From 19d8a7c5882b182a22e81f56be036732d725d2b0 Mon Sep 17 00:00:00 2001 From: karllzy Date: Tue, 28 Mar 2023 10:49:37 +0800 Subject: [PATCH] Add visualization add visualization for our network --- 03_model_evaluating.ipynb | 176 +++++++++++++++--------- 05_network_parameter_optimization.ipynb | 89 ++++++------ 05_network_parameter_optimization.py | 54 ++++++++ assets/shortcut5.png | Bin 0 -> 129709 bytes models.py | 6 +- preprocess/draw_pics_origin.m | 88 ++++++------ preprocess/draw_pics_preprocessed.m | 94 ++++++------- preprocess/preprocess.m | 16 +-- preprocess/preprocess_mango.m | 30 ++-- preprocess/train_test_split.m | 30 ++-- utils.py | 0 11 files changed, 347 insertions(+), 236 deletions(-) create mode 100644 05_network_parameter_optimization.py create mode 100644 assets/shortcut5.png mode change 100755 => 100644 preprocess/draw_pics_origin.m mode change 100755 => 100644 preprocess/draw_pics_preprocessed.m mode change 100755 => 100644 preprocess/preprocess.m mode change 100755 => 100644 preprocess/preprocess_mango.m mode change 100755 => 100644 preprocess/train_test_split.m mode change 100755 => 100644 utils.py diff --git a/03_model_evaluating.ipynb b/03_model_evaluating.ipynb index a3e2920..1b39688 100644 --- a/03_model_evaluating.ipynb +++ b/03_model_evaluating.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "collapsed": true, "pycharm": { "name": "#%% md\n" } @@ -14,7 +13,16 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 1, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [], "source": [ "import numpy as np\n", @@ -25,39 +33,40 @@ "from sklearn.metrics import mean_squared_error\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" - ], - "metadata": { - "collapsed": false, - "pycharm": { - "name": "#%%\n" - } - } + ] }, { "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "In this experiment, we load model weights from the experiment1 and evaluate them on test dataset." - ], - "metadata": { - "collapsed": false, - "pycharm": { - "name": "#%% md\n" - } - } + ] }, { "cell_type": "markdown", - "source": [], "metadata": { - "collapsed": false, "pycharm": { "name": "#%% md\n" } - } + }, + "source": [] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 2, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [ { "name": "stdout", @@ -79,84 +88,123 @@ " f\"x_train: {x_train.shape}, y_train: {y_train.shape},\\n\"\n", " f\"x_val: {x_val.shape}, y_val: {y_val.shape}\\n\"\n", " f\"x_test: {x_test.shape}, y_test: {y_test.shape}\")" - ], - "metadata": { - "collapsed": false, - "pycharm": { - "name": "#%%\n" - } - } + ] }, { "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2023-03-27 10:23:44.563867: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:975] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", + "2023-03-27 10:23:44.592365: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudnn.so.8'; dlerror: libcudnn.so.8: cannot open shared object file: No such file or directory\n", + "2023-03-27 10:23:44.592382: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1850] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.\n", + "Skipping registering GPU devices...\n", + "2023-03-27 10:23:44.592795: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", + "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "110/110 [==============================] - 0s 650us/step\n", + "110/110 [==============================] - 0s 803us/step\n", + "110/110 [==============================] - 0s 660us/step\n", + "110/110 [==============================] - 0s 782us/step\n", + "plain 5 : 99.41745237394272 %\n", + "plain 5 : 0.9029283888753278\n", + "plain 11 : 99.40218375195113 %\n", + "plain 11 : 0.9003841338306197\n", + "shortcut 5 : 99.41646209430799 %\n", + "shortcut 5 : 0.9027633756896097\n", + "shortcut11 : 99.42990078655805 %\n", + "shortcut11 : 0.9050027042007411\n" + ] + } + ], "source": [ "from sklearn.metrics import r2_score\n", "\n", - "## Build model and load weights\n", + "# Build model and load weights\n", "plain_5, plain_11 = load_model('./checkpoints/plain5.hdf5'), load_model('./checkpoints/plain11.hdf5')\n", "shortcut5, shortcut11 = load_model('./checkpoints/shortcut5.hdf5'), load_model('./checkpoints/shortcut11.hdf5')\n", "models = {'plain 5': plain_5, 'plain 11': plain_11, 'shortcut 5': shortcut5, 'shortcut11': shortcut11}\n", "results = {model_name: model.predict(x_test).reshape((-1, )) for model_name, model in models.items()}\n", "for model_name, model_result in results.items():\n", - " print(model_name, \" : \", (1 - mean_squared_error(y_test, model_result)/np.mean(y_test))*100, \"%\")\n", - " print(model_name, \":\", r2_score(y_test, model_result))" - ], - "metadata": { - "collapsed": false, - "pycharm": { - "name": "#%%\n" - } - }, - "execution_count": 13, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "plain 5 : 99.41745314181642 %\n", - "plain 5 : 0.902928516828363\n", - "plain 11 : 99.4021812070087 %\n", - "plain 11 : 0.9003837097594369\n", - "shortcut 5 : 99.41646250646849 %\n", - "shortcut 5 : 0.9027634443691182\n", - "shortcut11 : 99.42989627559609 %\n", - "shortcut11 : 0.9050019525259844\n" - ] - } + " print(model_name, \" : \", (1 - mean_squared_error(y_test, model_result)/np.mean(y_test))*100, \"%\")\n", + " print(model_name, \":\", r2_score(y_test, model_result))" ] }, { "cell_type": "code", - "execution_count": 13, - "outputs": [], - "source": [], + "execution_count": 5, "metadata": { "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } - } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvsAAAV5CAYAAAD1XsETAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzde1xUZbs//s9wHk4DggIipVLqDhUJfBSTLwoKKSSJIJ56ng4YWYpmmuCho5oWle7tCU/VVknQtpbHcpPutogGGJgaamoaIggYRxFE7t8f/Wa24wzKIDMLhs/79Zo/WPe17nWtw8DFmnvdIxNCCBARERERkbHZYSJ1BkREREREpB8s9omIiIiIjBSLfSIiIiIiI8Vin4iIiIjISJlJnQCRIURHR0udAhERtSH+/v6YPXu21GkQ6R3v7FOHsHPnThQUFEidBhlYQUEBdu7cKXUaHcLx48dx/PhxqdMgapbjx48jMzNT6jSIDIJ39qnDePPNNzF+/Hip0yADSktLQ0xMDHbs2CF1KkZP+ekZjzW1B/y0lzoS3tknIiIiIjJSLPaJiIiIiIwUi30iIiIiIiPFYp+IiIiIyEix2CciIkls3boVMplM9bK1tdUad+XKFYwZMwaVlZUoLS1VW8fHxwe3b9/WWOf+OJlMBj8/P33vksHs378fvXr1gpmZfubZ0KX/3NxchIWFwcHBAXZ2dhgxYgQyMjI04v766y+sW7cOQUFB6NSpE+RyOZ588klMnjwZeXl5GvEJCQlITU3Vus2EhAS1czt48GDdd5Kog2CxT9QGVFdX48knn0R4eLjUqVATeI70Z+3atRBCoLq6WqMtNzcXfn5+CAkJgb29PZydnSGEQFZWlqp91qxZGusp4zIzM+Hk5AQhBLKzs/W+L/p28eJFjBkzBomJiSguLpa8/xMnTmDIkCGws7PDb7/9hsuXL6Nnz54YNmwYfvjhB7XYuXPnYsaMGYiIiMDZs2dRVlaGzZs3Izc3F76+vti9e7da/NSpU5GYmIhFixZpbHfZsmUQQkAIAVNT00fbaSIjx2KfqA0QQqCxsRGNjY1Sp/JQtra2GDp0qNRpGBzPkeFVVlbiueeew7hx4zB9+nSNdktLSzg5OSE5ORlff/21BBka3qJFizBkyBDk5OTAzs5O0v4bGxvxyiuvwMHBAV988QXc3Nzg7OyMtWvXwtPTE7Gxsairq1Nb5+WXX8bMmTPh6uoKa2trBAQEICUlBXfv3sXbb7+tFuvp6Yldu3ZhyZIlSEtLa/V9JeooOM8+URtgZ2eHixcvSp0GPQDPkeF9/PHHKCoqwjvvvKO13crKCtu2bcPo0aMRFxcHX19f9OrVy8BZGtamTZsgl8vbRP8//fQTzpw5gxkzZqitY2pqiokTJ+K9997D3r17MW7cOADAxo0btfbj7e0NuVyOixcvQggBmUym1hYVFYW33noLkZGRehu2RGTMeGefiIjaHCEENm7ciEGDBqFr165NxoWGhmLhwoWoqqpCdHS01vH7xkSfhb6u/f/4448AoPVZCOWy9PT0h/ZTU1OD2tpa9O3bV63QVxo7diwKCgqwb9++ZudGRP+HxT6RxHbv3q32oJmyWLl/+R9//IGYmBg4ODjAyckJ4eHhaneak5KSVLHdunVDVlYWgoODYWdnB2trawwfPlztobnFixer4u8d8nHw4EHVcmdnZ43+a2pqkJGRoYrpCHfaeI4MLy8vD8XFxfD29n5o7LvvvouQkBCcOnUKM2bMaFb/ZWVlmD17Njw9PWFhYQFHR0eMGjUKhw8fVsXoen6VSkpKEB8fj+7du8PCwgKdO3dGZGQkcnNzm38A2oH8/HwAQLdu3TTa3N3dAQDnz59/aD/Kb11esGCB1vYBAwYAAL7//vsW5UnU4QmiDgCASE1NlTqNB4qIiBAARG1trdblERER4tixY6K6ulocOnRIyOVyMXDgQI1+vL29hY2NjfD391fFZ2Vlif79+wsLCwtx5MgRtXgbGxvxzDPPaPTj6+srnJycNJY3Fd8Wpaamitb8NWcs52j48OGiU6dOIjMzs7m7/lBRUVEiKipKp3W2bNkiAIi1a9c22bZ06VKt62ZlZQmFQqH6uaSkRHh4eAgAYuvWrarlmZmZGsfo+vXrokePHsLFxUXs2bNHVFRUiHPnzonIyEghk8nEhg0b1OJ1Ob+FhYXi8ccfFy4uLmLfvn2iqqpKnD59WgQGBgorKytx7NgxnY7Rg7i7uwtTU9NW60/X/keOHCkAiOPHj2u0XbhwQQAQTz/99AO3UVRUJFxcXERsbGyTMRUVFQKACAgI0NpuamoqBg0a9MDt3K8l1ytRO5XGO/tE7URsbCz8/f1hY2ODESNGICwsDFlZWSgtLdWIrampwZo1a1Txfn5+2Lp1K+rr6zFz5kwJsu8Y2ss5amxsVM1k0lZdv34dAKBQKJoV7+zsjLS0NJibmyMuLk5111mbxMREXL58GStWrEB4eDjs7e3Rq1cvpKSkwM3NDfHx8VpnomnO+U1MTMSVK1fw2WefYfTo0bC1tYWXlxe2b98OIUSzP3lo75TXlrZhOUplZWV49tlnMWzYMKxbt67JOHt7e8hkMtU1QUS6YbFP1E4MHDhQ7WcPDw8AQGFhoUasjY2N6qNvpX79+qFr167Iy8vjH009aS/n6MiRI7h58yb8/f31to1HpRwqZW5u3ux1Bg8ejKSkJNTU1CA6Ohq1tbVa43bt2gUACAsLU1tuaWmJ4OBg1NbWah0y0pzzu3v3bpiYmGhM0erq6govLy/k5OSgoKCg2fvUljk4OAD4+x/X+ymXKWO0tYeGhuKpp57Ctm3bHjp9ppmZWZPnk4gejMU+UTtx/x1OCwsLANA6FWRTf2C7dOkCALhx40YrZ0cAz1FrsrKyAgDcuXNHp/Xi4+MRExOD06dPa52us66uDhUVFbCystI6taSLiwsAoKioSKPtYedX2XdjYyMUCoXGl3qdPHkSAHDhwgWd9qmt6tOnDwBo/efl2rVrAKB1dqSGhgZER0fD3d0dX331VbPmyW9oaND7w8lExorFPpERKisr0zpEQ1lAKgtKADAxMUF9fb1GbHl5uda+H/SxPDUfz9GDubm5AQAqKip0Xnfjxo3o3bs3Nm/ejC1btqi1WVpaQqFQ4Pbt26iqqtJYVzl8x9XVVeftWlpawsHBAWZmZrhz545qqNT9r+HDh+vcd1uk3I+cnByNNuWy4OBgjba4uDjU1dUhLS1N7eHxJ554AsePH9eIr6yshBBCdU0QkW5Y7BMZodu3b6u+YVTp119/RWFhIby9vdX+aLq5uanuwikVFRXh6tWrWvu2trZWKzx79+6N9evXt2L2HQPP0YP17dsXgPa7xg9ja2uLb775BjY2NlizZo1G+9ixYwFAYyrHuro6pKenQy6XIzQ0tAVZA5GRkWhoaFCbVUlp+fLleOyxx9DQ0NCivtuawMBAPPXUU9i5c6falKd3797F9u3b4eHhoTFU6r333sOZM2fw7bffwtLSslnbUV77ymuCiHTDYp/ICCkUCsyfPx+ZmZmoqalBdnY2pkyZAgsLC6xcuVItNiQkBIWFhVi1ahWqq6tx8eJFzJw5U+3O8r2efvppnD9/Hn/++ScyMzNx6dIlBAQEGGK3jIqU5ygoKAhOTk5a76K2Fd7e3ujSpQvy8vJatL6XlxeSk5O1tn300Ufo0aMHZs2ahb1796Kqqgrnz5/HpEmTcP36daxcuVI1nEdXH330ETw9PfHyyy/jwIEDqKiowM2bN5GcnIwPPvgASUlJanezp0yZAplMhsuXL7doew+jz/5NTEywadMm3Lx5Ey+99BKKiopQVlaGN954AxcuXMCGDRtUw7EA4Msvv8T777+PEydOwM7OTmOYU1NfWqecsjQkJKTV94GoQ5BkEiAiA0Mbnnpz165dAoDaa/LkySIzM1Nj+YIFC4QQQmN5WFiYqj9vb2/h7u4uzp49K0JDQ4WdnZ2Qy+UiMDBQHD16VGP75eXlIjY2Vri5uQm5XC6GDh0qsrKyhK+vr6r/efPmqeLz8/NFQECAsLGxER4eHmL16tX6P0gt1FpTbxrbOQoICBCOjo6tOg1ka0+9KYQQ8+fPF2ZmZuLatWuqZSUlJRrH1tfXt8ltTJs2Tev0pKWlpWLWrFmiR48ewtzcXCgUChEaGirS09NVMS09v2VlZWL27NmiZ8+ewtzcXHTu3FmEhISIQ4cOaeQRFBQkbG1tRUNDw8MPmBBiz549GttWvu6fMtQQ/QshxMmTJ8WoUaOEvb29sLW1FUFBQVqv47CwsCb7Vr60TQcbHR0t3N3dRX19vdbtc+pNogdKkwnRhudeI2olMpkMqampGD9+vNSp6N2AAQNQWlpqNDN+PIq0tDTExMS0uSkmjfEcRUdHA/i/L0hqjq1bt+KFF17A2rVr8dprr2m0V1RUwMvLC+Hh4Q+cmrG9Ki8vR9euXTF58mRs2LCh3fVvCHl5efDx8UFKSgomTJigNcbMzAx+fn46fVLVkuuVqJ3awWE8RETUJikUCuzZswc7d+7E6tWrpU6nVQkhEB8fD3t7e3z44Yftrn9DuHTpEiIjI5GYmNhkoU9ED8din4iIJDVt2jTIZDLY2tpqtPn4+CA7OxsHDhxAZWWlBNnpR3FxMS5duoT09PQWzfwjdf+GkJycjCVLlmDJkiUabQkJCaqx/nfv3pUgO6L2g8U+kZFISkqCTCZDXl4erl27BplMhoULF0qdFt2D50jdlClT1KakrK6u1hrXvXt37N27F/b29gbOUH9cXV1x9OhReHl5tcv+DWH58uVN3tFftmyZ2rXTlh82J5Ka2cNDiKg9mDNnDubMmSN1GvQAPEdERGRovLNPRERERGSkWOwTERERERkpFvtEREREREaKxT4RERERkZFisU9EREREZKT4DbrUIchkMqlTICKiNiQqKorfoEsdwQ5OvUkdxqxZs+Dv7y91GmRAmZmZWLFiBVJTU6VOxeh9/vnnAIA333xT4kyIHk55vRJ1BCz2qcPw9/fH+PHjpU6DDGzFihU87wagvEPKY03tAe/oU0fCMftEREREREaKxT4RERERkZFisU9EREREZKRY7BMRERERGSkW+0Ra2NraQiaTqb2SkpKkTqtFjGlfyLhs3bpV7bq0tbXVGnflyhWMGTMGlZWVKC0tVVvHx8cHt2/f1ljn/jiZTAY/Pz9975LB7N+/H7169YKZmX7m2dCl/9zcXISFhcHBwQF2dnYYMWIEMjIyNOL++usvrFu3DkFBQejUqRPkcjmefPJJTJ48GXl5eRrxCQkJTc6klZCQoHZuBw8erPtOEnUQLPaJtKiursYvv/wCAIiIiIAQAnPmzJE4q5Yxpn0h47R27VoIIVBdXa3RlpubCz8/P4SEhMDe3h7Ozs4QQiArK0vVPmvWLI31lHGZmZlwcnKCEALZ2dl63xd9u3jxIsaMGYPExEQUFxdL3v+JEycwZMgQ2NnZ4bfffsPly5fRs2dPDBs2DD/88INa7Ny5czFjxgxERETg7NmzKCsrw+bNm5GbmwtfX1/s3r1bLX7q1KlITEzEokWLNLa7bNkyCCEghICpqemj7TSRkWOxT2QEbG1tMXToUKnToGaQ+lxJvX1dVFZW4rnnnsO4ceMwffp0jXZLS0s4OTkhOTkZX3/9tQQZGt6iRYswZMgQ5OTkwM7OTtL+Gxsb8corr8DBwQFffPEF3Nzc4OzsjLVr18LT0xOxsbGoq6tTW+fll1/GzJkz4erqCmtrawQEBCAlJQV3797F22+/rRbr6emJXbt2YcmSJUhLS2v1fSXqKFjsExFRm/Txxx+jqKgI77zzjtZ2KysrbNu2DSYmJoiLi8P58+cNnKHhbdq0CQkJCXobvqNL/z/99BPOnDmDqKgoyOVy1XJTU1NMnDgRf/75J/bu3atavnHjRiQnJ2v04+3tDblcjosXL0IIodEWFRWFt956Cw0NDY+wZ0QdF4t9IiJqc4QQ2LhxIwYNGoSuXbs2GRcaGoqFCxeiqqoK0dHRWsfvG5N7i2qp+//xxx8BQOuzEMpl6enpD+2npqYGtbW16Nu3L2QymUb72LFjUVBQgH379jU7NyL6Pyz2iXSwe/dutYfC/vjjD8TExMDBwQFOTk4IDw/HxYsXVfFJSUmq2G7duiErKwvBwcGws7ODtbU1hg8frvYg2+LFi1Xx9w61OHjwoGq5s7OzRv81NTXIyMhQxTzKXb+GhgakpqZi5MiRcHV1hVwuR79+/bBy5Uo0NjYCAMrLyzUefly8eLFq/XuXR0VFqfouKSlBfHw8unfvDgsLC3Tu3BmRkZHIzc1t8hifO3cO48ePh5OTk2pZaWlpi/evOcrKyjB79mx4enrCwsICjo6OGDVqFA4fPqyKae1z1R6vFX3Ky8tDcXExvL29Hxr77rvvIiQkBKdOncKMGTOa1X9zzrGu73el5lznxiA/Px8A0K1bN402d3d3AGjWpy3Kb7NdsGCB1vYBAwYAAL7//vsW5UnU4QmiDgCASE1N1WmdX375RQAQERERGm0RERGqtmPHjonq6mpx6NAhIZfLxcCBAzXivb29hY2NjfD391fFZ2Vlif79+wsLCwtx5MgRtXgbGxvxzDPPaPTj6+srnJycNJY3Fd+cfbnfnj17BACxdOlScfPmTVFSUiL+/d//XZiYmIg5c+aoxYaGhgoTExPx+++/a/Tj7+8vtm3bpvq5sLBQPP7448LFxUXs27dPVFVVidOnT4vAwEBhZWUljh07pra+8hgHBgaKw4cPi5qaGnH8+HFhamoqSkpKHrofQgiRmpoqdP01d/36ddGjRw/h4uIi9uzZIyoqKsS5c+dEZGSkkMlkYsOGDWrxrX2upL5Whg8fLjp16iQyMzObjNEmKipKREVF6bTOli1bBACxdu3aJtuWLl2qdd2srCyhUChUP5eUlAgPDw8BQGzdulW1PDMzU+M46HqOdXm/63qdPwp3d3dhamraav3p2v/IkSMFAHH8+HGNtgsXLggA4umnn37gNoqKioSLi4uIjY1tMqaiokIAEAEBAVrbTU1NxaBBgx64nfu15HolaqfSeGef6BHExsbC398fNjY2GDFiBMLCwpCVlaX1znNNTQ3WrFmjivfz88PWrVtRX1+PmTNnSpB904YNG4bExEQ4OjrC2dkZM2bMwKRJk7By5UpUVlaq4mbPno3GxkZ89tlnautnZGTg6tWriI6OVi1LTEzElStX8Nlnn2H06NGwtbWFl5cXtm/fDiFEk3dk582bh2HDhsHa2hqDBg1CQ0OD2h3r1paYmIjLly9jxYoVCA8Ph729PXr16oWUlBS4ubkhPj5eL7Og3EvKa6WxsVE1y4mUrl+/DgBQKBTNind2dkZaWhrMzc0RFxenuuusTUvPcXPe7y29zo2N8vrRNixHqaysDM8++yyGDRuGdevWNRlnb28PmUymuiaISDcs9okewcCBA9V+9vDwAAAUFhZqxNrY2Kg+jlbq168funbtiry8vDbzhyw8PFxtKIOSt7c37ty5gzNnzqiWhYSEoF+/fvjyyy9RVlamWv7JJ59gxowZMDc3Vy3bvXs3TExMEB4ertavq6srvLy8kJOTg4KCAo3t/uMf/2iN3Wq2Xbt2AQDCwsLUlltaWiI4OBi1tbV6H04g5bVy5MgR3Lx5E/7+/nrbRnMox97few09zODBg5GUlISamhpER0ejtrZWa1xLz3Fz3u8tvc7bIwcHBwB//3N6P+UyZYy29tDQUDz11FPYtm3bQ6fPNDMza/J8EtGDsdgnegT333W0sLAAANXY9ns19UevS5cuAIAbN260cnYtU1FRgXfeeQf9+vWDo6Ojarzy3LlzAQC3bt1Si581axZu3bqFNWvWAPh7jO6PP/6IV199VRVTV1eHiooKNDY2QqFQaIz3P3nyJADgwoULGvnY2Njoa1c1KPO0srLSOu2gi4sLAKCoqEivebSXa0WfrKysAAB37tzRab34+HjExMTg9OnTWqfrfJRz/LD3+6Nc5+1Rnz59AEDrPy/Xrl0DAPTq1UujraGhAdHR0XB3d8dXX33VrHnyGxoa9P5wMpGxYrFPZCBlZWVah0YoCzdlIQcAJiYmqK+v14gtLy/X2veDPirX1XPPPYcPP/wQU6dOxfnz51XDOj7//HMA0NiHyZMnw8XFBatWrUJdXR0+/fRT/Otf/4Kjo6MqxtLSEg4ODjAzM8OdO3dUw0Tufw0fPrzV9qMlLC0toVAocPv2bVRVVWm0K4d2uLq6qpbp41y1l2tFn9zc3AD8/c+nrjZu3IjevXtj8+bN2LJli1pbS85xc7WX67y1KPcjJydHo025LDg4WKMtLi4OdXV1SEtLU3tA/IknnsDx48c14isrKyGEUF0TRKQbFvtEBnL79m3Vt34q/frrrygsLIS3t7faHzI3NzfVnTGloqIiXL16VWvf1tbWagVf7969sX79ep3yMzMzw5kzZ5CRkQFXV1fEx8ejc+fOquKwqY/QLS0t8frrr+PGjRv49NNPsW3bNq3jyiMjI9HQ0KA2o4zS8uXL8dhjj7WJebTHjh0LABrT/NXV1SE9PR1yuRyhoaGq5fo4V239WjGEvn37AtB+1/hhbG1t8c0338DGxkb1idO9dD3Humgv13lrCAwMxFNPPYWdO3eqTXl69+5dbN++HR4eHhpDpd577z2cOXMG3377LSwtLZu1HeX1rbwmiEg3LPaJDEShUGD+/PnIzMxETU0NsrOzMWXKFFhYWGDlypVqsSEhISgsLMSqVatQXV2NixcvYubMmWp3dO/19NNP4/z58/jzzz+RmZmJS5cuISAgQOccTU1NMWzYMBQVFeGTTz5BaWkpamtrcfjw4Qc+QPf6669DLpdj4cKFGDFiBJ544gmNmI8++gienp54+eWXceDAAVRUVODmzZtITk7GBx98gKSkpDYxDeRHH32EHj16YNasWdi7dy+qqqpw/vx5TJo0CdevX8fKlStVQz0A/ZwrKa+VoKAgODk5ab3Dakje3t7o0qUL8vLyWrS+l5eX1i9wAnQ/x7rQ9TqfMmUKZDIZLl++3KLtPYw++zcxMcGmTZtw8+ZNvPTSSygqKkJZWRneeOMNXLhwARs2bFANxwKAL7/8Eu+//z5OnDgBOzs7jWFO2qYxBaCasjQkJKTV94GoQzDk3D9EUoGOU2/a2NgIAGqvTz75RGRmZmosX7BggWob977CwsJU/Xl7ewt3d3dx9uxZERoaKuzs7IRcLheBgYHi6NGjGtsvLy8XsbGxws3NTcjlcjF06FCRlZUlfH19Vf3PmzdPFZ+fny8CAgKEjY2N8PDwEKtXr37gvjT1+u2330RJSYmIi4sTHh4ewtzcXLi4uIgXX3xRJCQkqOJ8fX01cp46daoAIP7nf/6nyeNaVlYmZs+eLXr27CnMzc1F586dRUhIiDh06JAqRtsxbumvqpZMvSmEEKWlpWLWrFmiR48ewtzcXCgUChEaGirS09M1YlvzXAkh7bUihBABAQHC0dFR5ykiW3vqTSGEmD9/vjAzMxPXrl1TLSspKdG4NrRdj0rTpk3TOgVpc85xS9/vzbnOlYKCgoStra1oaGh4+AET/zc1rrbX/VOGGqJ/IYQ4efKkGDVqlLC3txe2trYiKChI67UaFhb20N9B2qZ8jY6OFu7u7qK+vl7r9jn1JtEDpbHYpw5B12K/tSkLOGO2efPmBxZdUmhpsS+l9nqt6KPYLy8vF+7u7iIuLq41Umxz/vrrLyGXyx84x3xb7t8QcnNzhUwmE19//XWTMSz2iR6I8+wTUetYt24dZs+eLXUaZEQUCgX27NmDnTt3YvXq1VKn06qEEIiPj4e9vT0+/PDDdte/IVy6dAmRkZFITEzEhAkTpE6HqN1isU9ELbJx40aMHTsW1dXVWLduHf766y+MHz9e6rSoHZo2bRpkMhlsbW012nx8fJCdnY0DBw6ofaFbe1dcXIxLly4hPT29RTP/SN2/ISQnJ2PJkiVYsmSJRltCQoJqrP/du3clyI6o/WCxT6RHSUlJkMlkyMvLw7Vr1yCTybBw4UKp02o1u3fvhqOjI9auXYvt27e3iQds2ytjv1a0mTJlitqUlNXV1Vrjunfvjr1798Le3t7AGeqPq6srjh49Ci8vr3bZvyEsX768yTv6y5YtU7t2pH6gnKgt419mIj2aM2cO5syZI3UaehEbG4vY2Fip0zAaxnytEBGRdHhnn4iIiIjISLHYJyIiIiIyUiz2iYiIiIiMFIt9IiIiIiIjxQd0qcPIzMyUOgUyMOU5T0tLkzgT41dQUACAx5rah4KCAnTr1k3qNIgMQiaEEFInQaRvMplM6hSIiKgNiYqKwo4dO6ROg0jfdvDOPnUI/J+W6O+77jExMXw/EBF1IByzT0RERERkpFjsExEREREZKRb7RERERERGisU+EREREZGRYrFPRERERGSkWOwTERERERkpFvtEREREREaKxT4RERERkZFisU9EREREZKRY7BMRERERGSkW+0RERERERorFPhERERGRkWKxT0RERERkpFjsExEREREZKRb7RERERERGisU+EREREZGRYrFPRERERGSkWOwTERERERkpFvtEREREREaKxT4RERERkZFisU9EREREZKRY7BMRERERGSkW+0RERERERorFPhERERGRkWKxT0RERERkpFjsExEREREZKRb7RERERERGisU+EREREZGRYrFPRERERGSkWOwTERERERkpFvtEREREREaKxT4RERERkZFisU9EREREZKTMpE6AiIha340bN/DFF1+oLTt16hQAYPny5WrLO3XqhKlTpxosNyIiMhyZEEJInQQREbWuhoYGuLq64q+//oK5uXmTcXV1dYiLi8O6desMmB0RERnIDg7jISIyQmZmZpg4cSJMTU1RV1fX5AsAJk2aJHG2RESkLyz2iYiM1MSJE3Hnzp0Hxri6umLo0KEGyoiIiAyNxT4RkZHy9/dHt27dmmy3sLDACy+8ABMT/ikgIjJW/A1PRGSkZDIZpkyZ0uSY/fr6ekycONHAWRERkSGx2CciMmIPGsrTs2dP+Pj4GDgjIiIyJNMB/3kAACAASURBVBb7RERGrH///ujdu7fGcgsLC/zrX/+SICMiIjIkFvtEREbuhRde0BjKU19fjwkTJkiUERERGQqLfSIiIzdlyhQ0NDSofpbJZPD29kavXr0kzIqIiAyBxT4RkZF7/PHH8fTTT0MmkwEATE1NOYSHiKiDYLFPRNQB/POf/4SpqSkA4O7duxg/frzEGRERkSGw2Cci6gDGjx+PxsZGyGQyPPPMM3B3d5c6JSIiMgAW+0REHYCrqysCAwMhhOAQHiKiDkQmhBBSJ0HUHkVHR2Pnzp1Sp0FEZPRSU1M59IyoZXaYSZ0BUXs2ePBgvPnmm1Kn0WFlZmZixYoVSE1NlTqVdqG2thbr16/HzJkzdV73888/BwBe72RwMTExUqdA1K6x2Cd6BN26dePdJomtWLGC50AHI0eORNeuXXVeb8eOHQDAY00Gx2Kf6NFwzD4RUQfSkkKfiIjaLxb7RERERERGisU+EREREZGRYrFPRERERGSkWOwTtUFZWVl48cUX0aNHD8jlcnTq1Al9+/bFuHHjsHbtWly8eFHqFB9o//796NWrF8zMOAcA/e3KlSsYM2YMKisrUVpaCplMpnr5+Pjg9u3bGuvcHyeTyeDn5ydB9vqh7/eJLv3n5uYiLCwMDg4OsLOzw4gRI5CRkaER99dff2HdunUICgpCp06dIJfL8eSTT2Ly5MnIy8vTiE9ISOBsWUQSY7FP1IY0NjZi7ty5GDJkCLp06YIDBw6gvLwcv/32Gz7//HNUVlbi9ddfxxNPPIGGhgap09Vw8eJFjBkzBomJiSguLpY6HZ1UV1fjySefRHh4uNSpGJ3c3Fz4+fkhJCQE9vb2cHZ2hhACWVlZqvZZs2ZprKeMy8zMhJOTE4QQyM7ONnT6rU7f7xNd+z9x4gSGDBkCOzs7/Pbbb7h8+TJ69uyJYcOG4YcfflCLnTt3LmbMmIGIiAicPXsWZWVl2Lx5M3Jzc+Hr64vdu3erxU+dOhWJiYlYtGhRq+4jETUfi32iNmTRokVISkrCmjVr8PHHH6NPnz6wtLSEi4sLRo4ciYMHD2LUqFFSp9mkRYsWYciQIcjJyYGdnZ3U6ehECIHGxkY0NjZKncpD2draYujQoVKn0SyVlZV47rnnMG7cOEyfPl2j3dLSEk5OTkhOTsbXX38tQYaGp+/3iS79NzY24pVXXoGDgwO++OILuLm5wdnZGWvXroWnpydiY2NRV1ents7LL7+MmTNnwtXVFdbW1ggICEBKSgru3r2Lt99+Wy3W09MTu3btwpIlS5CWltbq+0pED8fP2InaiPz8fCxbtgy+vr6YOnWq1hhTU1MsWrQIBw4cMHB2zbNp0ybI5XKp02gROzu7Nj88qj36+OOPUVRUhHfeeUdru5WVFbZt24bRo0cjLi4Ovr6+6NWrl4GzNCx9v0906f+nn37CmTNnMGPGDLV1TE1NMXHiRLz33nvYu3cvxo0bBwDYuHGj1n68vb0hl8tx8eJFCCEgk8nU2qKiovDWW28hMjKSw/uIDIx39onaiPXr16OxsRHR0dEPjPP394cQok3+wWyvhT7phxACGzduxKBBgx44v39oaCgWLlyIqqoqREdHax2/b0z0/T7Rpf8ff/wRALQ+C6Fclp6e/tB+ampqUFtbi759+6oV+kpjx45FQUEB9u3b1+zciKh1sNgnaiN++uknAED//v11XresrAyzZ8+Gp6cnLCws4OjoiFGjRuHw4cOqmN27d6s96PjHH38gJiYGDg4OcHJyQnh4uOrOdnl5ucaDkYsXLwYANDQ0qC2Piopqhb2X1v3HRlls6nLMACApKUkV261bN2RlZSE4OBh2dnawtrbG8OHD1R56XLx4sSr+3mE5Bw8eVC13dnbW6L+mpgYZGRmqmLb4jx8A5OXlobi4GN7e3g+NfffddxESEoJTp05hxowZzeq/ta/7e5WUlCA+Ph7du3eHhYUFOnfujMjISOTm5jb/ALQD+fn5AP7+NvD7ubu7AwDOnz//0H6U37C8YMECre0DBgwAAHz//fctypOIHoEgohaJiooSUVFRrdafm5ubACBOnDih03rXr18XPXr0EC4uLmLPnj2ioqJCnDt3TkRGRgqZTCY2bNigFh8RESEAiIiICHHs2DFRXV0tDh06JORyuRg4cKBa7LPPPitMTEzE77//rrFdf39/kZKS0mRe7u7uwtTUVKd90VVqaqpozV9jymNTW1urdXlzjpkQQnh7ewsbGxvh7++vis/KyhL9+/cXFhYW4siRI2rxNjY24plnntHox9fXVzg5OWksbypeafjw4aJTp04iMzOzubv+UC253rds2SIAiKVLl2ptz8rKEgqFQvVzSUmJ8PDwEADE1q1bVcszMzM1joM+r/vCwkLx+OOPCxcXF7Fv3z5RVVUlTp8+LQIDA4WVlZU4duyYTsfhQfT9PnlY/yNHjhQAxPHjxzXaLly4IACIp59++oHbKCoqEi4uLiI2NrbJmIqKCgFABAQEND/5/x8AkZqaqvN6RCSEECKNd/aJ2hhtH4E/SGJiIi5fvowVK1YgPDwc9vb26NWrF1JSUuDm5ob4+HitM3LExsbC398fNjY2GDFiBMLCwpCVlYXS0lJVzJw5c9DY2IjPPvtMbd2MjAxcu3btoUOOjE1zjplSTU0N1qxZo4r38/PD1q1bUV9fj5kzZ+o1z8bGRgghIITQ63Ye5vr16wAAhULRrHhnZ2ekpaXB3NwccXFxqrvO2ujzuk9MTMSVK1fw2WefYfTo0bC1tYWXlxe2b98OIUSzP3lo75TXz4N+J5WVleHZZ5/FsGHDsG7duibj7O3tIZPJVNcEERkOi32iNkI5pllb4fggu3btAgCEhYWpLbe0tERwcDBqa2u1fnQ+cOBAtZ89PDwAAIWFhaplwcHB8PHxwZdffomysjLV8k8++QSzZs1qs8NH9KU5x0zJxsZGNXRBqV+/fujatSvy8vL0WvQcOXIEN2/ehL+/v9620RzK4VDm5ubNXmfw4MFISkpCTU0NoqOjUVtbqzVOn9f97t27YWJiojENq6urK7y8vJCTk4OCgoJm71Nb5uDgAODvf07vp1ymjNHWHhoaiqeeegrbtm2DqanpA7dlZmbW5PkkIv1hsU/URgQGBgIATp061ex16urqUFFRASsrK61T7Lm4uAAAioqKNNruv9tqYWEBABpTT7711lu4desW1qxZA+Dv8bs//fQTYmNjm52nsWjuMQOaLpC6dOkCALhx40YrZ9f2WFlZAQDu3Lmj03rx8fGIiYnB6dOntU7Xqc/rXtl3Y2MjFAqFxrMrJ0+eBABcuHBBp31qq/r06QMAWv95uXbtGgBonR2poaEB0dHRcHd3x1dfffXQQl+5Dh/iJzI8FvtEbURcXBzMzMywc+fOB8a9/fbbMDExQX5+PiwtLaFQKHD79m1UVVVpxCqHMbi6urY4r5iYGHh4eGDVqlWoq6vDp59+iqlTp7a7efQNraysTOswGmWRryz6AcDExAT19fUaseXl5Vr71nWol1Tc3NwAABUVFTqvu3HjRvTu3RubN2/Gli1b1Nr0ed1bWlrCwcEBZmZmuHPnjmo41P2v4cOH69x3W6Tcj5ycHI025bLg4GCNtri4ONTV1SEtLU3tE74nnngCx48f14ivrKyEEEJ1TRCR4bDYJ2ojevXqhXfffRfZ2dnYvHmz1phz584hOTkZ48ePV92RGzt2LABoTGlXV1eH9PR0yOVyhIaGtjgvMzMzzJw5Ezdu3MCnn36K7du3Iz4+vsX9dRS3b99WfUOs0q+//orCwkJ4e3urFT1ubm6qu6hKRUVFuHr1qta+ra2t1f456N27N9avX9+K2beOvn37AtB+1/hhbG1t8c0338DGxkb1qdK99HndR0ZGoqGhQW3mJKXly5fjsccea5PfYN0SgYGBeOqpp7Bz5061KU/v3r2L7du3w8PDQ2Oo1HvvvYczZ87g22+/haWlZbO2o7y+ldcEERkOi32iNmThwoVISEjAa6+9hoSEBJw/fx719fW4du0aNm3ahOHDh6N///7YtGmTap2PPvoIPXr0wKxZs7B3715UVVXh/PnzmDRpEq5fv46VK1eqhjW01KuvvgqFQoGFCxfi+eefV03JR01TKBSYP38+MjMzUVNTg+zsbEyZMgUWFhZYuXKlWmxISAgKCwuxatUqVFdX4+LFi5g5c6ba3f97Pf300zh//jz+/PNPZGZm4tKlSwgICFC1BwUFwcnJSesdVkPy9vZGly5dkJeX16L1vby8kJycrLVNn9f9Rx99BE9PT7z88ss4cOAAKioqcPPmTSQnJ+ODDz5AUlKS2t3sKVOmQCaT4fLlyy3a3sPos38TExNs2rQJN2/exEsvvYSioiKUlZXhjTfewIULF7BhwwbVcCwA+PLLL/H+++/jxIkTsLOz0xjm1NQX0ymnLA0JCWn1fSCih5BmFiCi9q+1p968188//yxeeOEF4eHhIczNzYWdnZ0YPHiwWLlypairq9OILy0tFbNmzRI9evQQ5ubmQqFQiNDQUJGenq6KyczMFADUXgsWLBBCCI3lYWFhGtuYO3euACDy8vKazHvPnj0afSlf90+F2Bpaa+rNXbt2aeQ7efLkFh8zb29v4e7uLs6ePStCQ0OFnZ2dkMvlIjAwUBw9elRj++Xl5SI2Nla4ubkJuVwuhg4dKrKysoSvr6+q/3nz5qni8/PzRUBAgLCxsREeHh5i9erVav0FBAQIR0fHVp0isqXX+/z584WZmZm4du2aallJSYnG8fP19W2yj2nTpmmdglSf131ZWZmYPXu26NmzpzA3NxedO3cWISEh4tChQxp5BAUFCVtbW9HQ0NCsY6Lr+0Tf/QshxMmTJ8WoUaOEvb29sLW1FUFBQVqv1bCwsCb7Vr60TfkaHR0t3N3dRX19fbP24V7g1JtEjyJNJoTEc7MRtVPKaSeVXyZDhpeWloaYmBjJp5i834ABA1BaWmo0M7YALb/eKyoq4OXlhfDw8AdOzdhelZeXo2vXrpg8eTI2bNjQ7vo3hLy8PPj4+CAlJQUTJkzQeX2ZTIbU1FSMHz9eD9kRGb0dHMZDRER6o1AosGfPHuzcuROrV6+WOp1WJYRAfHw87O3t8eGHH7a7/g3h0qVLiIyMRGJiYosKfSJ6dCz2iYhIr3x8fJCdnY0DBw6gsrJS6nRaTXFxMS5duoT09PRHmvFKqv4NITk5GUuWLMGSJUukToWow+pY34hDRKRHSUlJmDt3rupnmUyGBQsWYPHixRJm1TZ0794de/fulTqNVuXq6oqjR4+22/4NYfny5VKnQNThsdgnImolc+bMwZw5c6ROg4iISIXDeIiIiIiIjBSLfSIiIiIiI8Vin4iIiIjISLHYJyIiIiIyUnxAl+gRFBQUIC0tTeo0OqzMzEwA4DkwAOUXhPFYExG1Lyz2iR7B8ePHERMTI3UaHR7PgeHwWBMRtS8s9okeQVRUFHbs2CF1Gh1WWloaYmJiIISQOhWjFx0dDQC83sngZDKZ1CkQtWscs09EREREZKRY7BMRERERGSkW+0RERERERorFPhERERGRkWKxT0RERERkpFjsE0kkKysLL774Inr06AG5XI5OnTqhb9++GDduHNauXYuLFy9KneID7d+/H7169YKZWdOTetna2kImk6m9TExM4OjoCG9vb7z++uvIyckxYNbUXly5cgVjxoxBZWUlSktL1a4hHx8f3L59W2Od++NkMhn8/PwkyF4/mvOea4mGhgZs2rQJ//jHP+Dk5ARHR0f4+vpi1apVqK+vV4tNSEhAampqq26fiPSLxT6RgTU2NmLu3LkYMmQIunTpggMHDqC8vBy//fYbPv/8c1RWVuL111/HE088gYaGBqnT1XDx4kWMGTMGiYmJKC4ufmBsdXU1fvnlFwBAREQEhBC4c+cO8vPz8cEHHyA/Px9+fn546aWXcOvWLUOkT+1Abm4u/Pz8EBISAnt7ezg7O0MIgaysLFX7rFmzNNZTxmVmZsLJyQlCCGRnZxs6/Vany3uuJV566SXExsZixIgR+O233/D7778jJiYGM2bMwLhx49Rip06disTERCxatKjV8yAi/WCxT2RgixYtQlJSEtasWYOPP/4Yffr0gaWlJVxcXDBy5EgcPHgQo0aNkjrNJi1atAhDhgxBTk4O7OzsdF7f1NQULi4uiIiIwI8//oi3334bX375JSZOnGgU8+Xb2tpi6NChHXb7j6qyshLPPfccxo0bh+nTp2u0W1pawsnJCcnJyfj6668lyNDwHvU99yCXLl3C1q1b4ePjg6VLl6JLly5wcnLC22+/jZEjR2Lv3r2qf7IAwNPTE7t27cKSJUv4bcpE7QSLfSIDys/Px7Jly+Dr64upU6dqjTE1NW3Td802bdqEhISEVhtKsGzZMgwaNAjfffcdtm/f3ip9Uvv18ccfo6ioCO+8847WdisrK2zbtg0mJiaIi4vD+fPnDZyh4bX2e+5ef/75JwDg3/7t3zTa+vTpAwC4evWq2nJvb29ERUXhrbfeapOfPhKROhb7RAa0fv16NDY2qr6NtCn+/v4QQujlj/ujksvlrdqfTCZT3cFds2ZNq/ZN7YsQAhs3bsSgQYPQtWvXJuNCQ0OxcOFCVFVVITo6Wuv4fWPS2u+5e/Xp0wfm5ubIz8/XaMvPz4dMJkO/fv002saOHYuCggLs27dPb7kRUetgsU9kQD/99BMAoH///jqvW1ZWhtmzZ8PT0xMWFhZwdHTEqFGjcPjwYVXM7t271R5O/OOPPxATEwMHBwc4OTkhPDxc9eBveXm5xsOMixcvBvD3A3v3Lo+KimqFvW+actjJ8ePHcefOHb1uC2jesVy8eLFq/+8dFnPw4EHVcmdnZ9XypKQkyGQy1NTUICMjQxWj/IdN2S6TydCtWzdkZWUhODgYdnZ2sLa2xvDhw5GRkaG37bcHeXl5KC4uhre390Nj3333XYSEhODUqVOYMWNGs/pv7ffQvUpKShAfH4/u3bvDwsICnTt3RmRkJHJzc5t/ACTg4uKCpKQk5OXlYf78+SgpKcHNmzfx8ccf47//+7/xzjvvoFevXhrrDRgwAADw/fffGzplItKVIKIWiYqKElFRUTqt4+bmJgCIEydO6LTe9evXRY8ePYSLi4vYs2ePqKioEOfOnRORkZFCJpOJDRs2qMVHREQIACIiIkIcO3ZMVFdXi0OHDgm5XC4GDhyoFvvss88KExMT8fvvv2ts19/fX6SkpDSZl7u7uzA1NX1g7r/88osql6bU1tYKAAKAKCwsfGB/90pNTRW6/hrT9Vja2NiIZ555RqMfX19f4eTkpLG8qXglb29vYWNjI/z9/VXnJisrS/Tv319YWFiII0eO6HX7w4cPF506dRKZmZlNxmjTkutdV1u2bBEAxNKlS7W2Z2VlCYVCofq5pKREeHh4CABi69atquWZmZkax0af76HCwkLx+OOPCxcXF7Fv3z5RVVUlTp8+LQIDA4WVlZU4duzYox4alea851oiLS1NdOvWTfU+dHZ2Fps2bWoyvqKiQgAQAQEBrZ7L/QCI1NRUvW+HyEil8c4+kQRkMplO8YmJibh8+TJWrFiB8PBw2Nvbo1evXkhJSYGbmxvi4+O1ztIRGxsLf39/2NjYYMSIEQgLC0NWVhZKS0tVMXPmzEFjYyM+++wztXUzMjJw7dq1hw45ag3CgA/mtvRYtqaamhqsWbNGdW78/PywdetW1NfXY+bMmXrddmNjI4QQbfJh6OvXrwMAFApFs+KdnZ2RlpYGc3NzxMXFaR2KoqTP91BiYiKuXLmCzz77DKNHj4atrS28vLywfft2CCGa/cmDFIQQePXVVzF58mTMnj0bRUVFKCkpwZIlSzB9+nRMmDBB67h8e3t7yGQy1TkjoraLxT6RASnHId9bKDTHrl27AABhYWFqyy0tLREcHIza2lqtH6cPHDhQ7WcPDw8AQGFhoWpZcHAwfHx88OWXX6KsrEy1/JNPPsGsWbMMMgxEWTCYm5urDU3Rh5Yey9ZkY2OjGgah1K9fP3Tt2hV5eXl6LaCOHDmCmzdvwt/fX2/baCnl2Htzc/NmrzN48GAkJSWhpqYG0dHRqK2t1Rqnz/fQ7t27YWJigvDwcLVYV1dXeHl5IScnBwUFBc3eJ0PasmULNmzYgNdeew1vvvkmXFxc4OzsjFdffVU1p/6qVau0rmtmZtbk8SaitoPFPpEBBQYGAgBOnTrV7HXq6upQUVEBKysrrdPuubi4AACKioo02u6/Q2phYQHg77u793rrrbdw69Yt1QOy58+fx08//YTY2Nhm5/kojh49CuDvB5N1KfR09SjHsjU5ODhoXd6lSxcAwI0bN/S6/bbKysoKAHR+biM+Ph4xMTE4ffq01uk69fkeUvbd2NgIhUKh8RzMyZMnAQAXLlzQaZ8M5eDBgwCAESNGaLQFBwcDAA4cOKB13YaGBr0+PExErYPFPpEBxcXFwczMDDt37nxg3Ntvvw0TExPk5+fD0tISCoUCt2/fRlVVlUascuiBq6tri/OKiYmBh4cHVq1ahbq6Onz66aeYOnVqq8/prU1jYyNWr14NAHjjjTf0uq2WHEsTExONbxEF/n7AWZvmDNEqKyvTOoxGWeQri359bb+tcnNzAwBUVFTovO7GjRvRu3dvbN68GVu2bFFr0+d7yNLSEg4ODjAzM8OdO3dUQ6Tufw0fPlznvg2hpqbmoTHV1dUayyorKyGEUJ0zImq7WOwTGVCvXr3w7rvvIjs7G5s3b9Yac+7cOSQnJ2P8+PGqea7Hjh0LABrT3NXV1SE9PR1yuRyhoaEtzsvMzAwzZ87EjRs38Omnn2L79u2Ij49vcX+6SExMxM8//4yxY8ca5PkAXY+lm5sbrl27phZbVFSkMfe4krW1tVpx3rt3b6xfv14t5vbt22pfVAQAv/76KwoLC+Ht7a1WQOlj+21V3759AaBFQ15sbW3xzTffwMbGRusUrvp8D0VGRqKhoUFtNiWl5cuX47HHHmuz89EPGjQIAJCenq7R9uOPPwL4e6jU/ZTXpPKcEVEbJslzwURG4FFmJ0lISBDm5uZi3rx54ty5c6Kurk4UFBSIjRs3Cjc3NzF06FBRXV2tir9/JpHKykq1mUTWr1+v1r9yJpHa2lq15fPmzRMAxC+//KKRU2VlpVAoFEImk4l//vOfzdqPlszGc/fuXVFcXCx2794tgoKCBADx8ssvi1u3bjVrm/dqjdl4HnYsp0+fLgCI//iP/xBVVVXi999/F+PHjxfu7u5aZ8N59tlnhUKhEFevXhXHjh0TZmZm4uzZs6p2b29voVAoRHBwcLNm42nt7bfl2XgaGxtFly5dmpxN6P7ZeLTZunWrAPDQ2Xha8z1UXFwsPD09Rc+ePcX+/ftFeXm5KCsrE+vWrRPW1tYaM8lMnjxZABCXLl166DG5X3Pec7r0/9dff4knn3xSmJubi5UrV4ri4mJRWloqNm7cKKytrYW7u7vWGbJSUlIEALFr1y6d90FX4Gw8RI8ijcU+UQs9avHz888/ixdeeEF4eHgIc3NzYWdnJwYPHixWrlwp6urqNOJLS0vFrFmzRI8ePYS5ublQKBQiNDRUpKenq2IyMzNVU+cpXwsWLBBCCI3lYWFhGtuYO3euACDy8vKazHvPnj0afSlf2qatvD9GJpMJhUIh+vXrJ6ZNmyZycnJaeghbVOwL0bxjqVReXi5iY2OFm5ubkMvlYujQoSIrK0v4+vqq9mnevHmq+Pz8fBEQECBsbGyEh4eHWL16tVp/3t7ewt3dXZw9e1aEhoYKOzs7IZfLRWBgoDh69Kjetx8QECAcHR11ng7SEMW+EELMnz9fmJmZiWvXrqmWlZSUaFxHvr6+TfYxbdo0rf8I6fM9VFZWJmbPni169uwpzM3NRefOnUVISIg4dOiQRh5BQUHC1tZWNDQ0NOuY6PKea0n/N2/eFHPnzhV9+vQRlpaWwsLCQnh6eorp06eLoqIiretER0cLd3d3UV9f36xtPAoW+0SPJE0mRBucf42oHVAOOdmxY4fEmXRcaWlpiImJaZPTSDZlwIABKC0tbbOzszTFUNd7RUUFvLy8EB4ejnXr1ul1W1IoLy9H165dMXnyZGzYsKHd9Q/8/eVnPj4+SElJwYQJE/SyjXvJZDKkpqZi/Pjxet8WkRHawTH7RETUZigUCuzZswc7d+5UPbhtLIQQiI+Ph729PT788MN21z8AXLp0CZGRkUhMTDRIoU9Ej47FPhERtSk+Pj7Izs7GgQMHUFlZKXU6raa4uBiXLl1Cenr6I82eJVX/AJCcnIwlS5ZgyZIleumfiFqf/r8th4iIkJSUhLlz56p+lslkWLBgARYvXixhVm1X9+7dsXfvXqnTaFWurq6q75Roj/0Df88uRETtC4t9IiIDmDNnDubMmSN1GkRE1MFwGA8RERERkZFisU9EREREZKRY7BMRERERGSkW+0RERERERooP6BI9guPHj6u+bIgMT/nFVG3xHNy6dQvW1tZSp9Fqjh8/DqBtHusHEUKgpKQEXbp0kToVIiJJsNgnaiF/f3+pU+jwunXrhqioKKnTUHP37l3k5OSguLgYo0aNgpmZcfyaHTx4sNQptMiNGzfwv//7v3jssccwYMAAWFhYSJ0S6SgqKgoeHh5Sp0HUbslEe/qeeSKiNuzq1asYN24cLl26hJSUFISGhkqdEgH4/vvvERsbizt37mDdunV4/vnnpU6JiMhQdnDMPhFRKzhw4AAGDBiAhoYGZGVlsdBvQ0JDQ3H69GlERERg7NixGD9+PMrKyqROi4jIIFjsExE9AiEEli9fjvDwcIwePRoZGRno2bOn1GnRfRQKBZKTk7F//34cO3YMffv2xbfffit1WkREesdin4iohSorKzFu3DgsXLgQS5cuxdatW43qoVxjNGrUImx/jwAAIABJREFUKJw6dQpBQUF4/vnnMXXqVNTU1EidFhGR3nDMPhFRC+Tn52Ps2LGoqqrCjh07+MB2O/Rf//VfePXVV9G5c2ds374d3t7eUqdERNTaOGafiEhXX3/9Nfz8/NC5c2dkZ2ez0G+nIiMjkZubiy5dumDQoEFYuXIleP+LiIwNi30iomZqaGhAQkICJk2ahMmTJyM9PR2urq5Sp0WPoFu3bjh8+DCWL1+OuXPn4vnnn+fDu0RkVDiMh4ioGUpKSjBhwgRkZmZi7dq1+Ne//iV1StTKTpw4gYkTJ+LWrVv4z//8T4SEhEidEhHRo+IwHiKih8nIyMCAAQNw9epVnDhxgoW+kRo0aJBqWNbo0aPx/vvvo7GxUeq0iIgeCYt9IqIHWL9+PYKCguDj44Off/4Z/fr1kzol0qNOnTph165dWLFiBZYuXYqIiAhUVFRInRYRUYux2Cci0uL27dt45ZVX8Nprr+HNN9/Ed999B0dHR6nTIgOZPn06Dh8+jJycHAwcOBBnzpyROiUiohZhsU9EdJ+rV6/i//2//4edO3di165dWLZsGUxM+OuyoxkyZAiys7Ph7OyMwYMH45tvvpE6JSIinfGvFxHRPQ4ePAgfHx/U19fjl19+QUREhNQpkYS6du2Kw4cPY+LEiYiOjkZCQgLH8RNRu8Jin4gIgBACy5cvR3h4OEaNGoVjx46hZ8+eUqdFbYClpSXWr1+PdevW4fPPP8dzzz2H8vJyqdMiImoWTr1JRB1eVVUVXnzxRXz33XdYvHgx5s2bJ3VK1EYdO3YMUVFRcHR0xIEDB/DYY49JnRIR0YPsYLFPRB1afn4+IiMjUVFRgR07dmDIkCFSp0RtXEFBAUaPHo2ysjLs378f3t7eUqdERNQUzrNPRB3X9u3b4efnBycnJ2RnZ7PQp2bp1q0bjh07hn79+mHo0KE4cOCA1CkRETWJxT4RdTgNDQ1ISEjApEmTMHnyZKSnp8PNzU3qtKgdsbW1xXfffYeIiAiMGTMGGzdulDolIiKtzKROgIjIkEpLSzFhwgRkZGRg8+bNePHFF6VOidopCwsLbNmyBU888QReffVVFBQU4L333pM6LSIiNSz2iajDyMnJwbhx42Bubo4TJ06gf//+UqdE7ZxMJsN7772Hbt26Ydq0afjzzz+RnJwMMzP+eSWitoHDeIioQ1i/fj2GDBkCLy8v/Pzzzyz0qVXFxsYiLS0NX3/9Nf75z3+ioaFB6pSIiACw2CciI3f79m3Exsbitddew5tvvok9e/bA0dFR6rTICI0dOxbff/899uzZg0mTJuHOnTtSp0RExHn2ich4/fnnn4iKikJ+fj6++uorPP/881KnRB3A0aNHMXr0aISGhiIlJQXm5uZSp0REHRen3iQi43TkyBH4+fmhrq4OJ0+eZKFPBjN06FDs378f33//PSZOnMg7/EQkKRb7RGRUhBBYvnw5RowYgeDgYGRkZMDT01PqtKiDUc6//8MPP2Ds2LGoq6uTOiUi6qBY7BOR0aj6/9i787imrvx//K8gAcIiYlA2aUXcWoqRorVaqSIItaKMCGLVjtaPVutXKbiNWrdxnVpaPzp2Rqp2nFrtgHW0g1vHWu3HBR2wBVs3FGoVBQxQ2QoI8v79wS8ZQhIhMclNyPv5ePAH556c877n3oQ3N+eeW1mJuLg4LF++HOvXr8e+ffvg5OQkdFjMSr3yyis4fvw4zpw5g5iYGE74GWOC4Dn7jLF24caNG4iJiYFcLkdqaipCQ0OFDokxAMD58+cxatQohIWFYf/+/ejQoYPQITHGrAfP2WeMWb6vvvoKgwYNgpubG7KzsznRZ2ZlyJAhyjn8b7/9NvgaG2PMlDjZZ4xZrMePH2PJkiUYN24c4uPj8e2338Lb21vosBhT88orr+Crr77C3r17sWTJEqHDYYxZEX7EH2PMIpWUlOCNN97A2bNnsXPnTkyfPl3okBh7ovDwcOzatQu///3v0bVrVyxYsEDokBhjVoCTfcaYxfn+++8xfvx4NDY24syZMxgwYIDQITHWJpMnT4ZcLseCBQvQvXt3jB8/XuiQGGPtHE/jYYxZlM8++wxDhw7Fc889h+zsbE70mcVJTEzE//t//w9vvvkmMjIyhA6HMdbOcbLPGLMIdXV1ePvttzFt2jQkJCTg8OHDcHNzEzosxvSyefNmjBgxAuPGjcPt27eFDocx1o7x0puMMbNXUFCA2NhYXLt2Dbt378a4ceOEDomxp1ZVVYWQkBAQEc6dO8fPhGCMGQMvvckYM2/fffcdBgwYgPLycly4cIETfdZuODs746uvvsL9+/fx+9//npfkZIwZBSf7jDHBZGRk4NChQxq3ERG2bNmC8PBwhIaGIisrC88995yJI2TMuJ555hn84x//wL/+9S8kJycLHQ5jrB3iaTyMMUE8evQIgYGBKCgowPfff48+ffoot1VWVmL69Ok4dOgQ1q1bhz/84Q8CRsqY8X300UdYvHgx/v3vf2PEiBFCh8MYaz/2c7LPGBPEmjVrsGbNGgBAjx49cOnSJbi4uCA3NxcxMTF48OAB/vGPf3Diw6zGhAkTcPbsWWRnZ6Nr165Ch8MYax842WeMmV5ubi5eeOEF1NfXAwDEYjFee+01/M///A+mTp2KXr164cCBA3jmmWcEjpQx0ykvL0dQUBD69OmDI0eOwMaGZ9oyxp4aJ/uMMdNqbGzE0KFDkZWVpUz2AUAkEsHDwwMxMTHYvHkz7OzsBIySMWH85z//QUhICNauXYvFixcLHQ5jzPLxajyMMdP65JNPcPHiRZVEH2i6IffBgwcYO3YsJ/rMar300ktYv349VqxYgezsbKHDYYy1A3xlnzFmMoWFhejduzeqqqo0brexsYGzszOys7Ph5+dn4ugYMw+NjY0ICwvDgwcPcOnSJTg4OAgdEmPMcvGVfcaY6bzzzjuoq6vTur2xsRE1NTWIjo5GTU2NCSNjzHzY2Njgb3/7G+7evYu1a9cKHQ5jzMJxss8YM4mDBw/iq6++Upu+01JDQwN+/PFHJCYmmigyxsxP9+7dsWnTJmzatAn/+c9/hA6HMWbBeBoPY8zoKioq0KtXL5SUlKCxsVFtu0gkgq2tLerr69G7d2+88cYbmDp1Kk/lYVaNiBAeHo6ysjJkZmbC1tZW6JAYY5ZnP39yMMaMbtGiRSgrK1NL9G1tbdHQ0AB/f39MnjwZU6ZMQc+ePQWKkjHzIhKJsH37dvTr1w9//vOfkZSUJHRIjDELxFf2GWNGdebMGQwbNgyKjxqxWIz6+nr07NkTb775JiZOnIjevXsLHCVj5mvVqlXYvHkzrl69im7dugkdDmPMsmhfZ7+goADnz583dUCMsXakvr4eCxYsQHFxMQDA3d0dr776KgYPHswPzGIMwJAhQ1pN4Gtra9GvXz/0798faWlpJoqMMdZOaE/209LSEB8fb+qAGGOMMauRmpqKCRMmtFrvyJEjiIqKwnfffYdXX33VBJExxtqJ1ufs8ywfxtofxT/zxnx/ExGysrIwYMAAiEQio/Vj7uLi4gAA+/fvFzgSZm50eV+MHj0akZGRSExMRFZWFmxseDE9xljb8KcFY8woRCIRBg4caNWJPmOGtHnzZvz444/47LPPhA6FMWZBONlnjDHGLMBzzz2HGTNm4L333tP6FGrGGGuJk33GGGPMQqxZswZVVVXYvHmz0KEwxiwEJ/uMMcaYhejSpQsWLFiADz74AA8ePBA6HMaYBeBknzHGGLMg8+fPh6OjIzZt2iR0KIwxC2CwZD85ORkikQgikchsH/px6NAhZYwikQi1tbVCh2SRLOFYW4qjR4+id+/esLXVvjDWr7/+iu3bt2PEiBHo3LkzJBIJevXqhcmTJyMnJ8eE0TIh/PLLLxg7diwqKipQUlKi8hkWFBSk8XOsZT2RSIQBAwYIEL1xtOV9o4+Ghgbs2rULL730EqRSKdzc3BAcHIxt27bh0aNHKnWXLFmC1NRUg/bfVs7Ozli2bBk+/vhj3LlzR5AYGGOWw2DJ/sKFC0FEkMlkhmrS4H73u9+BiBAdHS10KBbtSce6qqoKvXr1QlRUlACRmW8sLeXl5WHs2LFYunSp8oFT2ixatAjz5s1DdHQ0rl69itLSUnz66afIzs5GcHAwDh06ZKKoNTPncbZ02dnZGDBgACIiItCxY0e4u7uDiJCZmancnpiYqPY6Rb2MjAxIpVLlMqiWTpf3jT7eeustzJgxA+Hh4bh27Rpu3bqF+Ph4zJs3D+PHj1epO3PmTCxduhQrVqwweBxtMXv2bHh5eWHdunWC9M8YsxwWNY3H2dkZQ4cOFToM9gREhMbGRjQ2NpqkvyedE6aORRcrVqzAkCFDcOnSJbi4uLRaf/r06Xj33Xfh6ekJR0dHhISEYN++fXj8+DEWL15sgoi1M+dxbsmSPkMqKiowZswYjB8/HnPnzlXbbm9vD6lUipSUFHzxxRcCRGh6ur5vdJGfn4/PP/8cQUFB2LBhA7p27QqpVIrFixdj5MiROHz4sPKfLADw9/fHwYMHsX79ekGeamtnZ4clS5Zg9+7dfHWfMfZEhv0OlFk9FxcX5OXlCR0GAPOKpaVdu3ZBIpG0qe7OnTs1lstkMkgkEuTl5YGIBFvP3pzH2ZJt2rQJRUVFWLlypcbtDg4O2Lt3L15//XXMmjULwcHB6N27t4mjNC1d3je6unv3LoCm5S1b6tu3L06cOIE7d+5g4MCBynKZTIbY2FgsWLAAMTExBp9W1JqpU6dizZo12LJlCz788EOT9s0YsxwWdWWfsfbCEAlLdXU1ampq8MILL/CDq9oZIsLOnTsxaNAgeHt7a60XGRmJ5cuXo7KyEnFxce3+PiRjJfpAU0IvFotx/fp1tW3Xr1+HSCRCYGCg2rZx48ahoKAAR44cMVps2tjb22P+/PlISUlBSUmJyftnjFkGoyX7169fx+jRo+Hq6gpHR0eEhobi3LlzKnUaGhqQmpqKkSNHwtPTExKJBIGBgdiyZYvKlADFDaHV1dU4d+6c8oazlldRSktLMX/+fPj7+8Pe3h7dunVDeHg4du/ejZqaGrUYi4qKEB8fj06dOkEqlSIqKkrnK5Qtb/q9fft2m9psHqudnR3c3NwwatQonDp1SmvbN27cwIQJEyCVSpVlO3fuVKnzyy+/ID4+Hi4uLpBKpXjzzTfx66+/4vbt2xgzZgxcXFzg5eWFmTNnorKyUq/j0daxaJ54dOrUSe2GQcWPjY0NCgoKdIqhtXOitZux9Rn/th5bU9m/fz8A4L333hMsBm3jrOvYtbzpOzMzE2FhYXBxcdH4+bFu3Tpl/ebTco4fP64sd3d3V2u/tc8Qc5GTk4Pi4uI23QO1atUqRERE4PLly5g3b16b2jfm+S+Xy5GQkIDu3bvDzs4OXbp0QUxMDLKzs9s+AALw8PBAcnIycnJysGzZMsjlcpSVlWHTpk345ptvsHLlSo3fnPTv3x8A8PXXX5s6ZADArFmzIJFIsG3bNkH6Z4xZANIiNTWVnrBZK5lMRq6urhQaGkpnz56lyspKyszMpH79+pGdnR2dPn1aWTc9PZ0A0IYNG6isrIzkcjlt3bqVbGxsaOHChWptOzk50SuvvKKx38LCQvLz8yNPT09KT0+niooKKioqorVr1xIA2rx5s7JudHQ0AaDo6Gg6f/48VVVV0cmTJ6ljx440cOBAnfdZW5snTpwgiUSi1qYiVg8PD0pPT6fy8nK6ceMGxcTEkEgkoh07dmhse9iwYXTq1Cmqrq6mCxcuUIcOHUgul6vUiYmJoaysLKqqqqLPPvuMANCoUaMoOjqafvjhB6qsrKTt27cTAEpKSlLpR9fjIZPJyMfHR+tY1NTUKMtcXV2psrJSpd6aNWuU/ekbw5POCW2x6Dv+bTm2+vDx8aEOHTro9JqioiLy8PCgGTNm6NWnvu9vbTSNc/Pyto6dTCYjJycnGjx4sLK+ts8PIu3HPzg4mKRSqVp5a+dLaGgode7cmTIyMtq6662KjY2l2NhYnV6zZ88etfdGc5mZmeTq6qr8XS6Xk6+vLwGgzz//XFmekZGhNg7GPP/v379Pzz77LHl4eNCRI0eosrKSfvrpJxo2bBg5ODjQ+fPndRqHJ9HnfdMWaWlp1K1bNwJAAMjd3Z127dqltX55eTkBoJCQEJ37AkCpqalPEy4REa1evZo6d+5MFRUVT90WY6zdSTNKsg9A7Y/l5cuXCQDJZDJlWXp6Og0fPlytjSlTppBYLKby8nKV8if9oZ42bZrWD87XXntNY7Kfnp6uUm/SpEkEQJlA60Jbm7GxsWptKmL94osvVOrW1taSt7c3SSQSKioqUmv76NGjrfZ/5MgRlfKAgAACQN99951KuZ+fH/Xp00elTNfj8TTJfmpqKolEIpo2bdpTxaBPsq/v+Lfl2OpD16SlpKSE+vfvT/Hx8dTQ0KBXn6ZO9ts6dorPjx9++EGlXNPnB5Hhk/1hw4aRm5ubQZNSfZL9TZs2EQD6+OOPNW5vmewTNSX2YrGYnJyc6Nq1a8qyluNgzPN/6tSpBID27t2rUrewsJDs7e0pODi4jSPQOkMn+42NjTRz5kwSi8X00UcfUVFREcnlckpJSSGJRELx8fFUX1+v8bUikYh69uypc5+GSvZLS0vJxcWFNm3a9NRtMcbanTSjTONxcHDAoEGDVMoCAwPh7e2NnJwcFBYWAgCioqJUvjZWkMlkqK+vx5UrV9rc58GDBwEAo0aNUtt27NgxjcvTNb/RCgB8fHwAAPfv329zv6216evrq9amItbRo0er1LW3t0dYWBhqamo0fiX80ksvtdp/y7W0FfN9W5b7+Pio7achj0dLDx8+hLOzMwDg4sWLmDp1Kl599VWkpKSYLAYFfce/LcfW2KqrqxEZGYnnn38ee/fuRYcOHUzW99PQZeycnJyUUyMUNH1+GMPp06dRVlaGwYMHG62PtlBMhxKLxW1+zcsvv4zk5GRUV1cjLi5O49RFwLjn/6FDh2BjY6O2DKunpycCAgJw6dIl5ZQ9c7Nnzx7s2LEDs2fPRlJSEjw8PODu7o63335buaa+tqkytra2WsfbFDp37ozZs2fjww8/FDQOxph5Mkqyr5hT3lLXrl0BQPmI7/LycqxcuRKBgYFwc3NTzg1dtGgRAOC3335rU391dXUoLy+Hg4ODTsuxubq6qvxuY9M0HE+zhGDLNu3s7FTabC1WDw8PAE33E7Tk5OTUav8dO3ZU+d3GxgYdOnSAo6OjSnmHDh3U9tNQx+NJ7ty5g+joaPj6+uKf//yncnxMFcPTjH9rx9bYGhoaEBcXBx8fH/z973+3mEQf0G3sOnXqpLGNlp8f7ZmDgwMAoL6+XqfXJSQkID4+Hj/99JPG5TqNef4r2m5sbISrq6vavTnff/89AODmzZs67ZOpHD9+HAAQHh6uti0sLAxA04UjTRoaGox683BbLFiwABUVFfj73/8uaByMMfNjlGS/vLxcY7nij7Tij/aYMWOwdu1azJw5E7m5uWhsbAQRYfPmzQCaVqRoTtuKI/b29nB1dUVtba3aTafmprVYFQ+K8fT0NHVoOh8PXVVWViIqKgr19fU4fPgwOnfu/NQx6LoKjTmPf2tmzZqFuro6pKWlqdxY2rNnT1y4cEHAyAyrtLRU47nW8vMDaPpntuWTTYGmb5I0sZRVi7y8vABo/yx9kp07d6JPnz749NNPsWfPHpVtxjz/7e3t0alTJ9ja2qK+vh5EpPEnNDRU57ZNobq6utU6VVVVamUVFRUgIuUxE4qHhwd+//vfY/PmzU/9Wc0Ya1+MkuxXVVUhJydHpezHH3/E/fv3IZPJ4OXlhcePH+PcuXPw9PREQkICunTpovxDrO1rSEdHR5U/7H369MEnn3wCoGn5M6DpMeotBQUFISkpySD7ZgiKWFsu1VZXV4eTJ09CIpEgMjLSpDHpczx0bX/ixIm4fv06Dhw4oLKqRWxsLA4dOmTwc0Ibcxz/1qxevRpXrlzBV199BXt7e6HDMara2lqVhxcB6p8fCl5eXrh3755K3aKiIq0PGdLnfBHCCy+8AAB6TXlxdnbGgQMH4OTkhL/85S9q2415/sfExKChoUFt5TUAeP/99/HMM8+goaFBr7aNTTH19OTJk2rbvv32WwBNU6VaUpx/imMmpDlz5iA3NxenT58WOhTGmBkxSrLv5OSEuXPn4uLFi6iurkZWVhamTJkCOzs7bNmyBUDTNJLhw4ejqKgIH3zwAUpKSlBTU4NTp05h+/btGtt98cUXkZubi7t37yIjIwP5+fkICQkBAGzcuBF+fn5ISkrCkSNHUFlZiYKCAsyZMweFhYVmlewrYk1MTMThw4dRWVmJ3NxcTJo0CYWFhdiyZYvy63RT0ed46CIpKQlHjx7FJ598guHDhxsshiedE9qY4/g/ye7du/HHP/4RFy9ehIuLi9r0iPb2QCtXV1csW7YMGRkZWj8/FCIiInD//n1s27YNVVVVyMvLw7vvvqty9b+51s6XESNGQCqVCv5NiUwmQ9euXdUumrRVQECA2v0wCsY8/zdu3Ah/f39Mnz4dx44dQ3l5OcrKypCSkoI1a9YgOTlZ5VupKVOmQCQS4eeff9arv9bo0v6cOXPQq1cv/PWvf8XWrVvx4MEDlJaWYteuXfjTn/4EHx8fLFy4UO11iiVFIyIiDB6/rvr164eXX35Z67FnjFkpbbfu6rpaxwcffKBcqszHx4f+85//UGhoKDk7O5NEIqFhw4bR2bNnVV4jl8tp1qxZ5OvrS2KxmDw8PGjatGm0ZMkSZVvNV2+4fv06hYSEkJOTE/n6+qqtVFFSUkKJiYnk5+dHYrGYvLy8aOLEiZSbm0tETStTKNpV/Lz33ntETd95qvyMHj26Tfutb5stY3V1daXIyEg6efLkE9tueUy09Z+ZmalWvnHjRjpz5oxa+apVq3Q6Hs2PdfM+Dx48qFY+efJkysrK0rgfzX8OHjxo0HNCWyxPO/5Pe74oKJYY1fTTcunD0aNHtzp+ui4VaajVeLSNs75jp1jh6erVqxQZGUkuLi5aPz+IiB4+fEgzZswgLy8vkkgkNHToUMrMzKTg4GBl+3/4wx+U9Vv7DAkJCTGL1XiIiJYtW0a2trZ07949ZZlcLlcbvyetcPPOO+9oXJXImOd/aWkpzZ8/n3r06EFisZi6dOlCERERdOLECbU4RowYQc7Ozm1eVUqX940+7ZeVldGiRYuob9++ZG9vT3Z2duTv709z585VWaGoubi4OPLx8aFHjx61qY/mYKDVeJr729/+RnZ2dlRcXGzQdhljFitNRKR5cl9aWhri4+N57h9j7ZC5vr/79++PkpISs12xRR9xcXEA/vsQtLYqLy9HQEAAoqKiDPLtmrl5+PAhvL29MXnyZOzYscPi2geaHn4WFBSEffv2YeLEiTq/XiQSITU1FRMmTDBYTDU1NfDx8cGSJUuwePFig7XLGLNY+432BF3GGGP6c3V1RXp6Or788kt8/PHHQodjUESEhIQEdOzYEWvXrrW49gEgPz8fMTExWLp0qV6JvrFIJBJMmTIFKSkpJlspjDFm3jjZZ4wxMxUUFISsrCwcO3YMFRUVQodjMMXFxcjPz8fJkyeNsvKVsdsHgJSUFKxfvx7r1683SvtP45133sHPP/+svLGYMWbdONl/gpY3Qmr6Wb16tdBhMjPB54v+kpOTIRKJkJOTg3v37kEkEmH58uVCh2UWunfvjsOHD6s9Q8OSeXp64uzZswgICLDI9oGm1YXM6Yp+c8899xyGDBnCN+oyxgAAtq1XsV7mNp+ZmTc+X/S3cOFCjSudMMb0M3v2bEyfPh3FxcVmtboYY8z0+Mo+Y4wx1s6MHz8e9vb2OHDggNChMMYExsk+Y4wx1s5IJBJERUXpvAoUY6z94WSfMcYYa4diY2Pxf//3fygsLBQ6FMaYgDjZZ4wxxtqhUaNGwdHREV999ZXQoTDGBNTqDbqKB8IwxtoPxUOr+P1tfBcuXADAY81Mz9HREa+//jr279+P2bNnCx0OY0wgfGWfMcYYa6diY2Px3Xff4cGDB0KHwhgTSKtX9vnmHsban7S0NMTHx/P72wQUV/R5rFlLIpHI6H2MHj0aDg4OOHToEN5++22j98cYMz98ZZ8xxhhrpxwdHfHaa6/xP5uMWTFO9hljjLF2LCYmBt999x0qKyuFDoUxJgBO9hljjLF2LDw8HA0NDThz5ozQoTDGBMDJPmOMMdaOde3aFQEBATh58qTQoTDGBGCWyb6zszNEIpHGH0dHR8hkMnz00Ud4/PixoHEeOnRIJbba2ton1i8pKVGpHxQUpPE1LeuJRCIMGDDAWLthUsnJycp96tatm9DhMGb2fvnlF4wdOxYVFRX8GfL/O3r0KHr37g1b21bXmNBJQ0MDdu3ahZdeeglSqRRubm4IDg7Gtm3b8OjRI5W6S5YsQWpqqkH7N6awsDBO9hmzUmaZ7FdVVeGHH34AAERHR4OIQESoqKjA8ePHAQALFizAokWLhAwTv/vd70BEiI6OblN9d3d3EBEyMzMBANnZ2UhMTNRaLyMjA1KpFESErKwsg8YulIULF4KIIJPJ1LZVVVWhV69eiIqKEiAy842FWa/s7GwMGDAAERER6Nixo9V/huTl5WHs2LFYunQpiouLDd7+W2+9hRkzZiA8PBzXrl3DrVu3EB8fj3nz5mH8+PEqdWfOnImlS5dixYoVBo/DGMLCwnD58mXI5XKhQ2GMmZhZJvvauLi44NVXX8X27dsBACkpKaivr9e7PWdnZwwdOtRQ4enE3t4eUqkUKSkp+OKLLwSJwdwQERobG9HY2GiS/p50/E0dCxP2/WgO/bdUUVGBMWPGYPz48Zg7d67admv8DFmxYgWGDBmCS5cuwcXFxaBt5+fn4/PPP0dQUBA2bNiArl128dbWAAAgAElEQVS7QiqVYvHixRg5ciQOHz6s/CcLAPz9/XHw4EGsX78eaWlpBo3FGIYPHw5bW1ucOnVK6FAYYyZmUcm+Qp8+fQAAv/32G8rLywWORj8ODg7Yu3cvbGxsMGvWLOTm5godkuBcXFyQl5eHo0ePCh2KWcXCrNOmTZtQVFSElStXatxujZ8hu3btwpIlSww+fQcA7t69CwB47rnn1Lb17dsXAHDnzh2VcplMhtjYWCxYsAANDQ0Gj8mQXFxcEBwcjG+//VboUBhjJmaRyf6NGzcAAF26dIG7u7vA0egvMjISy5cvR2VlJeLi4lqd888Ysw5EhJ07d2LQoEHw9vbWWs/aPkMkEonR2u7bty/EYjGuX7+utu369esQiUQIDAxU2zZu3DgUFBTgyJEjRovNUHjePmPWyaKS/aqqKpw5cwazZ8+Go6OjcjqPQkNDA1JTUzFy5Eh4enpCIpEgMDAQW7ZsUZmOobhJtLq6GufOnVPewNbyalFpaSnmz58Pf39/2Nvbo1u3bggPD8fu3btRU1OjFl9RURHi4+PRqVMnSKVSREVFIS8v74n7tGrVKkRERODy5cuYN29em8aheVx2dnZwc3PDqFGjVL6ebXnz8I0bNzBhwgRIpVJl2c6dO1Xq/PLLL4iPj4eLiwukUinefPNN/Prrr7h9+zbGjBkDFxcXeHl5YebMmWrrNbd17LV50s3OnTp10nrDto2NDQoKCnSKobXj39qN1/qM/+3bt3U+N8xRW/Z93bp1yv1uPi3m+PHjyvLm/6S3djxa3tSdmZmJsLAwuLi4wNHREaGhoTh37pzR+hdCTk4OiouLNd7b0pKpPkPaeg7L5XIkJCSge/fusLOzQ5cuXRATE4Ps7Oy2D4AAPDw8kJycjJycHCxbtgxyuRxlZWXYtGkTvvnmG6xcuRK9e/dWe13//v0BAF9//bWpQ9bZiBEjcOvWLdy/f1/oUBhjpkRapKam0hM2G90PP/xAADT+9OnThw4cOKD2mvT0dAJAGzZsoLKyMpLL5bR161aysbGhhQsXqtV3cnKiV155RWP/hYWF5OfnR56enpSenk4VFRVUVFREa9euJQC0efNmZd3o6GgCQNHR0XT+/HmqqqqikydPUseOHWngwIFqbWdmZpKrq6vyd7lcTr6+vgSAPv/8c2V5RkYGSaVSjXF5eHhQeno6lZeX040bNygmJoZEIhHt2LFDpb4itmHDhtGpU6eourqaLly4QB06dCC5XK5SJyYmhrKysqiqqoo+++wzAkCjRo2i6Oho+uGHH6iyspK2b99OACgpKempxl4mk5GPj49auSKWmpoaZZmrqytVVlaq1FuzZo2yP31jeNLx1xaLvuPf/Nw4ceIESSQSjeeGqejz/tZ137WNb3BwsNp5/aT6CjKZjJycnGjw4MHKsczMzKR+/fqRnZ0dnT592qj9h4aGUufOnSkjI0NrHU1iY2MpNjZWp9fs2bNH7fxuTojPkLacw/fv36dnn32WPDw86MiRI1RZWUk//fQTDRs2jBwcHOj8+fM6jcOT+Pj4UIcOHQzWnkJaWhp169ZN+ffG3d2ddu3apbV+eXk5AaCQkBCd+wJAqampTxOuTsrLy0kkEtG//vUvk/XJGBNcmtkn+9HR0cqy+vp6ys/Pp1WrVpFIJKKYmBh69OiRcnt6ejoNHz5cra0pU6aQWCym8vJylfIn/XGfNm2a1g/i1157TWOyn56erlJv0qRJBECZVCu0/ENN1PRHWSwWk5OTE127dk1Z1vIPtSKuL774QqW8traWvL29SSKRUFFRkVpsR48e1bifzescOXJEpTwgIIAA0HfffadS7ufnR3369FEp03XsnybZT01NJZFIRNOmTXuqGPRJ9vUd/5bnRmxsrMZzw1T0eX/ruu/GSPYB0A8//KBSfvnyZQJAMpmsTe3p2/+wYcPIzc1N54RVn2R/06ZNBIA+/vhjjduF+Axpyzk8depUAkB79+5VqVtYWEj29vYUHBzcxhFonaGT/cbGRpo5cyaJxWL66KOPqKioiORyOaWkpJBEIqH4+Hiqr6/X+FqRSEQ9e/bUuU9TJ/tERD179qTVq1ebtE/GmKDSLGoaj62tLfz8/LB69WpMmjQJ//znP7F161bl9qioKI0rDchkMtTX1+PKlStt7uvgwYMAgFGjRqltO3bsmMbl7gYOHKjyu4+PDwC06SvTl19+GcnJyaiurkZcXJzGaULN4xo9erRKub29PcLCwlBTU6Px6+SXXnqp1RharsOtmCvcstzHx0dtnww59i09fPgQzs7OAICLFy9i6tSpePXVV5GSkmKyGBT0Hf+W54avry+Atp0b5kLffTckJycn5bQJhcDAQHh7eyMnJweFhYVG6/v06dMoKyvD4MGDjdaHgmLqmFgsbvNrjP0Z0pZz+NChQ7CxsVFbstbT0xMBAQG4dOmSctqdudmzZw927NiB2bNnIykpCR4eHnB3d8fbb7+tXFN/27ZtGl9ra2urdbzNzYsvvqhc2poxZh0sKtlv7tVXXwUAlZuNysvLsXLlSgQGBsLNzU0511SxHv9vv/3Wprbr6upQXl4OBwcHnZZ3c3V1VfndxqZpeNu6fGNCQgLi4+Px008/aVxqr7W4PDw8ADTdO9CSk5NTq/137NhRLf4OHTrA0dFRpbxDhw5q+2SosX+SO3fuIDo6Gr6+vvjnP/8JOzs7k8bwNOPf8txQxG4pS3s+zb4bUqdOnTSWd+3aFQDw4MEDo/ZvKg4ODgCg89LCxvwMae0cVrTd2NgIV1dXtftrvv/+ewDAzZs3ddonU1E8wyU8PFxtW1hYGICmCz2aNDQ0GPXmYUN68cUXlceCMWYdLDbZJyIAqgncmDFjsHbtWsycORO5ublobGwEEWHz5s0qr1EQiUQa27a3t4erqytqa2vVbkQ1tp07d6JPnz749NNPsWfPHp3iUjxkxtPT0ySxNqfr2OuqsrISUVFRqK+vx+HDh9G5c+enjkHb8dfGnMff2PTZdxsbG7WnjgJN39Ro0pbjUVpaqvFcUiT5iqTfWP2bipeXFwDotbSwUJ8h9vb26NSpE2xtbVFfX698GGLLn9DQUJ3bNoXq6upW61RVVamVVVRUgIiUx8zcvfjii7h7965RHkrGGDNPFpvsnzlzBsB/v1p+/Pgxzp07B09PTyQkJKBLly7KP97avl51dHRUSQb69OmDTz75BEDTcmoANK6zHhQUhKSkJMPtTDPOzs44cOAAnJyc8Je//EVtuyKulsu81dXV4eTJk5BIJIiMjDRKbNroM/a6tj9x4kRcv34dBw4cUFkRIzY2FocOHTL48dfGHMffVHTddy8vL9y7d0+lblFRkdpa5QptOR61tbUqDzYCgB9//BH379+HTCZTSbiM0b+pvPDCCwCg15QXIT9DYmJi0NDQoLI6ksL777+PZ555xmzXox80aBAAaFyaUrE2/csvv6y2TXGOKY6ZuXvxxRcBwOxXR2KMGY5FJfsNDQ24ffs2Vq9ejX379sHHxwfz588H0DS1ZPjw4SgqKsIHH3yAkpIS1NTU4NSpU2pLdCq8+OKLyM3Nxd27d5GRkYH8/HyEhIQAADZu3Ag/Pz8kJSXhyJEjqKysREFBAebMmYPCwkKjJfsAEBAQoDYfXUERV2JiIg4fPozKykrk5uZi0qRJKCwsxJYtW5RfxZuKPmOvi6SkJBw9ehSffPIJhg8fbrAYnnT8tTHH8TcVXfc9IiIC9+/fx7Zt21BVVYW8vDy8++67Klffm2vL8XB1dcWyZcuQkZGB6upqZGVlYcqUKbCzs8OWLVtU6hq6/xEjRkAqleLChQv6DmGbyWQydO3aFTk5OXq9XqjPkI0bN8Lf3x/Tp0/HsWPHUF5ejrKyMqSkpGDNmjVITk5WWdJ0ypQpEIlE+Pnnn/XqrzW6tD9nzhz06tULf/3rX7F161Y8ePAApaWl2LVrF/70pz/Bx8cHCxcuVHudImmOiIgwePzGIJVK8eyzz+LSpUtCh8IYMxVtt+4KuRqPk5OTxiU3RSIRubi4kEwmo8WLF1NxcbHK6+RyOc2aNYt8fX1JLBaTh4cHTZs2jZYsWaJso/lqENevX6eQkBBycnIiX19ftZUvSkpKKDExkfz8/EgsFpOXlxdNnDiRcnNziahppYuWMb733ntERGrlo0ePJrlcrlb+pNUp3nnnHY2rhrSMy9XVlSIjI+nkyZPKOppia3k8tcWfmZmpVr5x40Y6c+aMWvmqVat0GvsPPvhAY58HDx5UK588eTJlZWVpXYJV8XPw4EGDHn9tsTzt+D/p3DA1fd/fbdl3hYcPH9KMGTPIy8uLJBIJDR06lDIzMyk4OFi573/4wx+U9Vt7PypWcLp69SpFRkaSi4sLSSQSGjZsGJ09e9bo/YeEhJhsNR4iomXLlpGtrS3du3dPWSb0Z0hbzuHS0lKaP38+9ejRg8RiMXXp0oUiIiLoxIkTanGMGDGCnJ2dqaGhoU1jolheV9NPyyVD9Wm/rKyMFi1aRH379iV7e3uys7Mjf39/mjt3rsoKRc3FxcWRj4+PyspwbQUBVuMhalphaeLEiSbvlzEmiDQRkebJ1GlpaYiPj3/qudaMMfNjie/v/v37o6SkxGxXc9EmLi4OALB//36dXldeXo6AgABERUUZ5Bsyc/Pw4UN4e3tj8uTJ2LFjh8W1DzQ9/CwoKAj79u3DxIkTdX69SCRCamoqJkyYYITotFuwYAHOnj2LixcvmrRfxpgg9lvUNB7GGLMWrq6uSE9Px5dffomPP/5Y6HAMioiQkJCAjh07Yu3atRbXPgDk5+cjJiYGS5cu1SvRF5Kfnx/y8/OFDoMxZiKc7DPGmJkKCgpCVlYWjh07hoqKCqHDMZji4mLk5+fj5MmTRlm9ytjtA0BKSgrWr1+P9evXG6V9Y+rRowdKSkra1TnFGNOOk33GmFlLTk6GSCRCTk4O7t27B5FIhOXLlwsdlsl0794dhw8fVnsOhiXz9PTE2bNnERAQYJHtA02rC1naFX2FHj16AABf3WfMSnCyzxgzawsXLlRbq33dunVCh8WYxfLz84ONjQ0n+4xZCU72GWOMMStib28Pb29vTvYZsxKc7DPGGGNWpkePHpzsM2YlONlnjDHGrMwzzzyDu3fvCh0GY8wEONlnjDHGrIy7uztKS0uFDoMxZgKc7DPGGGNWRiqVoqSkROgwGGMmYNtaBZFIZIo4GGMC4Pe36fBYM3PCV/YZsx5ak/0hQ4YgNTXVlLEwxp7C5s2bAQBJSUkCR8IYa6shQ4YI0q9UKsXDhw/x+PFjdOjQQZAYGGOmoTXZ79atGyZMmGDKWBhjT+HLL78EAH7fMsZa5e7ujsbGRvz6669wd3cXOhzGmBHxnH3GGGPMykilUgDgqTyMWQFO9hljjDErw8k+Y9aDk33GGGPMyjg7OwMAfvvtN4EjYYwZGyf7jDHGmJURi8UAgEePHgkcCWPM2DjZZ4wxxqyMItmvr68XOBLGmLFxss8YY4xZGVvbpsX4ONlnrP3jZJ8xxhizMiKRCLa2tpzsM2YFONlnjDHGrJBYLOY5+4xZAU72GWOMMSskFov5yj5jVoCTfcYYY8wKicViNDQ0CB0GY8zIONlnjDHGrFBdXR3s7OyEDoMxZmSc7DPGGGNWqK6uDvb29kKHwRgzMk72GWOMMStDRKivr+dknzErwMk+Y4wxZmXq6uoAgJN9xqwAJ/uMMcaYlVEk+w4ODgJHwhgzNk72GWOMMSvDV/YZsx6c7DPGGGNWhpN9xqwHJ/uMMcaYlamqqgIAODk5CRwJY8zYONlnjDHGrExJSQkAwN3dXeBIGGPGxsk+Y4wxZmXKysoAAG5ubgJHwhgzNk72GWOMMStTVlYGZ2dnnrPPmBXgZJ8xxhizMqWlpejcubPQYTDGTICTfcYYY8zK/Prrr5zsM2YlONlnjDHGrExZWRkn+4xZCU72GWOMMStTUlLCyT5jVoKTfcYYY8zKFBQUoFu3bkKHwRgzAU72GWOMMStz7949+Pj4CB0GY8wEONlnjDHGrEhjYyOKioo42WfMSnCyzxhjjFmRBw8eoL6+npN9xqwEJ/uMMcaYFSkoKAAAnrPPmJXgZJ8xxhizIvfu3YNIJIK3t7fQoTDGTICTfcYYY8yK3L9/H507d4aDg4PQoTDGTMBW6AAYY7orKSlBRUWFSll1dTUAID8/X6W8Y8eOcHd3N1lsjDHzlp+fDz8/P6HDYIyZCCf7jFmg9PR0TJ8+XeO2o0ePqvz+6aef4q233jJFWIwxC3Dr1i34+/sLHQZjzER4Gg9jFigmJgZisbjVemKxGDExMSaIiDFmKfLy8jjZZ8yKcLLPmAVydXXF66+/Dltb7V/O2draYvTo0XB1dTVhZIwxc0ZEyM/P52SfMSvCyT5jFmrKlCl4/Pix1u2NjY2YMmWKCSNijJm7oqIiVFdXc7LPmBXhZJ8xCxUVFQVHR0et2x0cHPD666+bMCLGmLnLy8sDAE72GbMinOwzZqEcHBy0zt0Xi8WIjY2FRCIRIDLGmLnKy8uDg4MDr7HPmBXhZJ8xCzZp0iTU19erldfX12PSpEkCRMQYM2c3btxAz549YWPDf/4Zsxb8bmfMgoWHh6Nz585q5Z06dUJYWJgAETHGzNm1a9fw3HPPCR0GY8yEONlnzILZ2trijTfeUJnKIxaLMWXKlCeu1MMYs06c7DNmfTjZZ8zCvfHGGypTeerr6/HGG28IGBFjzBzV19cjPz+fk33GrAwn+4xZuCFDhsDHx0f5u5eXFwYPHixgRIwxc3Tz5k3U19fj+eefFzoUxpgJcbLPmIUTiUR48803YWdnBzs7O0ydOhUikUjosBhjZubatWuwsbFBr169hA6FMWZCnOwz1g688cYbePToER49esSr8DDGNLp27Rr8/Px4SV7GrEy7v4MvLi5O6BAYMwlnZ2cAwJo1awSOhDHT2L9/v9AhWJSrV6/yfH3GrFC7v7L/5ZdfoqCgQOgwWDty4cIFXLhwQegw1Dz77LPo3r270GEYFL9/mSYFBQX48ssvhQ7D4uTk5EAmkwkdBmPMxNr9lX0ASEpKwoQJE4QOg7UTim+LzO2qYn5+PgCgR48eAkdiOCKRiN+/TE1aWhri4+OFDsOi1NXVITc3F/369RM6FMaYiVlFss+YNWhPST5jzLCuXLmChoYGTvYZs0LtfhoPY4wxZu1ycnIgkUh4JR7GrBAn+4wxxlg79+OPPyIgIAAdOnQQOhTGmIlxss8YY4y1c5cvX+YpPIxZKU72mUU6evQoevfuDVtb7bed/Prrr9i+fTtGjBiBzp07K7/Cnjx5MnJyckwYLRPCL7/8grFjx6KiogIlJSUQiUTKn6CgINTW1qq9pmU9kUiEAQMGCBC9cbTlfaOPhoYG7Nq1Cy+99BKkUinc3NwQHByMbdu24dGjRyp1lyxZgtTUVIP2z1r3448/crLPmJXiZN8MVFVVoVevXoiKihI6FADmF09zeXl5GDt2LJYuXYri4uIn1l20aBHmzZuH6OhoXL16FaWlpfj000+RnZ2N4OBgHDp0yERRa2fOY23JsrOzMWDAAERERKBjx45wd3cHESEzM1O5PTExUe11inoZGRmQSqUgImRlZZk6fIPT5X2jj7feegszZsxAeHg4rl27hlu3biE+Ph7z5s3D+PHjVerOnDkTS5cuxYoVKwweB9Ps/v37ePDgASf7jFkpTvZNxNnZGUOHDtW4jYjQ2NiIxsZGq42nrVasWIEhQ4bg0qVLcHFxabX+9OnT8e6778LT0xOOjo4ICQnBvn378PjxYyxevNgEET+ZOY91S086Z8xJRUUFxowZg/Hjx2Pu3Llq2+3t7SGVSpGSkoIvvvhCgAhNT9f3jS7y8/Px+eefIygoCBs2bEDXrl0hlUqxePFijBw5EocPH1b+kwUA/v7+OHjwINavX4+0tDSDxsI0u3z5MgAgMDBQ4EgYY0LgpTfNgIuLC/Ly8oQOQ8nc4mlu165dbX7U+86dOzWWy2QySCQS5OXlgYggEokMGaJOzHmsLdWmTZtQVFSElStXatzu4OCAvXv34vXXX8esWbMQHByM3r17mzhK09LlfaOru3fvAoDGJ7P27dsXJ06cwJ07dzBw4EBluUwmQ2xsLBYsWICYmBiDTytiqi5fvgwfHx+4u7sLHQpjTAB8ZZ9ZFEMkLNXV1aipqcELL7wgaKLPDI+IsHPnTgwaNAje3t5a60VGRmL58uWorKxEXFycxvn77YmxEn2gKaEXi8W4fv262rbr169DJBJpvKI8btw4FBQU4MiRI0aLjTXh+fqMWTdO9ltoaGhAamoqRo4cCU9PT0gkEgQGBmLLli0ap1qUlpZi/vz58Pf3h729Pbp164bw8HDs3r0bNTU1SE5OhkgkQnV1Nc6dO6e86U9xJevQoUMqNwPW1tbi4cOHajcJrlu3Thlf8/LY2Fid4tYnHm37a2dnBzc3N4waNQqnTp1S1mnZxu3btxEfH49OnTpBKpUiKipK0KvZiiffvvfee4LFAGgfa13HT3FMRSIRunXrhszMTISFhcHFxQWOjo4IDQ3FuXPnlPXXrVunrN98Ws7x48eV5c2vALZ2zpiTnJwcFBcXQyaTtVp31apViIiIwOXLlzFv3rw2tW/M818ulyMhIQHdu3eHnZ0dunTpgpiYGGRnZ7d9AATg4eGB5ORk5OTkYNmyZZDL5SgrK8OmTZvwzTffYOXKlRq/Oenfvz8A4OuvvzZ1yFYnJyeHk33GrBm1cwAoNTW1zfXT09MJAG3YsIHKyspILpfT1q1bycbGhhYuXKhSt7CwkPz8/MjT05PS09OpoqKCioqKaO3atQSANm/erKzr5OREr7zyitZ+o6OjCQDV1NQoy1577TWysbGhW7duqdUfPHgw7du3T6+49Y1Hsb8eHh6Unp5O5eXldOPGDYqJiSGRSEQ7duzQ2EZ0dDSdP3+eqqqq6MSJEySRSGjgwIFa+24rHx8f6tChg06vKSoqIg8PD5oxY4be/cbGxlJsbKzer29J01g3L2/r+MlkMnJycqLBgwcr62dmZlK/fv3Izs6OTp8+rVJf2zkQHBxMUqlUrby1cyY0NJQ6d+5MGRkZbd31Vun6/t2zZ4/yfaBJZmYmubq6Kn+Xy+Xk6+tLAOjzzz9XlmdkZKiNgTHP//v379Ozzz5LHh4edOTIEaqsrKSffvqJhg0bRg4ODnT+/Pk2j0Fr9HnftEVaWhp169aNABAAcnd3p127dmmtX15eTgAoJCRE575SU1PJCv58GURdXR3Z2dnR3r17hQ6FMSaMtHb/aalPsj98+HC18ilTppBYLKby8nJl2bRp07S2/9prrz11sv/NN98QAJozZ45K3bNnz9IzzzxD9fX1esWtbzyK/f3iiy9U6tbW1pK3tzdJJBIqKipSayM9PV2lfmxsLAEguVyutf+20DVpKSkpof79+1N8fDw1NDTo3a+pk/22jp9MJiMA9MMPP6iUX758mQCQTCZTKTd0sj9s2DByc3MzaGKq6/t306ZNBIA+/vhjjdtbJvtETYm9WCwmJycnunbtmrKs5RgY8/yfOnUqAVBLyAoLC8ne3p6Cg4PbOAKtM3Sy39jYSDNnziSxWEwfffQRFRUVkVwup5SUFJJIJBQfH6/yWdWcSCSinj176twnJ/ttl5OTQwDo8uXLQofCGBNGGk/jaSEqKkrlK3kFmUyG+vp6XLlyRVl28OBBAMCoUaPU6h87dkzj0n66CAsLQ1BQEHbv3o3S0lJl+QcffIDExESVaRS6xK0vxf6OHj1apdze3h5hYWGoqanR+JV88xvzAMDX1xdA03JwplJdXY3IyEg8//zz2Lt3r0U9RVKX8XNyclJOj1AIDAyEt7c3cnJyUFhYaLQ4T58+jbKyMgwePNhofbRGMRVKLBa3+TUvv/wykpOTUV1djbi4ONTU1GisZ8zz/9ChQ7CxsVFbgtXT0xMBAQG4dOkSCgoK2rxPprRnzx7s2LEDs2fPRlJSEjw8PODu7o63335buab+tm3bNL7W1tZW63gzw8jJyYG9vT369u0rdCiMMYFwst9CeXk5Vq5cicDAQLi5uSnn3S5atAgA8NtvvwEA6urqUF5eDgcHB4MvZdfcggUL8Ntvv+Evf/kLACA3Nxf/93//hxkzZugVt75a218PDw8AQFFRkdo2V1dXld/t7OwAwGTLTTY0NCAuLg4+Pj74+9//blGJPqDb+HXq1EljG127dgUAPHjwwMDRmRcHBwcAQH19vU6vS0hIQHx8PH766SeNy3Ua8/xXtN3Y2AhXV1e1+3W+//57AMDNmzd12idTOX78OAAgPDxcbVtYWBiAposfmjQ0NBj15mHWlOw///zzOv0DzBhrXzjZb2HMmDFYu3YtZs6cidzcXDQ2NoKIsHnzZgBNq30ATVfzXF1dUVtbi8rKylbb1XfVl/j4ePj6+mLbtm2oq6vDhx9+iJkzZ6olHG2NW994WttfxYN6PD09dWrXFGbNmoW6ujqkpaWpfBvSs2dPXLhwQcDIDK+0tFTtWAP/TfIVST8A2NjYqD3dFAAePnyosW1LWLnIy8sLQNM/v7rauXMn+vTpg08//RR79uxR2WbM89/e3h6dOnWCra0t6uvrQUQaf0JDQ3Vu2xSqq6tbrVNVVaVWVlFRASJSHjNmHDk5OW26YZ0x1n5xst/M48ePce7cOXh6eiIhIQFdunRRJjiavmoeN24cgKZH0LcUFBSEpKQk5e+Ojo4qiVWfPn3wySeftBqTra0t3n33XTx48AAffvgh/vGPfyAhIeGp4tY3HsX+tlwqr66uDidPnoREIkFkZGSr+2RKq1evxpUrV/DVV1/B3t5e6HCMrra2VuUBRkDTsnv379+HTCZTSay8vLxw7949lbpFRUW4c+eOxrb1PYdN6YUXXgAAvaa8OIuB0xEAACAASURBVDs748CBA3ByclJ+k9acMc//mJgYNDQ0qKyapPD+++/jmWeeQUNDg15tG9ugQYMAACdPnlTb9u233wJomirVkuLcUxwzZhyXL1/mZJ8xK8fJfjMdOnTA8OHDUVRUhA8++AAlJSWoqanBqVOnsH37drX6GzduhJ+fH5KSknDkyBFUVlaioKAAc+bMQWFhoUqy/+KLLyI3Nxd3795FRkYG8vPzERIS0qa43n77bbi6umL58uX43e9+Bx8fn6eKW994FPubmJiIw4cPo7KyErm5uZg0aRIKCwuxZcsW5XQGc7B792788Y9/xMWLF+Hi4qI2PaI9PszK1dUVy5YtQ0ZGBqqrq5GVlYUpU6bAzs4OW7ZsUakbERGB+/fvY9u2baiqqkJeXh7effddlav/zbV2zowYMQJSqVTQb0tkMhm6du2KnJwcvV4fEBCAlJQUjduMef5v3LgR/v7+mD59Oo4dO4by8nKUlZUhJSUFa9asQXJyssq3UlOmTIFIJMLPP/+sV3+t0aX9OXPmoFevXvjrX/+KrVu34sGDBygtLcWuXbvwpz/9CT4+Pli4cKHa6xRLikZERBg8ftaksLAQDx484GSfMWsnzI3BpgMdV/OQy+U0a9Ys8vX1JbFYTB4eHjRt2jRasmSJckm55itjlJSUUGJiIvn5+ZFYLCYvLy+aOHEi5ebmqrR7/fp1CgkJIScnJ/L19VWuFnLw4EFlu4qfyZMnq8W1aNEiAkA5OTkGiVvfeFrur6urK0VGRtLJkyeVdTIyMtTaeO+995THo/nP6NGj23xsiP67xKimn5ZLH44ePVprXcWPPstEGmo1Hm1jre/4yWQy8vHxoatXr1JkZCS5uLiQRCKhYcOG0dmzZ9X6f/jwIc2YMYO8vLxIIpHQ0KFDKTMzk4KDg5Xt/+EPf1DW13bOKISEhAi+Gg8R0bJly8jW1pbu3bunLJPL5Wpj96QVbt555x2NKxIZ8/wvLS2l+fPnU48ePUgsFlOXLl0oIiKCTpw4oRbHiBEjyNnZuc2rSunyvtGn/bKyMlq0aBH17duX7O3tyc7Ojvz9/Wnu3LkqKxQ1FxcXRz4+PvTo0aM29dEcr8bTNseOHTPIymeMMYuWJiLSMMG3HRGJREhNTcWECROEDoW1E3FxcQD++3Auc9G/f3+UlJSY7aot+tDn/VteXo6AgABERUVp/WbLkj18+BDe3t6YPHkyduzYYXHtA03zyIOCgrBv3z5MnDhR59enpaUhPj5e4/0p7L/ef/99bNu2DXfv3hU6FMaYcPbzNB7GWLvi6uqK9PR0fPnll/j444+FDsegiAgJCQno2LEj1q5da3HtA0B+fj5iYmKwdOlSvRJ91nZ8cy5jDOA5+4yxdigoKAhZWVk4duwYKioqhA7HYIqLi5Gfn4+TJ08aZeUrY7cPACkpKVi/fj3Wr19vlPbZf3GyzxgDONlnZqDljbOaflavXi10mGYrOTkZIpEIOTk5uHfvHkQiEZYvXy50WILr3r07Dh8+jI4dOwodisF4enri7NmzCAgIsMj2gaapJXxF3/jq6uqQm5vLyT5jDLatV2HMuHje7dNZuHChxtVOGGPW66effkJDQwMn+4wxvrLPGGOMtTc5OTmQSCTo2bOn0KEwxgTGyT5jjDHWzuTk5CAwMBAdOnQQOhTGmMA42WeMMcbaGb45lzGmwMk+Y4wx1s5cuXIFgYGBQofBGDMDnOwzxhhj7UhxcTFKSkqMuqoSY8xyWMUTdBljjLU/7fzPl96+/fZbhIWFobCw0GjPS2CMWYz9VrH0ZmJiIgYPHix0GKyd2Lx5MwAgKSlJ4Ejav/j4eH7/MjUZGRn43//9X6HDMFtXr16Fm5sbJ/qMMQBWss7+4MGDMWHCBKHDYO3E/v37AYDPKROIj4/n9y/TiJN97a5cuYIXXnhB6DAYY2aC5+wzxhhj7cjVq1fx/PPPCx0GY8xMcLLPGGOMtSOc7DPGmuNknzHGGGsn5HI5SkpK8NxzzwkdCmPMTHCyzxhjjLUTN2/eBAD06dNH4EgYY+aCk30ju3nzJkQiEV5++WWhQ2HMqvzyyy8YO3YsKioqUFJSApFIpPwJCgpCbW2t2mta1hOJRBgwYIAA0RvH0aNH0bt3b9jaGnZthoaGBuzatQsvvfQSpFIp3NzcEBwcjG3btuHRo0cqdZcsWYLU1FSD9s/+6+bNm7C3t0e3bt2EDoUxZiY42Teyv/3tbwCAixcv4urVq0btq6qqCr169UJUVJRR+2krc4uHWY/s7GwMGDAAERER6NixI9zd3UFEyMzMVG5PTExUe52iXkZGBqRSKYgIWVlZpg7f4PLy8jB27FgsXboUxcXFBm//rbfewowZMxAeHo5r167h1q1biI+Px7x58zB+/HiVujNnzsTSpUuxYsUKg8fBmpL9nj17wsaG/7wzxprwp4ERNTY24rPPPkNQUBCA/yb+T8PZ2RlDhw7VuI2I0NjYiMbGxqfux1LjsVZPOg7W0H9zFRUVGDNmDMaPH4+5c+eqbbe3t4dUKkVKSgq++OILASI0vRUrVmDIkCG4dOkSXFxcDNp2fn4+Pv/8cwQFBWHDhg3o2rUrpFIpFi9ejJEjR+Lw4cPKf7IAwN/fHwcPHsT69euRlpZm0FhYU7Lfq1cvocNgjJkRTvaN6N///jdsbW3xySefAAD27NmDhoYGo/Xn4uKCvLw8HD161Gh96MLc4mHWYdOmTSgqKsLKlSs1bndwcMDevXthY2ODWbNmITc318QRmt6uXbuwZMkSg0/fAYC7d+8CgMYbQvv27QsAuHPnjkq5TCZDbGwsFixYYNTPRGt08+ZN9O7dW+gwGGNmhJN9I/r0008xbdo0DBgwAP369UNxcTEnvowZERFh586dGDRoELy9vbXWi4yMxPLly1FZWYm4uDiN8/fbE4lEYrS2+/btC7FYjOvXr6ttu379OkQiEQIDA9W2jRs3DgUFBThy5IjRYrNGt27d4iv7jDEVnOwbSVlZGdLT0zF16lQATXNagaZ/ADQpLS3F/Pnz4e/vr7y5Kjw8HLt370ZNTQ2Sk5MhEolQXV2Nc+fOKW8eVFypO3TokMpNhbW1tXj48KHazYbr1q0D0HRDXfPy2NhYZXlqaipGjhwJT09PSCQSBAYGYsuWLSrTcfSJR9v+2tnZwc3NDaNGjcKpU6eUdVq2cfv2bcTHx6NTp06QSqWIiopCXl6eIQ6XSbRln9etW6fc3+bTYo4fP64sd3d3V5a3dhwU20UiEbp164bMzEyEhYXBxcUFjo6OCA0Nxblz54zWv6nl5OSguLgYMpms1bqrVq1CREQELl++jHnz5rWpfWOet3K5HAkJCejevTvs7OzQpUsXxMTEIDs7u+0DIAAPDw8kJycjJycHy5Ytg1wuR1lZGTZt2oRvvvkGK1eu1HiluX///gCAr7/+2tQht1tFRUWorKxEz549hQ6FMWZOqJ0DQKmpqSbv989//jOFhoYqf5fL5SQWi8nW1paKi4tV6hYWFpKfnx95enpSeno6VVRUUFFREa1du5YA0ObNm5V1nZyc6JVXXtHab3R0NAGgmpoaZdlrr71GNjY2dOvWLbX6gwcPpn379il/T09PJwC0YcMGKisrI7lcTlu3biUbGxtauHCh2uv1iUexvx4eHpSenk7l5eV048YNiomJIZFIRDt27NDYRnR0NJ0/f56qqqroxIkTJJFIaODAgVr7NpbY2FiKjY3V6TW67rO2cQ0ODiapVKpW3tpxkMlk5OTkRIMHD1aOYWZmJvXr14/s7Ozo9OnTRu0/NDSUOnfuTBkZGVrraKLr+3fPnj3K81eTzMxMcnV1Vf4ul8vJ9/9j797joqrz/4G/BhguIowIyt00FS3UkUVTVNYQE81bIojmJdsky1U0L6VWtlvalqKtZeX9Z14D7aEt3nbNck1ARVPMEk3NK6KACYg3kPfvD5f5OsygDM7MGfD1fDz4g3M+53Ne58wZeDN8zucEBgoAWb16tW55enq6wXFa8rrNzs6WJ554Qry9vWXLli1SVFQkR48ela5du4qzs7OkpaVV+Rw8jL+/v9jb25utv3LJyckSEBAgAASAeHl5ybJlyyptX1BQIAAkPDzc5H0lJSXJY/Dry2R79+4VAPL7778rHYWIbEdyrf9pqVSx/6c//UlWrlypt2zAgAECQBITE/WWjxw5stKcPXv2fORi/7vvvhMAMmbMGL22e/bskUaNGklJSYluWUpKijz77LMG/Q4bNkzUarUUFBToLa9OnvLjXbdunV7bW7duiZ+fn7i4uEhOTo5BHykpKXrtY2JiBIDk5uZWun9LqE6xb+oxW6LYByCHDh3SW37kyBEBIFqttkr9VXf/Xbt2FQ8PD5OLVlPfv7NnzxYA8vnnnxtdX7HYF7lX2KvVanF1dZVjx47pllU8Tktety+99JIAkDVr1ui1vXTpkjg5OUloaGgVz8DDmbvYLysrk/j4eFGr1TJv3jzJycmR3NxcWbRokbi4uEhcXJzez5j7qVQqadasmcn7ZLFvXFJSktjb28udO3eUjkJEtiOZw3gs4MiRI/jtt98MppwrH8pTcVaejRs3AgB69epl0Ne2bduMThFoisjISISEhGDFihXIz8/XLZ8zZw4mTJigN+SiT58+ekMSymm1WpSUlOCXX355pCzA/x1v79699ZY7OTkhMjISN2/eNPqv/fbt2+t9HxgYCADIzs5+5EyWVt1jNidXV1fd0IlyrVu3hp+fHzIzM3Hp0iWL7XvXrl24evUqwsLCLLYPALrhYmq1usrbdOzYEYmJiSguLkZsbCxu3rxptJ0lr9tNmzbBzs7OYJpaHx8fBAcH4+DBg7hw4UKVj8maVq1ahSVLluC1117DG2+8AW9vb3h5eeHVV1/Vzam/YMECo9s6ODhUer7JdOfOnYOfn59J1z8R1X4s9i1g+fLlKCoqgqurq97Y3X79+gEAfvnlF+zfvx8AcPv2bRQUFMDZ2dnsU+Ldb9KkSbhx4wa++OILAMCJEyewe/dujBo1Sq9dQUEBZsyYgdatW8PDw0OXfcqUKQCAGzduPFKOhx2vt7c3gHtjTyvSaDR63zs6OgKAzU/t+SjHbE716tUzurxhw4YAgCtXrlh0/9bg7OwMACgpKTFpu4SEBMTFxeHo0aNGp+u05HVb3ndZWRk0Go3BfTY//fQTgP97Mqqt2b59OwCge/fuBusiIyMB3PvQwpjS0lKL3jz8uDl37hwaNWqkdAwisjEs9s2spKQEa9asQWpqKkTE4Kv8U/ryT/ednJyg0Whw69YtFBUVPbR/lUpVrVxxcXEIDAzEggULcPv2bcydOxfx8fEGhUvfvn3xwQcfID4+HidOnEBZWRlEBJ988gmAe7OdPEqehx1v+QN/fHx8TOrXllXnmO3s7AyePAoA165dM7qPqrwO+fn5Bq8f8H9FfnnRb6n9W4Ovry+Ae3+0mmrp0qVo0aIFli9fjlWrVumts+R16+TkhHr16sHBwQElJSVGf26ICCIiIkzu2xqKi4sf2ub69esGywoLCyEiuteMHh2LfSIyhsW+maWkpMDLywudOnUyuv6VV14BAKxbt0737+sBAwYAgNFpOUNCQvDGG2/ovq9Tp45eEdaiRQvdPP4P4uDggPHjx+PKlSuYO3cuvv76ayQkJOi1uXv3LlJTU+Hj44OEhAQ0aNBAV8RV9q/26uQpP96KU+7dvn0bO3fuhIuLC6Kioh56TDWJqcfs6+uLixcv6rXNyckxmK+8XFVeh1u3buk93AgAfv75Z2RnZ0Or1eoVXZbYvzW0atUKAKo15KVu3br45ptv4OrqqvsP2P0sed1GR0ejtLRUb2akch9//DEaNWpks/PRd+jQAQCwc+dOg3Xff/89gHtDpSoqv77KXzN6dCz2icgoBW4UsCpY+QbdPn36yOzZsx/Y5plnntGb/aN8lg9fX1/ZvHmzFBYWyvnz5+X1118Xb29vOXv2rG7bnj17ikajkXPnzklaWpo4ODjIr7/+qltv7IbYcoWFhaLRaESlUsmIESOMZuvWrZsAkNmzZ0tubq7cuHFDvv/+e2nUqJEAkB07dui1r06eirOaFBYW6s1qsnjxYr19VHZMb731ltGbTi3NHLPxPOyYx44dKwDks88+k6KiIjl58qQMGjRI/P39jd4g+7DXQavVikajkcjIyCrNxmPu/VtrNp6ysjJp2LBhpTcLG7tBt6LVq1cLgIfOxmPO6/by5cvStGlTefLJJ2Xr1q1y7do1yc/Pl4ULF0qdOnUMzsHQoUMFgJw+ffqh56Siqtyga0r/f/zxhzRv3lzUarXMnz9fLl++LHl5ebJ06VKpU6eO+Pv7S3Z2tsF2a9euFQCyceNGk4+BN+ga5+npKQsWLFA6BhHZFs7GYy7nz5/XTTkHQDp06GDQ5vfff9drA0C8vb1FRCQvL08mTJggTZo0EbVaLb6+vjJ48GA5ceKEXh9ZWVkSHh4urq6uEhgYqJt1ZOPGjQZ9Dx061CDDlClTBIBkZmYaPY7c3FwZPXq0BAYGilqtFm9vbxk5cqRMnTpV1+/9M4NUN0/F49VoNBIVFSU7d+7UtUlPTzfo4+233xYRMVjeu3fvKr1O5lCdYl+kasdc7tq1azJq1Cjx9fUVFxcX6dKli2RkZEhoaKjumN966y1d+8peh3JarVb8/f3l119/laioKHFzcxMXFxfp2rWr7Nmzx+L7Dw8Pt8psPCIi06dPFwcHB7l48aJuWW5ursE186AZbl5//XWjf9RY8rrNz8+XiRMnypNPPilqtVoaNGggPXr0MPgDW+TeH+V169aV0tLSKp2T8il1jX1VnDK0Ov1fvXpVpkyZIi1bthQnJydxdHSUpk2bytixY/VmKLpfbGys+Pv7V2vmGBb7hm7dulXtP56IqFZLVokYGcRbi6hUKiQlJWHQoEFKR6FaIjY2FgCwfv16hZNUXdu2bZGXl2ezM7pUpjrv34KCAgQHB6NPnz5YuHChBdMp49q1a/Dz88PQoUOxZMmSGtc/cO/hZyEhIVi7di0GDx5s8vbJycmIi4szeg/K4+rChQsIDAxEampqpcNIieixtJ5j9omoVtFoNEhJScGGDRvw+eefKx3HrEQECQkJcHd3xwcffFDj+geA06dPIzo6GtOmTatWoU/G5ebmAtC/0Z6ICOANukRUC4WEhODAgQPYtm0bCgsLlY5jNpcvX8bp06exc+dOi8xYZen+AWDRokWYNWsWZs2aZZH+H1flxX6DBg0UTkJEtsbh4U2IqKZKTEzUPSMBuDcs5u2338bMmTMVTGUdjRs3xubNm5WOYVY+Pj7Ys2dPje0fuDe7EJlfbm4uHB0d4e7urnQUIrIxLPaJarHJkydj8uTJSscgIgu7cuWK3nTJRETlOIyHiIiohsvNzeUQHiIyisU+ERFRDXf16lV4enoqHYOIbBCLfSIiohquqKgIbm5uSscgIhvEYp+IiKiGKy4uhqurq9IxiMgGPRY36KanpysdgWqR8gdTJScnK5zk8cD3LwFASUkJ1Go1AF4Txly/fh3e3t5KxyAiG/RYPEGXiIhqn1r+68skYWFhCAsLw7x585SOQkS2ZX2t/2SfvwzocTFo0CAA/I8D1U4//vgj/vnPf+Lbb7+Fj48PxowZg7y8PHh5eSkdzSZwGA8RVYZj9omIyOaFh4fjm2++wblz5zBq1CjMmzcPAQEBGDFiBDIzM5WOpzgW+0RUGRb7RERUY/j5+eFvf/sbLly4gMWLF+PQoUNo27YtunTpgpSUFKXjKYbFPhFVhsU+ERHVOM7OzhgxYgSOHDmCbdu2Qa1Wo1+/fujYsSM2bdqEsrIypSNa1Z07d+Do6Kh0DCKyQSz2iYioxlKpVOjZsyd++OEH/PTTTwgKCkJMTAyCgoIwf/583Lp1S+mIRESKYrFPRES1QkhICFauXIkjR46gS5cumDJlCoKCgvDFF1/gzp07SsezKDs7u8fuvxlEVDUs9omIqFZ5+umnsWLFCpw8eRIvvPACJk2ahObNm2PJkiUoKSlROp5FqFQqzj5HREax2CciolqpUaNG+PTTT3H27FkMGTIECQkJaN68ORYvXozS0lKl45kVi30iqgyLfSIiqtUaNmyIjz76CFlZWXjuuecwduxYPP3001i1alWtGfrCYp+IKsNin4iIHgtPPPEElixZgt9++w0RERH4y1/+glatWmHz5s1KR3tkLPaJqDIs9omI6LHyxBNPYNGiRThy5AiaN2+Ovn37omfPnjhy5IjS0aqNN+gSUWVY7BMR0WPpqaeewrfffou0tDQUFRUhJCQEgwYNwtmzZ5WOZjIXFxfcuHFD6RhEZINY7BMR0WMtLCwMe/bswapVq7B//34EBwdjxowZNap4dnd3R1FRkdIxiMgGsdgnIqLHnkqlwosvvoisrCzMmDEDn376KZ5++mls3LhR6WhV4u7ujsLCQqVjEJENYrFPRET0P87OznjzzTeRlZWFP//5zxg4cCAiIyNx7NgxpaM9ED/ZJ6LKsNgnIiKqwMfHBytXrsR///tf5OXlQavVYvz48bh+/brS0YziJ/tEVBkW+0RERJUIDw/HwYMHMWfOHHz11Vdo3bo1UlJSlI5lgMU+EVWGxT4REdEDODg4YPz48cjKykKXLl3Qr18/vPjii8jLy1M6mg6LfSKqDIt9IiKiKvDx8cGqVauwbds2pKamIigoCIsXL1Y6FgBAo9Hg2rVrSscgIhvEYp+IiMgEPXv2xM8//4zhw4fj9ddfR58+fXDx4kVFM/n6+iI7O1vRDERkm1jsExERmcjd3R3z58/Hjh07cOzYMbRu3RpfffWVYnkCAwNx48YNXL16VbEMRGSbWOwTERFVU7du3XD06FG8+uqreOWVVxAdHY38/Hyr5wgICAAAnD9/3ur7JiLbxmKfiIjoEbi4uOCjjz7Cjh07kJGRgeDgYGzfvt2qGQIDAwEAFy5csOp+icj2sdgnIiIyg4iICBw9ehTdunXD888/j/Hjx+POnTtW2berqyvq1avHYp+IDLDYJyIiMhONRoO1a9dixYoVWL58OTp16oQTJ05YZd+BgYEs9onIAIt9IiIiMxsxYgQOHjwIAPjTn/6E1atXW3yfAQEBLPaJyACLfSIiIgsICgpCWloaRo8ejREjRmDcuHEWHdbTqFEjnDlzxmL9E1HNxGKfiIjIQhwdHTF37lxs2rQJq1atQufOnXH27FmL7Ktly5Y4duyYRfomopqLxT4REZGF9evXD/v27cPNmzfRvn177Ny50+z7CA4OxuXLl5Gbm2v2vomo5mKxT0REZAUtWrRAeno6nn32WfTs2RMff/wxRMRs/QcHBwMAfvnlF7P1SUQ1H4t9IiIiK3Fzc0NSUhJmzZqFt99+Gy+99JLZxvH7+fmhfv36LPaJSA+LfSIiIitSqVR48803sWXLFnz77bfo0aMHrl69apa+g4ODWewTkR4W+0RERAqIiopCamoqzpw5gw4dOuD48eOP3GdwcDCOHj1qhnREVFuw2CciIlJIq1atsHfvXnh4eKBTp07YvXv3I/XHYp+IKnJQOgARmW737t1IT0/XW5aVlQUA+Pjjj/WWh4WF4c9//rPVshGRaXx8fPDDDz9g6NCh6NGjB5YtW4ahQ4dWq6/WrVvjjz/+wIULFxAQEGDmpERUE7HYJ6qBSkpKMHXqVKjVatjZ6f+D7r333gMAlJWVoaSkBN99950SEYnIBK6urvjmm28wefJkDB8+HPn5+UhISDC5n3bt2sHBwQFpaWkYNGiQBZISUU3DYp+oBoqIiECDBg0eOp+2l5cXnn32WeuEIqJHYm9vj08++QR+fn6YMGECioqK8Pbbb5vUh6urK9q2bYvU1FQW+0QEgGP2iWokOzs7DB06FI6OjpW2cXR0xLBhw2Bvb2/FZET0qKZMmYIvv/wSM2bMwFtvvWXyXPxdunTBnj17LJSOiGoaFvtENdSQIUMeOD/3nTt3MGTIECsmIiJzGT16NFavXo1PPvkEY8aMQVlZWZW37dy5MzIzM1FQUGDBhERUU7DYJ6qhnnnmGTzxxBOVrg8MDET79u2tmIiIzGnIkCH45ptvsGLFCgwfPhylpaVV2i48PBx3797Fvn37LJyQiGoCFvtENdjw4cOhVqsNlqvVaowcORIqlUqBVERkLn379sW3336LTZs24cUXX8Tdu3cfuo23tzeaNWuG1NRUKyQkIlvHYp+oBhs6dChKSkoMlpeUlCAuLk6BRERkbj169MDWrVuxZcsWvPLKK1Ua0sNx+0RUjsU+UQ3WsmVLBAcHG3yC//TTTyM4OFihVERkbl27dsW3336LpKQkxMfHP/Sm3c6dO2Pfvn0PvK+HiB4PLPaJargRI0bozbijVqvx0ksvKZiIiCyhe/fu+Prrr7Fy5UpMnDjxgW0jIyNRXFyMH3/80UrpiMhWsdgnquGGDBmiN463tLSU82sT1VL9+/fHunXr8Nlnn+H999+vtF2TJk3QqlUrpKSkWDEdEdkiFvtENVxgYCA6dOgAOzs72NnZoUOHDmjcuLHSsYjIQmJiYvDll1/ib3/7G+bNm1dpuz59+rDYJyIW+0S1wfDhw6FSqWBnZ4fhw4crHYeILCw+Ph5z587F5MmTkZSUZLRN3759cfr0aRw7dszK6YjIlrDYJ6oFyoftiAhiYmIUTkNE1vDGG29g/PjxGDlyJNLS0gzWd+zYEQ0bNuSn+0SPOZWY+hxuMorzmRMR3cNfK9ZTVlaGgQMH4scff0R6ejqaN2+ut/6ll17C77//jt27dyuUkIgUtp7FvpmoVCpMmDABYWFhSkd5bH3yyScA7n3a9TjavXs3VCoVwsPDLb6vuLg4Xu9kID09Hf/85z9Z7FvZzZs38eyzz6KwsBBpaWnw8PDQrVu/fj2GDBmCnJwceHl5KZiSiBTCbRwm9wAAIABJREFUYt9cVCoVkpKSOAuKgmJjYwHc++X2OCoqKgIAuLm5WXxfvN7JmOTkZMTFxbHYV8ClS5fQsWNHNG7cGP/5z3/g5OQEACgsLESDBg2wbNkyDBs2TOGURKSA9RyzT1RLuLm5WaXQJyLb4+vri3/96184dOgQxowZo1vu7u6OZ599Ft98842C6YhISSz2iYiIagGtVot169ZhxYoVWLx4sW750KFDsXXrVuTl5SmYjoiUwmKfiIiolujduzemT5+OhIQEHDx4EAAwcOBAODo6VjpFJxHVbiz2iYiIapG///3v6Nq1KwYOHIj8/Hy4uroiOjoaK1euVDoaESmAxX4NkJGRgZEjR6JJkyZwcXFB/fr10apVKwwcOBBffvklTp06pXREA3/88QcWLlyIbt26oX79+nBxcUHz5s0xdOhQZGZmKh2PFHT27Fn069cPhYWFyMvLg0ql0n2FhITg1q1bBttUbKdSqdCuXTsF0lvG1q1bERQUBAcHB7P2W1paimXLluGZZ56Bp6cnPDw8EBoaigULFuDOnTt6badOncpPfmsJOzs7rFq1CqWlpRg5ciREBCNGjMD+/fuRlZWldDwisjIW+zasrKwMU6ZMQadOndCwYUNs27YN165dw7Fjx/DJJ5+gsLAQY8aMQbNmzVBaWqp0XD1TpkzBuHHj0L9/f/z666/Iz8/H8uXLcfjwYYSGhmLTpk1KR3yg69evo3nz5ujTp4/SUWqVw4cPo127dujRowfc3d3h5eUFEUFGRoZu/YQJEwy2K2+Xnp4OT09PiAgOHDhg7fhmd+rUKfTr1w/Tpk3D5cuXzd7/yy+/jFGjRqF79+44duwYTp48ibi4OIwbNw4DBw7UaxsfH49p06bh3XffNXsOsr6GDRtiw4YN+M9//oPExEREREQgMDCQn+4TPY6EzAKAJCUlmbXP6dOnCwBZvHix0fWlpaXSq1cvASAlJSVm3fejeuWVV+TVV181WH748GEBIM2bNzf7PmNiYiQmJsYsfRUWFsqTTz4pvXr1Mkt/luTq6iqdO3e26j6rc70XFBRIQECAjB492mBdRkaGODk5iaenpwCQtWvXGu0jPT1dPD09q5XZFg0ZMkT+8Y9/SElJifj7+4u9vb3Z+j516pQAkJCQEIN1zz33nACQ/fv36y0/fPiwqFSqav8sS0pKEv5asS1z5swRBwcH+fHHH2XatGni7+8vpaWlSsciIutJ5if7NiorKwsfffQRQkNDER8fb7SNvb29zX4Kt3TpUixatMhguVarhYuLC06dOmXTc3G7ubnh1KlT2Lp1q9JRao3Zs2cjJycHM2bMMLre2dkZa9asgZ2dHUaPHo0TJ05YOaH1LVu2DFOnTjX78B0AOH/+PADgqaeeMljXsmVLAMC5c+f0lmu1WsTExGDSpEk2999Cqp5JkyahV69eGDFiBAYNGoSLFy9i165dSsciIitisW+jFi9ejLKyMt2DoioTFhYGEbFIsWAJxcXFuHnzJlq1agWVSqV0HLISEcHSpUvRoUMH+Pn5VdouKioK77zzDoqKihAbG2t0/H5t4uLiYrG+W7ZsCbVabXSMdlZWFlQqFVq3bm2wbsCAAbhw4QK2bNlisWxkPSqVCsuWLUNxcTEWLlyIDh064KuvvlI6FhFZEYt9G7V7924AQJs2bUzeNj8/HxMnTkTTpk3h6OgIDw8P9OrVCz/88IOuzaZNm/Rudjxz5gzi4uJQr149eHp6ok+fProbf69du2Zwc+TMmTMB3LsB8P7lMTExD8xW/nTbt99+2+TjspaK56a84DTlnAFAYmKirm1AQAAyMjIQGRkJNzc31KlTBxEREUhNTdW1nzlzpq59ly5ddMu3b9+uW37/4+7L+y8uLkZqaqqujS3+4ZeZmYnLly9Dq9U+tO17772HHj164MiRIxg3blyV+jf3NX+/3NxcJCQkoHHjxnB0dESDBg0QHR2Nw4cPV/0EKMDb2xuJiYnIzMzE9OnTkZubi6tXr2L27Nn47rvvMGPGDAQFBRls17ZtWwDAv//9b2tHJgtp0KABFi1ahMWLF6NDhw5Yv349rly5onQsIrIWhccR1Row85h9X19fASD79u0zabtLly5JkyZNxNvbW1JSUqSgoECOHz8u0dHRolKpZMmSJXrt+/fvLwCkf//+kpaWJtevX5cdO3aIi4uLtG/fXq9tz549xc7OTk6ePGmw37CwsErHWZfLyckRb29vGTVqlEnHVFXmHLMv8n/n5ubNm0aXV+WciYhotVpxdXWVsLAwXfuMjAxp06aNODo6yq5du/TaVzYGPzQ01Oh49YeN2Y+IiJD69etLenp6VQ/9oUy93letWiUA5MMPPzS6PiMjQzQaje773NxcCQwMFACyevVq3XJjY/Ytec1nZ2fLE088Id7e3rJlyxYpKiqSo0ePSteuXcXZ2VnS0tKqfA4extxj9sslJydLQECAABAA4uXlJcuWLau0fUFBgQCQ8PBwk/fFMfu2bfDgweLr6yuenp7y97//Xek4RGQdyfypbCaWKvYr3kD3MCNHjhQAsm7dOr3lt27dEj8/P3FxcZGcnBzd8vLCJyUlRa99TEyMAJDc3Fzdsu+++04AyJgxY/Ta7tmzRxo1avTAm4Tz8vKkbdu2EhcXZ7Gbw6xd7FflnIncK/YByKFDh/SWHzlyRACIVqvVW27uYr9r167i4eFh1sLU1Ot99uzZAkA+//xzo+srFvsi9wp7tVotrq6ucuzYMd2yiufAktf8Sy+9JABkzZo1em0vXbokTk5OEhoaWsUz8HDmLvbLysokPj5e1Gq1zJs3T3JyciQ3N1cWLVokLi4uEhcXV+l7VqVSSbNmzUzeJ4t92/bHH3+Iv7+/tG7dWho2bGjws42IaiXeoGurysc1m/p4840bNwK49xTF+zk5OSEyMhI3b940+u/59u3b630fGBgIAMjOztYti4yMREhICFasWIH8/Hzd8jlz5mDChAmVDh8pLi5GVFQUnn76aaxZswb29vYmHZOtqso5K+fq6qobHlGudevW8PPzQ2ZmJi5dumSxnLt27cLVq1cRFhZmsX08TPlQKLVaXeVtOnbsiMTERBQXFyM2NhY3b9402s6S1/ymTZtgZ2dnMAWrj48PgoODcfDgQVy4cKHKx2RNq1atwpIlS/Daa6/hjTfegLe3N7y8vPDqq6/q5tRfsGCB0W0dHBwqPd9Uc9WrVw8LFy7Ezz//jKtXr/K5CkSPCRb7Nqpr164AgCNHjlR5m9u3b6OgoADOzs5wc3MzWO/t7Q0AyMnJMVin0Wj0vnd0dARwb67/+02aNAk3btzAF198AQA4ceIEdu/ejVGjRhnNVFpaitjYWPj7++Orr76qNYU+UPVzBtz7JWtMw4YNAaDWj591dnYGAJSUlJi0XUJCAuLi4nD06FGMHTvWYL0lr/nyvsvKyqDRaAzuW/npp58AAL/99ptJx2Qt27dvBwB0797dYF1kZCQAYNu2bUa3LS0ttejNw6ScPn36YOTIkVCr1ZgzZ45Nz4pGRObBYt9GjR49Gg4ODtiwYcMD27355puws7NDVlYWnJycoNFocOvWLRQVFRm0LX9oj4+PT7VzxcXFITAwEAsWLMDt27cxd+5cxMfHGy20yo/j9u3bSE5O1vvkv1mzZti7d2+1c9Q0+fn5Rn+plhf55UU/cO/plxWfbgrcu1HamJowq5Gvry8AoKCgwORtly5dihYtWmD58uVYtWqV3jpLXvNOTk6oV68eHBwcUFJSAhEx+hUREWFy39ZQXFz80DbXr183WFZYWAgR0b1mVPvMnTsXTk5O+OWXX/Df//5X6ThEZGEs9m1UUFAQ3nvvPRw4cADLly832ub48eNYtGgRBg0apJs3e8CAAQBgMG3e7du3sXPnTri4uCAqKqrauRwcHDB+/HhcuXIFc+fOxddff42EhASjbf/2t7/hl19+wbfffgsnJ6dq77M2uHXrlu4pseV+/vlnZGdnQ6vV6hVWvr6+uHjxol7bnJwcgznRy9WpU0fvj4MWLVpg8eLFZkz/6Fq1agUA1RryUrduXXzzzTdwdXXV/Ufpfpa85qOjo1FaWqo3a1K5jz/+GI0aNbLZ+eg7dOgAANi5c6fBuu+//x7AvaFSFZVfe+WvGdU+9evXx4cffgiVSoUPPvhA6ThEZGEs9m3YO++8g6lTp+K1117D1KlTceLECdy5cwcXL17EsmXLEBERgTZt2mDZsmW6bf7xj3+gSZMmmDBhAjZv3oyioiKcOHECL774Ii5duoT58+frhjZU16uvvgqNRoN33nkHL7zwAvz9/Q3arFixAn//+9+xb98+uLm5GQyBMDbFYW2m0Wgwffp0pKeno7i4GAcOHMCwYcPg6OiI+fPn67Xt0aMHsrOzsWDBAly/fh2nTp3C+PHj9T79v9+f/vQnnDhxAufPn0d6ejpOnz6N8PBw3fpu3brB09NT0f+kaLVaNGzYEJmZmdXaPjg42OhD2gDLXvP/+Mc/0LRpU/zlL3/Btm3bUFBQgKtXr2LRokV4//33kZiYqPcfq2HDhkGlUuH333+v1v4expT+x4wZg+bNm+PLL7/Ep59+iitXriA/Px/Lli3DRx99BH9/f0yePNlgu/IpRXv06GH2/GQ7Ro8ejaZNm+KHH3547H4eEz12FLs3uJaBmWfjud/+/ftl+PDhEhgYKGq1Wtzc3KRjx44yf/58uX37tkH7vLw8mTBhgjRp0kTUarVoNBqJioqSnTt36tqkp6frpuIr/3r77bd1x3L/V+/evQ32MWXKFAEgmZmZRjP37t3boJ+KX+acClLEfLPxbNy40SDr0KFDq33OtFqt+Pv7y6+//ipRUVHi5uYmLi4u0rVrV9mzZ4/B/q9duyajRo0SX19fcXFxkS5dukhGRoaEhobq+n/rrbd07bOysiQ8PFxcXV0lMDDQYMab8PBwxWfjERGZPn26ODg4yMWLF3XLcnNzDc7dg2a4ef31143OSGTJaz4/P18mTpwoTz75pKjVamnQoIH06NFDduzYYZCjW7duUrdu3SrPOJWSklLp+6PilKHV6f/q1asyZcoUadmypTg5OYmjo6M0bdpUxo4dqzdD0f1iY2PF399f7ty5U6V93I+z8dQse/fuFQDSq1cvpaMQkeUkq0R4d445qFQqJCUlYdCgQUpHeWyVP224/MFdtqJt27bIy8uz2VlbqqM613tBQQGCg4PRp08fLFy40ILplHHt2jX4+flh6NChWLJkSY3rH7j38LOQkBCsXbsWgwcPNnn75ORkxMXF8abPGqRjx47Yv38/jh8/jubNmysdh4jMbz2H8RCRVWg0GqSkpGDDhg34/PPPlY5jViKChIQEuLu7W2QMtKX7B4DTp08jOjoa06ZNq1ahTzXThg0boFKpMGTIEKWjEJGFsNgnIqsJCQnBgQMHsG3bNhQWFiodx2wuX76M06dPY+fOnY8025VS/QPAokWLMGvWLMyaNcsi/ZNtCggIQHR0NA4ePIh9+/YpHYeILIDFPpGFJCYmQqVSITMzExcvXoRKpcI777yjdCzFNW7cGJs3b4a7u7vSUczGx8cHe/bsQXBwcI3sH7g3uxA/0X88LV++HA4ODnjllVeUjkJEFsBin8hCJk+ebDAn+8yZM5WORUSkx83NDYMHD+a8+0S1FIt9IiKix9ySJUugVqsRHx+vdBQiMjMW+0RERI85Z2dnvPzyy/jtt9+wbds2peMQkRmx2CciIiJ89tlncHJywpgxY5SOQkRmxGKfiIiI4OjoiNdeew1nzpxBVlaW0nGIyEwcHt6Eqio9PV3pCI+18odWJScnK5zk8cDrnSriNVHzJSYmYtiwYWjZsqXSUYjITPgEXTNRqVRKRyAisgn8tUJEZDPW85N9M0pKSsKgQYOUjvHYio2NBQCsX79e4SS1n0ql4vVOBpKTkxEXF6d0DHpEu3btgr29PcLDw5WOQkRmwGKfiIiIdObPn4+LFy9i//79SkchIjPgDbpERESkM23aNGRkZODHH39UOgoRmQGLfSIiItJ55pln0LlzZ8yZM0fpKERkBiz2iYiISM+UKVOwefNm/PLLL0pHIaJHxGKfiIiI9PTr1w9PPfUU5s2bp3QUInpELPZtQEZGBkaOHIkmTZrAxcUF9evXR6tWrTBw4EB8+eWXOHXqlNIRH2jr1q0ICgqCg0Pl93vXrVsXKpVK78vOzg4eHh7QarUYM2YMDh48aMXUpJSzZ8+iX79+KCwsRF5ent41ERISglu3bhlsU7GdSqVCu3btFEhvGVV5D1VHaWkpli1bhmeeeQaenp7w8PBAaGgoFixYgDt37ui1nTp1KpKSksy6f6q5VCoV3njjDaxZswY5OTlKxyGiR8BiX0FlZWWYMmUKOnXqhIYNG2Lbtm24du0ajh07hk8++QSFhYUYM2YMmjVrhtLSUqXjGjh16hT69euHadOm4fLlyw9se/36dRw6dAgA0L9/f4gISkpKkJWVhffffx9ZWVlo164dXn75Zdy4ccMa8UkBhw8fRrt27dCjRw+4u7vDy8sLIoKMjAzd+gkTJhhsV94uPT0dnp6eEBEcOHDA2vHNzpT3UHW8/PLLGDVqFLp3745jx47h5MmTiIuLw7hx4zBw4EC9tvHx8Zg2bRreffdds+egmmnYsGFwc3PD4sWLlY5CRI+Axb6C3n33XSQmJuKLL77