notes:
|
||||
- Models: https://github.com/ultralytics/yolov5/tree/master/models
|
||||
- Datasets: https://github.com/ultralytics/yolov5/tree/master/data
|
||||
- Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
|
||||
"""
|
||||
opt = parse_opt(True)
|
||||
for k, v in kwargs.items():
|
||||
setattr(opt, k, v)
|
||||
main(opt)
|
||||
return opt
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
opt = parse_opt()
|
||||
main(opt)
|
||||
604
YOLO/yolov5-master/val.py
Normal file
604
YOLO/yolov5-master/val.py
Normal file
@ -0,0 +1,604 @@
|
||||
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Validate a trained YOLOv5 detection model on a detection dataset.
|
||||
|
||||
Usage:
|
||||
$ python val.py --weights yolov5s.pt --data coco128.yaml --img 640
|
||||
|
||||
Usage - formats:
|
||||
$ python val.py --weights yolov5s.pt # PyTorch
|
||||
yolov5s.torchscript # TorchScript
|
||||
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
||||
yolov5s_openvino_model # OpenVINO
|
||||
yolov5s.engine # TensorRT
|
||||
yolov5s.mlpackage # CoreML (macOS-only)
|
||||
yolov5s_saved_model # TensorFlow SavedModel
|
||||
yolov5s.pb # TensorFlow GraphDef
|
||||
yolov5s.tflite # TensorFlow Lite
|
||||
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
|
||||
yolov5s_paddle_model # PaddlePaddle
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[0] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||||
|
||||
from models.common import DetectMultiBackend
|
||||
from utils.callbacks import Callbacks
|
||||
from utils.dataloaders import create_dataloader
|
||||
from utils.general import (
|
||||
LOGGER,
|
||||
TQDM_BAR_FORMAT,
|
||||
Profile,
|
||||
check_dataset,
|
||||
check_img_size,
|
||||
check_requirements,
|
||||
check_yaml,
|
||||
coco80_to_coco91_class,
|
||||
colorstr,
|
||||
increment_path,
|
||||
non_max_suppression,
|
||||
print_args,
|
||||
scale_boxes,
|
||||
xywh2xyxy,
|
||||
xyxy2xywh,
|
||||
)
|
||||
from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
|
||||
from utils.plots import output_to_target, plot_images, plot_val_study
|
||||
from utils.torch_utils import select_device, smart_inference_mode
|
||||
|
||||
|
||||
def save_one_txt(predn, save_conf, shape, file):
|
||||
"""
|
||||
Saves one detection result to a txt file in normalized xywh format, optionally including confidence.
|
||||
|
||||
Args:
|
||||
predn (torch.Tensor): Predicted bounding boxes and associated confidence scores and classes in xyxy format, tensor
|
||||
of shape (N, 6) where N is the number of detections.
|
||||
save_conf (bool): If True, saves the confidence scores along with the bounding box coordinates.
|
||||
shape (tuple): Shape of the original image as (height, width).
|
||||
file (str | Path): File path where the result will be saved.
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
Notes:
|
||||
The xyxy bounding box format represents the coordinates (xmin, ymin, xmax, ymax).
|
||||
The xywh format represents the coordinates (center_x, center_y, width, height) and is normalized by the width and
|
||||
height of the image.
|
||||
|
||||
Example:
|
||||
```python
|
||||
predn = torch.tensor([[10, 20, 30, 40, 0.9, 1]]) # example prediction
|
||||
save_one_txt(predn, save_conf=True, shape=(640, 480), file="output.txt")
|
||||
```
|
||||
"""
|
||||
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
|
||||
for *xyxy, conf, cls in predn.tolist():
|
||||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
||||
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
||||
with open(file, "a") as f:
|
||||
f.write(("%g " * len(line)).rstrip() % line + "\n")
|
||||
|
||||
|
||||
def save_one_json(predn, jdict, path, class_map):
|
||||
"""
|
||||
Saves a single JSON detection result, including image ID, category ID, bounding box, and confidence score.
|
||||
|
||||
Args:
|
||||
predn (torch.Tensor): Predicted detections in xyxy format with shape (n, 6) where n is the number of detections.
