{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true, "pycharm": { "name": "#%% md\n" } }, "source": [ "# Experiment 2: Model Evaluating" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "import numpy as np\n", "from keras.models import load_model\n", "from matplotlib import ticker\n", "from scipy.io import loadmat\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.metrics import mean_squared_error\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } }, "source": [ "In this experiment, we load model weights from the experiment1 and evaluate them on test dataset." ] }, { "cell_type": "markdown", "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } }, "source": [] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "shape of data:\n", "x_train: (5728, 1, 102), y_train: (5728, 1),\n", "x_val: (2455, 1, 102), y_val: (2455, 1)\n", "x_test: (3508, 1, 102), y_test: (3508, 1)\n" ] } ], "source": [ "data = loadmat('./dataset/mango/mango_dm_split.mat')\n", "\n", "min_value, max_value = data['min_y'][-1][-1], data['max_y'][-1][-1]\n", "retransform = lambda x: x * (max_value - min_value)\n", "x_train, y_train, x_test, y_test = data['x_train'], data['y_train'], data['x_test'], data['y_test']\n", "x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.3, random_state=12, shuffle=True)\n", "x_train, x_val, x_test = x_train[:, np.newaxis, :], x_val[:, np.newaxis, :], x_test[:, np.newaxis, :]\n", "print(f\"shape of data:\\n\"\n", " f\"x_train: {x_train.shape}, y_train: {y_train.shape},\\n\"\n", " f\"x_val: {x_val.shape}, y_val: {y_val.shape}\\n\"\n", " f\"x_test: {x_test.shape}, y_test: {y_test.shape}\")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "plain 5 mse : 0.05133910188824081\n", "plain 5 Dry matter content error 0.7758644362065223\n", "plain 5 r^2 : 0.902928516828363\n", "plain 11 mse : 0.05200769624271875\n", "plain 11 Dry matter content error 0.7859685978067217\n", "plain 11 r^2 : 0.9003837097594369\n", "shortcut 5 mse : 0.051382735052895194\n", "shortcut 5 Dry matter content error 0.7765238443272209\n", "shortcut 5 r^2 : 0.9027634443691182\n", "shortcut11 mse : 0.05078784364469306\n", "shortcut11 Dry matter content error 0.7675335217455442\n", "shortcut11 r^2 : 0.9050019525259844\n" ] } ], "source": [ "from sklearn.metrics import r2_score\n", "\n", "## Build model and load weights\n", "plain_5, plain_11 = load_model('./checkpoints/plain5.hdf5'), load_model('./checkpoints/plain11.hdf5')\n", "shortcut5, shortcut11 = load_model('./checkpoints/shortcut5.hdf5'), load_model('./checkpoints/shortcut11.hdf5')\n", "models = {'plain 5': plain_5, 'plain 11': plain_11, 'shortcut 5': shortcut5, 'shortcut11': shortcut11}\n", "results = {model_name: model.predict(x_test).reshape((-1, )) for model_name, model in models.items()}\n", "for model_name, model_result in results.items():\n", " rmse = np.sqrt(mean_squared_error(y_test, model_result))\n", " print(model_name, \"mse : \", rmse)\n", " print(model_name, \"Dry matter content error\", retransform(rmse))\n", " print(model_name, \"r^2 :\", r2_score(y_test, model_result))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [] } ], "metadata": { "interpreter": { "hash": "7f619fc91ee8bdab81d49e7c14228037474662e3f2d607687ae505108922fa06" }, "kernelspec": { "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 0 }