SCNet/01_preprocess.ipynb
2022-06-13 00:51:34 +08:00

127 lines
2.9 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "dd2c8c55",
"metadata": {},
"source": [
"# Preprocessing"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "716880ac",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sklearn.model_selection import train_test_split\n",
"from scipy.io import savemat, loadmat\n",
"import os"
]
},
{
"cell_type": "markdown",
"id": "4d7dc4a0",
"metadata": {},
"source": [
"## Step 1: \n",
"Convert the dataset to mat format for Matlab."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "711356a2",
"metadata": {},
"outputs": [],
"source": [
"dataset = pd.read_csv('preprocess/dataset/mango/NAnderson2020MendeleyMangoNIRData.csv')\n",
"y = dataset.DM\n",
"x = dataset.loc[:, '684': '990']\n",
"savemat('preprocess/dataset/mango/mango_origin.mat', {'x': x.values, 'y': y.values})"
]
},
{
"cell_type": "markdown",
"id": "3e41e8e6",
"metadata": {},
"source": []
},
{
"cell_type": "markdown",
"id": "ea5e54fd",
"metadata": {},
"source": [
"## Step3:\n",
"Data split with train test split."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6eac026e",
"metadata": {},
"outputs": [],
"source": [
"data = loadmat('preprocess/dataset/mango/mango_preprocessed.mat')\n",
"x, y = data['x'], data['y']\n",
"x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=24)\n",
"if not os.path.exists('mango'):\n",
" os.makedirs('mango')\n",
"savemat('preprocess/dataset/mango/mango_dm_split.mat',{'x_train':x_train, 'y_train':y_train, 'x_test':x_test, 'y_test':y_test,\n",
" 'max_y': data['max_y'], 'min_y': data['min_y'],\n",
" 'min_x':data['min_x'], 'max_x':data['max_x']})"
]
},
{
"cell_type": "markdown",
"id": "b2977dae",
"metadata": {},
"source": [
"## Step 4:\n",
"Show data with pictures\n",
"use `draw_pics_origin` to draw original spectra\n",
"![img](./preprocess/pics/raw.png)"
]
},
{
"cell_type": "markdown",
"source": [
"use `draw_pics_preprocessed.m` to draw proprecessed spectra\n",
"![img](./preprocess/pics/preprocessed.png)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
}
],
"metadata": {
"interpreter": {
"hash": "7f619fc91ee8bdab81d49e7c14228037474662e3f2d607687ae505108922fa06"
},
"kernelspec": {
"display_name": "Python 3.9.7 64-bit ('base': conda)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}