|
||||
The tensor should contain [x_min, y_min, x_max, y_max, confidence, class_id] for each detection.
|
||||
jdict (list[dict]): List to collect JSON formatted detection results.
|
||||
path (pathlib.Path): Path object of the image file, used to extract image_id.
|
||||
class_map (dict[int, int]): Mapping from model class indices to dataset-specific category IDs.
|
||||
|
||||
Returns:
|
||||
None: Appends detection results as dictionaries to `jdict` list in-place.
|
||||
|
||||
Example:
|
||||
```python
|
||||
predn = torch.tensor([[100, 50, 200, 150, 0.9, 0], [50, 30, 100, 80, 0.8, 1]])
|
||||
jdict = []
|
||||
path = Path("42.jpg")
|
||||
class_map = {0: 18, 1: 19}
|
||||
save_one_json(predn, jdict, path, class_map)
|
||||
```
|
||||
This will append to `jdict`:
|
||||
```
|
||||
[
|
||||
{'image_id': 42, 'category_id': 18, 'bbox': [125.0, 75.0, 100.0, 100.0], 'score': 0.9},
|
||||
{'image_id': 42, 'category_id': 19, 'bbox': [75.0, 55.0, 50.0, 50.0], 'score': 0.8}
|
||||
]
|
||||
```
|
||||
|
||||
Notes:
|
||||
The `bbox` values are formatted as [x, y, width, height], where x and y represent the top-left corner of the box.
|
||||
"""
|
||||
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
|
||||
box = xyxy2xywh(predn[:, :4]) # xywh
|
||||
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
||||
for p, b in zip(predn.tolist(), box.tolist()):
|
||||
jdict.append(
|
||||
{
|
||||
"image_id": image_id,
|
||||
"category_id": class_map[int(p[5])],
|
||||
"bbox": [round(x, 3) for x in b],
|
||||
"score": round(p[4], 5),
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def process_batch(detections, labels, iouv):
|
||||
"""
|
||||
Return a correct prediction matrix given detections and labels at various IoU thresholds.
|
||||
|
||||
Args:
|
||||
detections (np.ndarray): Array of shape (N, 6) where each row corresponds to a detection with format
|
||||
[x1, y1, x2, y2, conf, class].
|
||||
labels (np.ndarray): Array of shape (M, 5) where each row corresponds to a ground truth label with format
|
||||
[class, x1, y1, x2, y2].
|
||||
iouv (np.ndarray): Array of IoU thresholds to evaluate at.
|
||||
|
||||
Returns:
|
||||
correct (np.ndarray): A binary array of shape (N, len(iouv)) indicating whether each detection is a true positive
|
||||
for each IoU threshold. There are 10 IoU levels used in the evaluation.
|
||||
|
||||
Example:
|
||||
```python
|
||||
detections = np.array([[50, 50, 200, 200, 0.9, 1], [30, 30, 150, 150, 0.7, 0]])
|
||||
labels = np.array([[1, 50, 50, 200, 200]])
|
||||
iouv = np.linspace(0.5, 0.95, 10)
|
||||
correct = process_batch(detections, labels, iouv)
|
||||
```
|
||||
|
||||
Notes:
|
||||
- This function is used as part of the evaluation pipeline for object detection models.
|
||||
- IoU (Intersection over Union) is a common evaluation metric for object detection performance.
