{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true, "pycharm": { "name": "#%% md\n" } }, "source": [ "# Model comparison" ] }, { "cell_type": "markdown", "source": [ "## PLS" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 44, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "shape of data:\n", "x_train: (8183, 102), y_train: (8183, 1),\n", "x_test: (3508, 102), y_test: (3508, 1)\n" ] } ], "source": [ "from sklearn.neural_network import MLPRegressor\n", "from sklearn.svm import SVR\n", "import numpy as np\n", "from scipy.io import loadmat\n", "from sklearn.cross_decomposition import PLSRegression\n", "from sklearn.metrics import mean_squared_error, r2_score\n", "\n", "data = loadmat('./dataset/mango/mango_dm_split.mat')\n", "x_train, y_train, x_test, y_test = data['x_train'], data['y_train'], data['x_test'], data['y_test']\n", "print(f\"shape of data:\\n\"\n", " f\"x_train: {x_train.shape}, y_train: {y_train.shape},\\n\"\n", " f\"x_test: {x_test.shape}, y_test: {y_test.shape}\")" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 45, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "PLS RMSE: 0.7512262994028881 %\n", "PLS R^2: 0.8748209692384972\n", "SVR RMSE: 2.870635692210643 %\n", "SVR R^2: 0.5216575965112935\n", "MLP RMSE: 4.919371298214537 %\n", "MLP R^2: 0.18027080314424337\n" ] } ], "source": [ "pls = PLSRegression(n_components=20)\n", "svr = SVR(kernel=\"rbf\", degree=30, gamma=\"scale\")\n", "mlp = MLPRegressor(hidden_layer_sizes=(60, 50, ))\n", "pls = pls.fit(x_train, y_train.ravel())\n", "svr = svr.fit(x_train, y_train.ravel())\n", "mlp = mlp.fit(x_train, y_train.ravel())\n", "\n", "models = {'PLS': pls, \"SVR\": svr, \"MLP\": mlp}\n", "results = {model_name: model.predict(x_test).reshape((-1, )) for model_name, model in models.items()}\n", "for model_name, model_result in results.items():\n", " print(model_name, \"RMSE: \", mean_squared_error(y_test, model_result)/np.mean(y_test)*100, \"%\")\n", " print(model_name, \"R^2: \", r2_score(y_test, model_result))" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 45, "outputs": [], "source": [], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }