This commit is contained in:
wrz1-zzzzz 2024-11-24 12:10:13 +08:00
parent c62bde0efa
commit 29fe90eda9

373
DPL/yolov5/detect_12_2.py Normal file
View File

@ -0,0 +1,373 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
Usage - sources:
$ python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Usage - formats:
$ python detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
"""
import argparse
import os
import platform
import sys
from pathlib import Path
import torch
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh,
)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, smart_inference_mode
@smart_inference_mode()
def run(
weights=ROOT / 'yolov5s.pt', # model path or triton URL
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / 'runs/detect', # save results to project/name
name='exp11_29_12.00', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
batch_size=6
):
source = str(source)
save_img = not nosave and not source.endswith('.txt') # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
screenshot = source.lower().startswith('screen')
if is_url and is_file:
source = check_file(source) # download
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
bs = 12 # batch_size
if webcam:
view_img = check_imshow(warn=True)
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
bs = len(dataset)
elif screenshot:
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
else:
# dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride,batch_size=opt.batch_size)
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
# Main inference loop
for paths, imgs, im0s, vid_caps, s_list in dataset:
# Preprocessing
with dt[0]:
imgs = torch.from_numpy(imgs).to(model.device)
imgs = imgs.half() if model.fp16 else imgs.float() # uint8 to fp16/32
imgs /= 255.0 # 0 - 255 to 0.0 - 1.0
# Inference
with dt[1]:
visualize = increment_path(save_dir / 'visualize', mkdir=True) if visualize else False
preds = model(imgs, augment=augment, visualize=visualize) # batch inference
print(f"preds shape: {preds.shape}")
# NMS
import time
# NMS部分
with dt[2]:
start_time = time.time() # 记录开始时间
preds = non_max_suppression(preds, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
end_time = time.time() # 记录结束时间
nms_time = end_time - start_time # 计算耗时
print(f"NMS time: {nms_time:.4f} seconds") # 输出 NMS 耗时
# with dt[2]:
# preds = non_max_suppression(preds, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
# preds = non_max_suppression(preds, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
# Process each image in the batch
for i, det in enumerate(preds): # Per image in the batch
seen += 1
path, im0, vid_cap = paths[i], im0s[i], vid_caps[i]
s = s_list[i] # Log message for current image
p = Path(path) # to Path
save_path = str(save_dir / p.name) # Save path for the image
txt_path = str(save_dir / 'labels' / p.stem) + (
'' if dataset.mode == 'image' else f'_{dataset.count}') # Save path for labels
s += f'{imgs.shape[2:]} ' # Add image shape to log
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # Normalization gain (whwh)
imc = im0.copy() if save_crop else im0 # For save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
# Rescale boxes from image size to original image size
det[:, :4] = scale_boxes(imgs.shape[2:], det[:, :4], im0.shape).round()
# Log results
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # Detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # Log class count
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write label to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # Label format
with open(f'{txt_path}.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # Integer class
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
annotator.box_label(xyxy, label, color=colors(c, True))
if save_crop:
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
# Stream results
im0 = annotator.result()
if view_img:
if platform.system() == 'Linux' and p not in windows:
windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # Allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # New video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # Release previous video writer
if vid_cap: # Video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # Stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # Force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)
# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
# Print final results
t = tuple(x.t / seen * 1E3 for x in dt) # Speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights[0]) # Update model (to fix SourceChangeWarning)
# for path, im, im0s, vid_cap, s in dataset:
# with dt[0]:
# im = torch.from_numpy(im).to(model.device)
# im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
# im /= 255 # 0 - 255 to 0.0 - 1.0
# if len(im.shape) == 3:
# im = im[None] # expand for batch dim
#
# # Inference
# with dt[1]:
# visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
# pred = model(im, augment=augment, visualize=visualize)
#
# # NMS
# with dt[2]:
# pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
#
# # Second-stage classifier (optional)
# # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
#
# # Process predictions
# for i, det in enumerate(pred): # per image
# seen += 1
# if webcam: # batch_size >= 1
# p, im0, frame = path[i], im0s[i].copy(), dataset.count
# s += f'{i}: '
# else:
# p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
#
# p = Path(p) # to Path
# save_path = str(save_dir / p.name) # im.jpg
# txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
# s += '%gx%g ' % im.shape[2:] # print string
# gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
# imc = im0.copy() if save_crop else im0 # for save_crop
# annotator = Annotator(im0, line_width=line_thickness, example=str(names))
# if len(det):
# # Rescale boxes from img_size to im0 size
# det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
#
# # Print results
# for c in det[:, 5].unique():
# n = (det[:, 5] == c).sum() # detections per class
# s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
#
# # Write results
# for *xyxy, conf, cls in reversed(det):
# if save_txt: # Write to file
# xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
# line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
# with open(f'{txt_path}.txt', 'a') as f:
# f.write(('%g ' * len(line)).rstrip() % line + '\n')
#
# if save_img or save_crop or view_img: # Add bbox to image
# c = int(cls) # integer class
# label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
# annotator.box_label(xyxy, label, color=colors(c, True))
# if save_crop:
# save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
#
# # Stream results
# im0 = annotator.result()
# if view_img:
# if platform.system() == 'Linux' and p not in windows:
# windows.append(p)
# cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
# cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
# cv2.imshow(str(p), im0)
# cv2.waitKey(1) # 1 millisecond
#
# # Save results (image with detections)
# if save_img:
# if dataset.mode == 'image':
# cv2.imwrite(save_path, im0)
# else: # 'video' or 'stream'
# if vid_path[i] != save_path: # new video
# vid_path[i] = save_path
# if isinstance(vid_writer[i], cv2.VideoWriter):
# vid_writer[i].release() # release previous video writer
# if vid_cap: # video
# fps = vid_cap.get(cv2.CAP_PROP_FPS)
# w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
# h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# else: # stream
# fps, w, h = 30, im0.shape[1], im0.shape[0]
# save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
# vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
# vid_writer[i].write(im0)
#
# # Print time (inference-only)
# LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
#
# # Print results
# t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
# LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
# if save_txt or save_img:
# s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
# LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
# if update:
# strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'runs/train/exp11_29_17.00/weights/12.2_bt12_1280.onnx', help='model path or triton URL')
parser.add_argument('--source', type=str, default=ROOT / 'datasets/xixian/images', help='file/dir/URL/glob/screen/0(webcam)')
parser.add_argument('--data', type=str, default=ROOT / 'data/yixian.yaml', help='(optional) dataset.yaml path')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[1280], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='show results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp11_29_12.00', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
parser.add_argument('--batch_size', type=int, default=12, help='batch size for inference')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt
def main(opt):
check_requirements(exclude=('tensorboard', 'thop'))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)