|
||||
"""
|
||||
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
|
||||
iou = box_iou(labels[:, 1:], detections[:, :4])
|
||||
correct_class = labels[:, 0:1] == detections[:, 5]
|
||||
for i in range(len(iouv)):
|
||||
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
|
||||
if x[0].shape[0]:
|
||||
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
|
||||
if x[0].shape[0] > 1:
|
||||
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
||||
# matches = matches[matches[:, 2].argsort()[::-1]]
|
||||
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
||||
correct[matches[:, 1].astype(int), i] = True
|
||||
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
|
||||
|
||||
|
||||
@smart_inference_mode()
|
||||
def run(
|
||||
data,
|
||||
weights=None, # model.pt path(s)
|
||||
batch_size=32, # batch size
|
||||
imgsz=640, # inference size (pixels)
|
||||
conf_thres=0.001, # confidence threshold
|
||||
iou_thres=0.6, # NMS IoU threshold
|
||||
max_det=300, # maximum detections per image
|
||||
task="val", # train, val, test, speed or study
|
||||
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
workers=8, # max dataloader workers (per RANK in DDP mode)
|
||||
single_cls=False, # treat as single-class dataset
|
||||
augment=False, # augmented inference
|
||||
verbose=False, # verbose output
|
||||
save_txt=False, # save results to *.txt
|
||||
save_hybrid=False, # save label+prediction hybrid results to *.txt
|
||||
save_conf=False, # save confidences in --save-txt labels
|
||||
save_json=False, # save a COCO-JSON results file
|
||||
project=ROOT / "runs/val", # save to project/name
|
||||
name="exp", # save to project/name
|
||||
exist_ok=False, # existing project/name ok, do not increment
|
||||
half=True, # use FP16 half-precision inference
|
||||
dnn=False, # use OpenCV DNN for ONNX inference
|
||||
model=None,
|
||||
dataloader=None,
|
||||
save_dir=Path(""),
|
||||
plots=True,
|
||||
callbacks=Callbacks(),
|
||||
compute_loss=None,
|
||||
):
|
||||
"""
|
||||
Evaluates a YOLOv5 model on a dataset and logs performance metrics.
|
||||
|
||||
Args:
|
||||
data (str | dict): Path to a dataset YAML file or a dataset dictionary.
|
||||
weights (str | list[str], optional): Path to the model weights file(s). Supports various formats including PyTorch,
|
||||
TorchScript, ONNX, OpenVINO, TensorRT, CoreML, TensorFlow SavedModel, TensorFlow GraphDef, TensorFlow Lite,
|
||||
TensorFlow Edge TPU, and PaddlePaddle.
|
||||
batch_size (int, optional): Batch size for inference. Default is 32.
|
||||
imgsz (int, optional): Input image size (pixels). Default is 640.
|
||||
conf_thres (float, optional): Confidence threshold for object detection. Default is 0.001.
|
||||
iou_thres (float, optional): IoU threshold for Non-Maximum Suppression (NMS). Default is 0.6.
|
||||
max_det (int, optional): Maximum number of detections per image. Default is 300.
|
||||
task (str, optional): Task type - 'train', 'val', 'test', 'speed', or 'study'. Default is 'val'.
|
||||
device (str, optional): Device to use for computation, e.g., '0' or '0,1,2,3' for CUDA or 'cpu' for CPU. Default is ''.
|
||||
workers (int, optional): Number of dataloader workers. Default is 8.
|
||||
single_cls (bool, optional): Treat dataset as a single class. Default is False.
|
||||
augment (bool, optional): Enable augmented inference. Default is False.
|
||||
verbose (bool, optional): Enable verbose output. Default is False.
|
||||
save_txt (bool, optional): Save results to *.txt files. Default is False.
|
||||
save_hybrid (bool, optional): Save label and prediction hybrid results to *.txt files. Default is False.
|
||||
save_conf (bool, optional): Save confidences in --save-txt labels. Default is False.
|
||||
save_json (bool, optional): Save a COCO-JSON results file. Default is False.
|
||||
project (str | Path, optional): Directory to save results. Default is ROOT/'runs/val'.
|
||||
name (str, optional): Name of the run. Default is 'exp'.
|
||||
exist_ok (bool, optional): Overwrite existing project/name without incrementing. Default is False.
|
||||
half (bool, optional): Use FP16 half-precision inference. Default is True.
|
||||
dnn (bool, optional): Use OpenCV DNN for ONNX inference. Default is False.
|
||||
model (torch.nn.Module, optional): Model object for training. Default is None.
|
||||
dataloader (torch.utils.data.DataLoader, optional): Dataloader object. Default is None.
|
||||
save_dir (Path, optional): Directory to save results. Default is Path('').
|
||||
plots (bool, optional): Plot validation images and metrics. Default is True.
|
||||
callbacks (utils.callbacks.Callbacks, optional): Callbacks for logging and monitoring. Default is Callbacks().
|
||||
compute_loss (function, optional): Loss function for training. Default is None.
|
||||
|
||||
Returns:
|
||||
dict: Contains performance metrics including precision, recall, mAP50, and mAP50-95.
|
||||
"""
|
||||
# Initialize/load model and set device
|
||||
training = model is not None
|
||||
if training: # called by train.py
|
||||
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
|
||||
half &= device.type != "cpu" # half precision only supported on CUDA
|
||||
model.half() if half else model.float()
|
||||
else: # called directly
|
||||
device = select_device(device, batch_size=batch_size)
|
||||
|
||||
# Directories
|
||||
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
||||
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
||||
|
||||
# Load model
|
||||
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
||||
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
||||
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||
half = model.fp16 # FP16 supported on limited backends with CUDA
|
||||
if engine:
|
||||
batch_size = model.batch_size
|
||||
else:
|
||||
device = model.device
|
||||
if not (pt or jit):
|
||||
batch_size = 1 # export.py models default to batch-size 1
|
||||
LOGGER.info(f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models")
|
||||
|
||||
# Data
|
||||
data = check_dataset(data) # check
|
||||
|
||||
# Configure
|
||||
model.eval()
|
||||
cuda = device.type != "cpu"
|
||||
is_coco = isinstance(data.get("val"), str) and data["val"].endswith(f"coco{os.sep}val2017.txt") # COCO dataset
|
||||
nc = 1 if single_cls else int(data["nc"]) # number of classes
|
||||
iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
|
||||
niou = iouv.numel()
|
||||
|
||||
# Dataloader
|
||||
if not training:
|
||||
if pt and not single_cls: # check --weights are trained on --data
|
||||
ncm = model.model.nc
|
||||
assert ncm == nc, (
|
||||
f"{weights} ({ncm} classes) trained on different --data than what you passed ({nc} "
|
||||
f"classes). Pass correct combination of --weights and --data that are trained together."
|
||||
)
|
||||
model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
|
||||
pad, rect = (0.0, False) if task == "speed" else (0.5, pt) # square inference for benchmarks
|
||||
task = task if task in ("train", "val", "test") else "val" # path to train/val/test images
|
||||
dataloader = create_dataloader(
|
||||
data[task],
|
||||
imgsz,
|
||||
batch_size,
|
||||
stride,
|
||||
single_cls,
|
||||
pad=pad,
|
||||
rect=rect,
|
||||
workers=workers,
|
||||
prefix=colorstr(f"{task}: "),
|
||||
)[0]
|
||||
|
||||
seen = 0
|
||||
confusion_matrix = ConfusionMatrix(nc=nc)
|
||||
names = model.names if hasattr(model, "names") else model.module.names # get class names
|
||||
if isinstance(names, (list, tuple)): # old format
|
||||
names = dict(enumerate(names))
|
||||
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
|
||||
s = ("%22s" + "%11s" * 6) % ("Class", "Images", "Instances", "P", "R", "mAP50", "mAP50-95")
|
||||
tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
|
||||
dt = Profile(device=device), Profile(device=device), Profile(device=device) # profiling times
|
||||
loss = torch.zeros(3, device=device)
|
||||
jdict, stats, ap, ap_class = [], [], [], []
|
||||
callbacks.run("on_val_start")
|
||||
pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
|
||||
for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
|
||||
callbacks.run("on_val_batch_start")
|
||||
with dt[0]:
|
||||
if cuda:
|
||||
im = im.to(device, non_blocking=True)
|
||||
targets = targets.to(device)
|
||||
im = im.half() if half else im.float() # uint8 to fp16/32
|
||||
im /= 255 # 0 - 255 to 0.0 - 1.0
|
||||
nb, _, height, width = im.shape # batch size, channels, height, width
|
||||
|
||||
# Inference
|
||||
with dt[1]:
|
||||
preds, train_out = model(im) if compute_loss else (model(im, augment=augment), None)
|
||||
|
||||
# Loss
|
||||
if compute_loss:
|
