SCNet/04_model_comparision.ipynb
2022-06-13 00:51:34 +08:00

153 lines
3.8 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": true,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Model comparison"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## PLS"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from sklearn.neural_network import MLPRegressor\n",
"from sklearn.svm import SVR\n",
"import numpy as np\n",
"from scipy.io import loadmat\n",
"from sklearn.cross_decomposition import PLSRegression\n",
"from sklearn.metrics import mean_squared_error, r2_score\n",
"\n",
"data = loadmat('./dataset/mango/mango_dm_split.mat')\n",
"min_value, max_value = data['min_y'][-1][-1], data['max_y'][-1][-1]\n",
"retransform = lambda x: x * (max_value - min_value)"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"shape of data:\n",
"x_train: (8183, 102), y_train: (8183, 1),\n",
"x_test: (3508, 102), y_test: (3508, 1)\n"
]
}
],
"source": [
"x_train, y_train, x_test, y_test = data['x_train'], data['y_train'], data['x_test'], data['y_test']\n",
"print(f\"shape of data:\\n\"\n",
" f\"x_train: {x_train.shape}, y_train: {y_train.shape},\\n\"\n",
" f\"x_test: {x_test.shape}, y_test: {y_test.shape}\")"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"PLS RMSE: 0.05722520296881164\n",
"PLS Dry matter content error 0.8648183977750965\n",
"PLS R^2: 0.8793937498230511\n",
"SVR RMSE: 0.1139650997574326\n",
"SVR Dry matter content error 1.7223025845485895\n",
"SVR R^2: 0.5216575965112935\n",
"MLP RMSE: 0.15508626630172465\n",
"MLP Dry matter content error 2.343748023280531\n",
"MLP R^2: 0.11418748397100065\n"
]
}
],
"source": [
"pls = PLSRegression(n_components=90)\n",
"svr = SVR(kernel=\"rbf\", degree=30, gamma=\"scale\")\n",
"mlp = MLPRegressor(hidden_layer_sizes=(60, 50, ))\n",
"pls = pls.fit(x_train, y_train.ravel())\n",
"svr = svr.fit(x_train, y_train.ravel())\n",
"mlp = mlp.fit(x_train, y_train.ravel())\n",
"\n",
"models = {'PLS': pls, \"SVR\": svr, \"MLP\": mlp}\n",
"results = {model_name: model.predict(x_test).reshape((-1, )) for model_name, model in models.items()}\n",
"for model_name, model_result in results.items():\n",
" rmse = np.sqrt(mean_squared_error(y_test, model_result))\n",
" print(model_name, \"RMSE: \", rmse)\n",
" print(model_name, \"Dry matter content error\", retransform(rmse))\n",
" print(model_name, \"R^2: \", r2_score(y_test, model_result))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": []
}
],
"metadata": {
"interpreter": {
"hash": "7f619fc91ee8bdab81d49e7c14228037474662e3f2d607687ae505108922fa06"
},
"kernelspec": {
"display_name": "Python 3.9.7 ('base')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 0
}