||||
loss += compute_loss(train_out, targets)[1] # box, obj, cls
|
||||
|
||||
# NMS
|
||||
targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
|
||||
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
|
||||
with dt[2]:
|
||||
preds = non_max_suppression(
|
||||
preds, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls, max_det=max_det
|
||||
)
|
||||
|
||||
# Metrics
|
||||
for si, pred in enumerate(preds):
|
||||
labels = targets[targets[:, 0] == si, 1:]
|
||||
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
|
||||
path, shape = Path(paths[si]), shapes[si][0]
|
||||
correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
|
||||
seen += 1
|
||||
|
||||
if npr == 0:
|
||||
if nl:
|
||||
stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
|
||||
if plots:
|
||||
confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
|
||||
continue
|
||||
|
||||
# Predictions
|
||||
if single_cls:
|
||||
pred[:, 5] = 0
|
||||
predn = pred.clone()
|
||||
scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
|
||||
|
||||
# Evaluate
|
||||
if nl:
|
||||
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
|
||||
scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
|
||||
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
|
||||
correct = process_batch(predn, labelsn, iouv)
|
||||
if plots:
|
||||
confusion_matrix.process_batch(predn, labelsn)
|
||||
stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
|
||||
|
||||
# Save/log
|
||||
if save_txt:
|
||||
(save_dir / "labels").mkdir(parents=True, exist_ok=True)
|
||||
save_one_txt(predn, save_conf, shape, file=save_dir / "labels" / f"{path.stem}.txt")
|
||||
if save_json:
|
||||
save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
|
||||
callbacks.run("on_val_image_end", pred, predn, path, names, im[si])
|
||||
|
||||
# Plot images
|
||||
if plots and batch_i < 3:
|
||||
plot_images(im, targets, paths, save_dir / f"val_batch{batch_i}_labels.jpg", names) # labels
|
||||
plot_images(im, output_to_target(preds), paths, save_dir / f"val_batch{batch_i}_pred.jpg", names) # pred
|
||||
|
||||
callbacks.run("on_val_batch_end", batch_i, im, targets, paths, shapes, preds)
|
||||
|
||||
# Compute metrics
|
||||
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
|
||||
if len(stats) and stats[0].any():
|
||||
tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
|
||||
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
|
||||
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
|
||||
nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class
|
||||
|
||||
# Print results
|
||||
pf = "%22s" + "%11i" * 2 + "%11.3g" * 4 # print format
|
||||
LOGGER.info(pf % ("all", seen, nt.sum(), mp, mr, map50, map))
|
||||
if nt.sum() == 0:
|
||||
LOGGER.warning(f"WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels")
|
||||
|
||||
# Print results per class
|
||||
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
|
||||
for i, c in enumerate(ap_class):
|
||||
LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
|
||||
|
||||
# Print speeds
|
||||
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
|
||||
if not training:
|
||||
shape = (batch_size, 3, imgsz, imgsz)
|
||||
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}" % t)
|
||||
|
||||
# Plots
|
||||
if plots:
|
||||
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
|
||||
callbacks.run("on_val_end", nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
|
||||
|
||||
# Save JSON
|
||||
if save_json and len(jdict):
|
||||
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else "" # weights
|
||||
anno_json = str(Path("../datasets/coco/annotations/instances_val2017.json")) # annotations
|
||||
if not os.path.exists(anno_json):
|
||||
anno_json = os.path.join(data["path"], "annotations", "instances_val2017.json")
|
||||
pred_json = str(save_dir / f"{w}_predictions.json") # predictions
|
||||
LOGGER.info(f"\nEvaluating pycocotools mAP... saving {pred_json}...")
|
||||
with open(pred_json, "w") as f:
|
||||
json.dump(jdict, f)
|
||||
|
||||
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||||
check_requirements("pycocotools>=2.0.6")
|
||||
from pycocotools.coco import COCO
|
||||
from pycocotools.cocoeval import COCOeval
|
||||
|
||||
anno = COCO(anno_json) # init annotations api
|
||||
pred = anno.loadRes(pred_json) # init predictions api
|
||||
eval = COCOeval(anno, pred, "bbox")
|
||||
if is_coco:
|
||||
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate
|
||||
eval.evaluate()
|
||||
eval.accumulate()
|
||||
eval.summarize()
|
||||
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
|
||||
except Exception as e:
|
||||
LOGGER.info(f"pycocotools unable to run: {e}")
|
||||
|
||||
# Return results
|
||||
model.float() # for training
|
||||
if not training:
|
||||
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
|
||||
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
||||
maps = np.zeros(nc) + map
|
||||
for i, c in enumerate(ap_class):
|
||||
maps[c] = ap[i]
|
||||
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
|
||||
|
||||
|
||||
def parse_opt():
|
||||
"""
|
||||
Parse command-line options for configuring YOLOv5 model inference.
|
||||
|
||||
Args:
|
||||
data (str, optional): Path to the dataset YAML file. Default is 'data/coco128.yaml'.
|
||||
weights (list[str], optional): List of paths to model weight files. Default is 'yolov5s.pt'.
|
||||
batch_size (int, optional): Batch size for inference. Default is 32.
|
||||
imgsz (int, optional): Inference image size in pixels. Default is 640.
|
||||
conf_thres (float, optional): Confidence threshold for predictions. Default is 0.001.
|
||||
iou_thres (float, optional): IoU threshold for Non-Max Suppression (NMS). Default is 0.6.
|
||||
max_det (int, optional): Maximum number of detections per image. Default is 300.
|
||||
task (str, optional): Task type - options are 'train', 'val', 'test', 'speed', or 'study'. Default is 'val'.
|
||||
device (str, optional): Device to run the model on. e.g., '0' or '0,1,2,3' or 'cpu'. Default is empty to let the system choose automatically.
|
||||
workers (int, optional): Maximum number of dataloader workers per rank in DDP mode. Default is 8.
|
||||
single_cls (bool, optional): If set, treats the dataset as a single-class dataset. Default is False.
|
||||
augment (bool, optional): If set, performs augmented inference. Default is False.
|
||||
verbose (bool, optional): If set, reports mAP by class. Default is False.
|
||||
save_txt (bool, optional): If set, saves results to *.txt files. Default is False.
|
||||
save_hybrid (bool, optional): If set, saves label+prediction hybrid results to *.txt files. Default is False.
|
||||
save_conf (bool, optional): If set, saves confidences in --save-txt labels. Default is False.
|
||||
save_json (bool, optional): If set, saves results to a COCO-JSON file. Default is False.
|
||||
project (str, optional): Project directory to save results to. Default is 'runs/val'.
|
||||
name (str, optional): Name of the directory to save results to. Default is 'exp'.
|
||||
exist_ok (bool, optional): If set, existing directory will not be incremented. Default is False.
|
||||
half (bool, optional): If set, uses FP16 half-precision inference. Default is False.
|
||||
dnn (bool, optional): If set, uses OpenCV DNN for ONNX inference. Default is False.
|
||||
|
||||
Returns:
|
||||
argparse.Namespace: Parsed command-line options.
|
||||
|
||||
Notes:
|
||||
- The '--data' parameter is checked to ensure it ends with 'coco.yaml' if '--save-json' is set.
|
||||
- The '--save-txt' option is set to True if '--save-hybrid' is enabled.
|
||||
- Args are printed using `print_args` to facilitate debugging.
|
||||
|
||||
Example:
|
||||
To validate a trained YOLOv5 model on a COCO dataset:
|
||||
```python
|
||||
$ python val.py --weights yolov5s.pt --data coco128.yaml --img 640
|
||||
```
|
||||
Different model formats could be used instead of `yolov5s.pt`:
|
||||
```python
|
||||
$ python val.py --weights yolov5s.pt yolov5s.torchscript yolov5s.onnx yolov5s_openvino_model yolov5s.engine
|
||||
```
|
||||
Additional options include saving results in different formats, selecting devices, and more.
|
||||
"""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--data", type=str, default=ROOT / "data/dimo.yaml", help="dataset.yaml path")
|
||||
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "runs/train/exp8/weights/best.pt", help="model path(s)")
|
||||
parser.add_argument("--batch-size", type=int, default=4, help="batch size")
|
||||
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)")
|
||||
parser.add_argument("--conf-thres", type=float, default=0.001, help="confidence threshold")
|
||||
parser.add_argument("--iou-thres", type=float, default=0.6, help="NMS IoU threshold")
|
||||
parser.add_argument("--max-det", type=int, default=300, help="maximum detections per image")
|
||||
parser.add_argument("--task", default="val", help="train, val, test, speed or study")
|
||||
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
||||
parser.add_argument("--workers", type=int, default=0, help="max dataloader workers (per RANK in DDP mode)")
|
||||
parser.add_argument("--single-cls", action="store_true", help="treat as single-class dataset")
|
||||
parser.add_argument("--augment", action="store_true", help="augmented inference")
|
||||
parser.add_argument("--verbose", action="store_true", help="report mAP by class")
|
||||
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
|
||||
parser.add_argument("--save-hybrid", action="store_true", help="save label+prediction hybrid results to *.txt")
|
||||
parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
|
||||
parser.add_argument("--save-json", action="store_true", help="save a COCO-JSON results file")
|
||||
parser.add_argument("--project", default=ROOT / "runs/val", help="save to project/name")
|
||||
parser.add_argument("--name", default="exp", help="save to project/name")
|
||||
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
|
||||
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
|
||||
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
|
||||
opt = parser.parse_args()
|
||||
opt.data = check_yaml(opt.data) # check YAML
|
||||
opt.save_json |= opt.data.endswith("coco.yaml")
|
||||
opt.save_txt |= opt.save_hybrid
|
||||
print_args(vars(opt))
|
||||
return opt
|
||||
|
||||
|
||||
def main(opt):
|
||||
"""
|
||||
Executes YOLOv5 tasks like training, validation, testing, speed, and study benchmarks based on provided options.
|
||||
|
||||
Args:
|
||||
opt (argparse.Namespace): Parsed command-line options.
|
||||
This includes values for parameters like 'data', 'weights', 'batch_size', 'imgsz', 'conf_thres',
|
||||
'iou_thres', 'max_det', 'task', 'device', 'workers', 'single_cls', 'augment', 'verbose', 'save_txt',
|
||||
'save_hybrid', 'save_conf', 'save_json', 'project', 'name', 'exist_ok', 'half', and 'dnn', essential
|
||||
for configuring the YOLOv5 tasks.
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
Examples:
|
||||
To validate a trained YOLOv5 model on the COCO dataset with a specific weights file, use:
|
||||
```python
|
||||
$ python val.py --weights yolov5s.pt --data coco128.yaml --img 640
|
||||
```
|
||||
"""
|
||||
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
|
||||
|
||||
if opt.task in ("train", "val", "test"): # run normally
|
||||
if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
|
||||
LOGGER.info(f"WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results")
|
||||
if opt.save_hybrid:
|
||||
LOGGER.info("WARNING ⚠️ --save-hybrid will return high mAP from hybrid labels, not from predictions alone")
|
||||
run(**vars(opt))
|
||||
|
||||
else:
|
||||
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
|
||||
opt.half = torch.cuda.is_available() and opt.device != "cpu" # FP16 for fastest results
|
||||
if opt.task == "speed": # speed benchmarks
|
||||
# python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
|
||||
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
|
||||
for opt.weights in weights:
|
||||
run(**vars(opt), plots=False)
|
||||
|
||||
elif opt.task == "study": # speed vs mAP benchmarks
|
||||
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
|
||||
for opt.weights in weights:
|
||||
f = f"study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt" # filename to save to
|
||||
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
|
||||
for opt.imgsz in x: # img-size
|
||||
LOGGER.info(f"\nRunning {f} --imgsz {opt.imgsz}...")
|
||||
r, _, t = run(**vars(opt), plots=False)
|
||||
y.append(r + t) # results and times
|
||||
np.savetxt(f, y, fmt="%10.4g") # save
|
||||
subprocess.run(["zip", "-r", "study.zip", "study_*.txt"])
|
||||
plot_val_study(x=x) # plot
|
||||
else:
|
||||
raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
opt = parse_opt()
|
||||
main(opt)
|
||||
Loading…
Reference in New Issue
Block a user