A7Nmz0bJlSzg5OcHb2xvPPfcctm/fjl69eikds1LvvvsuOnXqhIMHD8LNzc3k7e3t7eHt7Y3+/fvj+++/x5tvvokVK1ZgyJAhteahPHXr1kWXLl0e2/3fr7CwEH379sXAgQMxduxYg/VOTk7w9PTEokWLsG7dOgUSWt+jvoce5PTp01i9ejVCQkLw4YcfomHDhvD09MSbb76J5557Dps3b9b9kQUATZs2xcaNGzFr1iw+hZoAAM7OznjllVewcOFClJSUKB2HiKqJxb5CsrKy8NFHHyE0NBTx8fFG29jb29v0p2zLli3D1KlTzTb04KOPPkKHDh3wr3/9C19//bVZ+iTbMXv2bOTk5GDGjBlG1zs7O2PNmjWws7PD6NGjceLECSsntD5zv4fud/78eQDAU089ZbCuZcuWAIBz587pLddqtYiJicGkSZNs8r+JZH1jxozBlStX8O233yodhYiqicW+QhYvXoyysjLdU18rExYWBhGxSDHwqFxcXMzan0ql0n3i+8UXX5i1b1KWiGDp0qXo0KED/Pz8Km0XFRWFd955B0VFRYiNjTU6fr82Mfd76H4tW7aEWq1GVlaWwbqsrCyoVCq0bt3aYN2AAQNw4cIFbNmyxWLZqOZo1KgRnn/+eXz++edKRyGiamKxr5Ddu3cDANq0aWPytvn5+Zg4cSKaNm0KR0dHeHh4oFevXvjhhx90bTZt2qR3M+OZM2cQFxeHevXqwdPTE3369NHd+Hvt2jWDmx9nzpwJ4N4Nfvcvj4mJMcPRV658yMnevXut9m/jqpzPmTNn6s7B/cNitm/frlvu5eWlW56YmAiVSoXi4mKkpqbq2pT/0Va+XqVSISAgABkZGYiMjISbmxvq1KmDiIgIpKamWmz/1paZmYnLly9Dq9U+tO17772HHj164MiRIxg3blyV+jf3e+J+ubm5SEhIQOPGjeHo6IgGDRogOjoahw8frvoJUIC3tzcSExORmZmJ6dOnIzc3F1evXsXs2bPx3XffYcaMGQgKCjLYrm3btgCAf//739aOTDbqr3/9K3bt2oWff/5Z6ShEVB1CZgFAkpKSqtze19dXAMi+fftM2s+lS5ekSZMm4u3tLSkpKVJQUCDHjx+X6OhoUalUsmTJEr32/fv3FwDSv39/SUtLk+vXr8uOHTvExcVF2rdvr9e2Z8+eYmdnJydPnjTYb1hYmKxdu7bSXP7+/mJvb//A7IcOHdJlqczNmzcFgACQ7OzsB/ZXUUxMjMTExJi0jann09XVVTp37mzQT2hoqHh6ehosr6x9Oa1WK66urhIWFqZ7fTIyMqRNmzbi6Ogou3btsuj+IyIipH79+pKenl5pG2NMvd5XrVolAOTDDz80uj4jI0M0Go3u+9zcXAkMDBQAsnr1at3y9PR0g+O05HsiOztbnnjiCfH29pYtW7ZIUVGRHD16VLp27SrOzs6SlpZW5XPwMFV5D1VHcnKyBAQE6N5XXl5esmzZskrbFxQUCAAJDw83eV9JSUnCXyu1T1lZmTRv3lzGjBmjdBQiMl0yP9lXmEqlMqn9tGnT8Pvvv+Of//wn+vTpA3d3dwQFBWHt2rXw9fVFQkKC0Vk9Ro0ahbCwMLi6uqJ79+7o3bs3MjIykJeXp2szefJklJWVGcyrnJqaiosXLz50yJE5iJVvzK3u+TSn4uJifPHFF7rXp127dli9ejXu3LmD8ePHW3TfZWVlEBGLn/dLly4BADQaTZXae3l5ITk5GWq1GqNHjzY6FKWcJd8T06ZNw9mzZzFv3jw8//zzqFu3LoKDg/H1119DRKr8nwcliAheffVVDB06FBMnTkROTg5yc3Mxa9YsjB07FoMHDzY6Lt/d3R0qlUr3mhGpVCrEx8dj7dq1uHnzptJxiMhELPYVUj5u+f7Coio2btwIAOjdu7fecicnJ0RGRuLmzZtG//3evn17ve8DAwMBANnZ2bplkZGRCAkJwYoVK5Cfn69bPmfOHEyYMMEqQ0DKCwy1Wq03LMVSqns+zcnV1VU3dKJc69at4efnh8zMTIsWXbt27cLVq1cRFhZmsX0A0I29V6vVVd6mY8eOSExMRHFxMWJjYystMiz5nti0aRPs7OzQp08fvbY+Pj4IDg7GwYMHceHChSofkzWtWrUKS5YswWuvvYY33ngD3t7e8PLywquvvqqbU3/BggVGt3VwcGBRR3pGjBiB4uJi3qhLVAOx2FdI165dAQBHjhyp8ja3b99GQUEBnJ2djU7T5+3tDQBGH4BS8RNVR0dHAPc+2b3fpEmTcOPGDd0NsidOnMDu3bsxatSoKud8FHv27AFw78ZkUwrD6niU82lO9erVM7q8YcOGAIArV65YdP/W4OzsDAAm34eRkJCAuLg4HD161Oh0nZZ8T5T3XVZWBo1GY3Bfy08//QQA+O2330w6JmvZvn07AKB79+4G6yIjIwEA27ZtM7ptaWmpRW8epprH29sbUVFR+H//7/8pHYWITMRiXyGjR4+Gg4MDNmzY8MB2b775Juzs7JCVlQUnJydoNBrcunULRUVFBm3Lhyr4+PhUO1dcXBwCAwOxYMEC3L59G3PnzkV8fLzZ5wA3pqysTDfjw1//+leL768659POzs7gyaPAvZucjanKMK38/Hyjw2jKi/zyot9S+7cGX19fAEBBQYHJ2y5duhQtWrTA8uXLsWrVKr11lnxPODk5oV69enBwcEBJSYluuFPFr4iICJP7tobi4uKHtrl+/brBssLCQoiI7jUjKjdy5Eh89913BlO2EpFtY7GvkKCgILz33ns4cOAAli9fbrTN8ePHsWjRIgwaNEg3L/aAAQMAwGBavNu3b2Pnzp1wcXFBVFRUtXM5ODhg/PjxuHLlCubOnYuvv/4aCQkJ1e7PFNOmTcP+/fsxYMAAq9wfAJh+Pn19fXHx4kW9tjk5OZX+8qtTp45ecd6iRQuDp1HeunVL7+FGAPDzzz8jOzsbWq1Wr+iyxP6toVWrVgBQrSEvdevWxTfffANXV1ejU7Ja8j0RHR2N0tJSvZmRyn388cdo1KiRzc5H36FDBwDAzp07DdZ9//33AO4Nlaqo/Poqf82IyvXt2xeenp4Gf3QTkY1T5L7gWggmzk5SburUqaJWq+Wtt96S48ePy+3bt+XChQuydOlS8fX1lS5dusj169d17SvOPFJYWKg388jixYv1+i+feeTmzZt6y9966y0BIIcOHTLIVFhYKBqNRlQqlYwYMaJKx1Gd2Xju3r0rly9flk2bNkm3bt0EgPzlL3+RGzduVGmfFZljNp6Hnc+xY8cKAPnss8+kqKhITp48KYMGDRJ/f3+js+H07NlTNBqNnDt3TtLS0sTBwUF+/fVX3XqtVisajUYiIyOrNBuPufdvrdl4ysrKpGHDhpXODFRxNh5jVq9eLQAeOhuPOd8Tly9flqZNm8qTTz4pW7dulWvXrkl+fr4sXLhQ6tSpY3AOhg4dKgDk9OnTDz0nFVXlPWRK/3/88Yc0b95c1Gq1zJ8/Xy5fvix5eXmydOlSqVOnjvj7+xud8Wrt2rUCQDZu3GjyMXA2ntovISFBmjVrpnQMIqq6ZP5UNpPqFvsiIvv375fhw4dLYGCgqNVqcXNzk44dO8r8+fPl9u3bBu3z8vJkwoQJ0qRJE1Gr1aLRaCQqKkp27typa5Oenq6baq/86+2339Zlvf+rd+/eBvuYMmWKAJDMzMxKc6ekpBj0Vf5lbMrKim1UKpVoNBpp3bq1vP7663Lw4MFqnb9y1Sn2Rap2Pstdu3ZNRo0aJb6+vuLi4iJdunSRjIwMCQ0N1R3XW2+9pWuflZUl4eHh4urqKoGBgfL555/r9afVasXf319+/fVXiYqKEjc3N3FxcZGuXbvKnj17LL7/8PBw8fDwMHkKyepc79OnTxcHBwe5ePGibllubq7BdREaGlppH6+//rrRP2os+Z7Iz8+XiRMnypNPPilqtVoaNGggPXr0kB07dhjk6Natm9StW1dKS0urdE5MeQ9Vp/+rV6/KlClTpGXLluLk5CSOjo7StGlTGTt2rOTk5BjdJjY2Vvz9/eXOnTtV2sf9WOzXfhkZGQJA9u/fr3QUIqqaZJWIlec6rKVUKhWSkpIwaNAgpaM8tsqH/qxfv17hJFXXtm1b5OXl2eyMLpWpzvVeUFCA4OBg9OnTBwsXLrRgOmVcu3YNfn5+GDp0KJYsWVLj+gfuPfwsJCQEa9euxeDBg03ePjk5GXFxcVboxKCLAAAgAElEQVSfQpesq3nz5njhhRcwZ84cpaMQ0cOt55h9IrIKjUaDlJQUbNiwQXcjdm0hIkhISIC7uzs++OCDGtc/AJw+fRrR0dGYNm1atQp9enzExsYiKSmJf9QR1RAs9onIakJCQnDgwAFs27YNhYWFSscxm8uXL+P06dPYuXPnI82GpVT/ALBo0SLMmjULs2bNskj/VHvExcXh/PnzSE9PVzoKEVUBi30iBSQmJkKlUiEzMxMXL16ESqXCO++8o3Qsq2jcuDE2b94Md3d3paOYjY+PD/bs2YPg4OAa2T9wb3YhfqJPVaHVavHUU08hKSlJ6ShEVAUs9okUMHnyZIP52mfOnKl0LCKiKomNjcWGDRs4lIeoBmCxT0RERCaJjo5GdnY2Dhw4oHQUInoIFvtERERkEq1WqxuSR0S2jcU+ERERmez5559HSkqK0jGI6CFY7BMREZHJ+vbti8OHD9e454QQPW74UC0zUalU6NixIwICApSO8tjau3cvAKBjx44KJ6n9NmzYwOudDFy4cAF79+7lTZuPidu3b6NBgwaYPXs2XnvtNaXjEJFx61nsm0n501uJlPLzzz8DAFq3bq1wEnrc1aSnWNOjGTBgAO7evYt//etfSkchIuNY7BPVFoMGDQIAJCcnK5yEiB4XX3zxBaZOnYr8/Hyo1Wql4xCRofUcs09ERETVEhkZiaKiIhw8eFDpKERUCRb7REREVC0tWrRAQEAAdu7cqXQUIqoEi30iIiKqtm7durHYJ7JhLPaJiIio2iIjI5GamoobN24oHYWIjGCxT0RERNUWERGBO3fuYN++fUpHISIjWOwTERFRtQUGBiIwMBDp6elKRyEiI1jsExER0SMJCwtjsU9ko1jsExER0SMpL/b56B4i28Nin4iIiB5JWFgY8vPz8dtvvykdhYgqYLFPREREjyQkJATOzs4cykNkg1jsExER0SNxdHSEVqvFTz/9pHQUIqqAxT4RERE9srZt2+Lw4cNKxyCiCljsExER0SPTarU4fPgwb9IlsjEs9omIiOiRtW3bFoWFhThz5ozSUYjoPiz2iYiI6JG1adMGdnZ2HMpDZGNY7BMREdEjc3V1RbNmzXDkyBGloxDRfVjsExERkVm0aNGCc+0T2RgW+0RERGQWQUFBOHHihNIxiOg+LPaJiIjILJo3b85in8jGsNgnIiIiswgKCkJBQQEuX76sdBQi+h8W+0RERGQWQUFBAMBP94lsCIt9IiIiMgs/Pz84Ozvj999/VzoKEf0Pi30iIiIyC5VKhYCAAJw/f17pKET0Pyz2iYiIyGwCAwNZ7BPZEBb7REREZDYs9olsC4t9IiIiMhsW+0S2hcU+ERERmY2/vz8uXryodAwi+h8W+0RERGQ2DRo0wB9//IHS0lKloxARWOwTERGRGXl5eUFEcPXqVaWjEBFY7BMREZEZeXl5AQDy8/MVTkJEAIt9IiIiMqPyYj8vL0/hJEQEsNgnIiIiM/L09IRKpeIn+0Q2gsU+ERERmY1arYazszMKCwuVjkJEAByUDkBEplu5ciXmzZuHu3fv6paV/8u8devWumX29vaYOHEiRowYYfWMRPT4cnV1RXFxsdIxiAgs9olqpI4dOyIzM9PoupycHIO2RETWxGKfyHZwGA9RDRQUFAStVguVSlVpG5VKBa1Wi6CgICsmIyIC6tSpw2KfyEaw2CeqoUaMGAF7e/tK1zs4OOCll16yYiIionv4yT6R7WCxT1RDDR48GGVlZZWuLy0txaBBg6yYiIjoHhcXF9y8eVPpGEQEFvtENZafnx86deoEOzvDt7GdnR06d+4Mf39/BZIR0ePOzs4OIqJ0DCICi32iGm348OFGl6tUKs7AQ0SKsbOze+B/HonIeljsE9VgsbGxRsftq1QqREdHK5CIiIjFPpEtYbFPVIN5eHjgueee0yv47e3tERUVBU9PTwWTEdHjzM7OTu85IESkHBb7RDXcsGHD9D5BExEMGzZMwURE9LjjmH0i28Fin6iG69+/P5ycnHTfOzo6om/fvgomIqLH3Z07d6BWq5WOQURgsU9U49WpUwcDBgyAWq2GWq3GgAED4OrqqnQsInqMlZSUwNHRUekYRAQW+0S1wosvvoiSkhKUlJTgxRdfVDoOET3m7ty5w2KfyEY4VLbiwoULSEtLs2YWIqqmu3fvok6dOhARFBYWIjk5WelIRFQFnTp1QkBAgNIxzI7FPpHtqLTYT0tLQ1xcnDWzEJEZDB06VOkIRFRFSUlJtfJJ1xyzT2Q7Ki32y/FueqKa4b///S9UKhX+/Oc/P7RtcnIy4uLi+P62gtjYWADA+vXrFU5CtkalUikdwWKKiopQt25dpWMQEapQ7BNRzRAeHq50BCIiAPeKfXd3d6VjEBFY7BPVGnZ2vN+eiJQnIiz2iWwIqwMiIiIym+LiYty9e5fFPpGNYLFPREREZlNUVAQALPaJbASLfSIiIjKbvLw8AICXl5fCSYgIMGOxn5iYCJVKBZVKZbNzBm/atEmXUaVS4datW0pHqpFqwmtdU2zduhVBQUFwcKj89hkRQWpqKv76178iKCgITk5OaNiwIbp06YLVq1dzRp1a7uzZs+jXrx8KCwuRl5en9zMsJCTE6M+xiu1UKhXatWunQHrLqMr7pjpKS0uxbNkyPPPMM/D09ISHhwdCQ0OxYMEC3LlzR6/t1KlTkZSUZNb91xZXrlwBADRo0EDhJEQEmLHYnzx5MkQEWq3WXF2a3QsvvAARQf/+/ZWOUqM96LW+fv06mjdvjj59+iiQzHazVHTq1Cn069cP06ZNw+XLlx/Y9vjx4+jSpQtOnDiBDRs2oKCgAHv37kWjRo0wfPhwTJkyxUqpjbPl81zTHT58GO3atUOPHj3g7u4OLy8viAgyMjJ06ydMmGCwXXm79PR0eHp6QkRw4MABa8c3O1PeN9Xx8ssvY9SoUejevTuOHTuGkydPIi4uDuPGjcPAgQP12sbHx2PatGl49913zZ6jprty5Qrs7e3h4eGhdBQiQg0bxlO3bl106dJF6Rj0ACKCsrIylJWVWWV/D7omrJ3FFO+++y46deqEgwcPws3N7aHtHRwckJycjDZt2sDZ2RlPPvkkVqxYAU9PTyxYsAC3b9+2QmrjbPk8V1STfoYUFhaib9++GDhwIMaOHWuw3snJCZ6enli0aBHWrVunQELrM/V9Y4rTp09j9erVCAkJwYcffoiGDRvC09MTb775Jp577jls3rxZ90cWADRt2hQbN27ErFmz+MTqCnJzc+Hl5cUZwohsBKfeJLNyc3PDqVOnlI4BwLayVLRs2TK4uLhUqW3Lli1RUlJisNzR0RGBgYE4fPgwbt26BScnJ3PHrBJbPs812ezZs5GTk4MZM2YYXe/s7Iw1a9bg+eefx+jRoxEaGoqgoCArp7QuU943pjp//jwA4KmnnjJY17JlS+zYsQPnzp1D+/btdcu1Wi1iYmIwadIkREdHm31YUU2Vl5fHITxENoR/dhMpwBwFy7Vr1/Dbb78hJCQEGo3GDKnIVogIli5dig4dOsDPz6/SdlFRUXjnnXdQVFSE2NjYWn8fkqUKfeBeQa9Wq5GVlWWwLisrCyqVCq1btzZYN2DAAFy4cAFbtmyxWLaa5vz58/D391c6BhH9j8WK/aysLPTu3RsajQZ16tRBREQEUlNT9dqUlpYiKSkJzz33HHx8fODi4oLWrVtj/vz5ekMCym8ILS4uRmpqqu6Gs4qfouTn52PixIlo2rQpnJycEBAQgO7du2PFihW4efOmQcacnBzExcWhXr168PT0RJ8+fUz+hLLiTb9nzpypUp/3Z3V0dISHhwd69eqFH374odK+jx8/jkGDBsHT01O3bOnSpXptzp49i7i4OLi5ucHT0xPDhw/HH3/8gTNnzqBv375wc3ODr68v4uPjddOjmfp6VPVc3F941KtXz+CGwfIvOzs7XLhwwaQMD7smHnYzdnXOf1VfW0srLCxEamoq+vXrBx8fH6xcudLqGcpVdp5NPXcVb/rOyMhAZGQk3NzcjP78mDlzpq79/cNytm/frlt+/0wgVf0ZYisyMzNx+fLlKt0D9d5776FHjx44cuQIxo0bV6X+LXn95+bmIiEhAY0bN4ajoyMaNGiA6OhoHD58uOonQAHe3t5ITExEZmYmpk+fjtzcXFy9ehWzZ8/Gd999hxkzZhj9z0nbtm0BAP/+97+tHdlm/f7772jSpInSMYionFQiKSlJHrC6UlqtVjQajURERMiePXukqKhIMjIypE2bNuLo6Ci7du3StU1JSREA8uGHH8rVq1clNzdXPv30U7Gzs5PJkycb9O3q6iqdO3c2ut9Lly5JkyZNxMfHR1JSUqSwsFBycnLkgw8+EADyySef6Nr2799fAEj//v0lLS1Nrl+/Ljt37hR3d3dp3769ycdcWZ87duwQFxcXgz7Ls3p7e0tKSooUFBTI8ePHJTo6WlQqlSxZssRo3127dpUffvhBiouLZe/evWJvby+5ubl6baKjo+XAgQNy/fp1WblypQCQXr16Sf/+/eXQoUNSVFQkCxcuFADyxhtv6O3H1NdDq9WKv79/pefi5s2bumUajUaKior02r3//vu6/VU3w4OuicqyVPf8V+W1rQ5/f3+xt7evUtvy6xmAPPvss3LkyJFq7bO67+/KGDvP9y+v6rnTarXi6uoqYWFhuvaV/fwQqfz1Dw0NFU9PT4PlD7teIiIipH79+pKenl7VQ3+omJgYiYmJMWmbVatWGbw37peRkSEajUb3fW5urgQGBgoAWb16tW55enq6wXmw5PWfnZ0tTzzxhHh7e8uWLVukqKhIjh49Kl27dhVnZ2dJS0sz6Tw8iCnvG1MkJydLQECA7n3m5eUly5Ytq7R9QUGBAJDw8HCT9wVAkpKSHiWuTWrUqJF89NFHSscgonuSLVLsAzD4ZXnkyBEBIFqtVrcsJSVFnn32WYM+hg0bJmq1WgoKCvSWP+gX9ciRIyv9wdmzZ0+jxX5KSopeuxdffFEA6ApoU1TWZ0xMjEGf5VnXrVun1/bWrVvi5+cnLi4ukpOTY9D31q1bH7r/LVu26C0PDg4WAPLf//5Xb3mTJk2kRYsWestMfT0epdhPSkoSlUolI0eOfKQM1Sn2q3v+q/LaVoepRcvt27fl2LFj8tprr4m9vb28//77Ju/T2sV+Vc9d+c+PQ4cO6S039vNDxPzFfteuXcXDw8OsRWl1iv3Zs2cLAPn888+Nrq9Y7IvcK+zVarW4urrKsWPHdMsqngdLXv8vvfSSAJA1a9botb106ZI4OTlJaGhoFc/Aw5m72C8rK5P4+HhRq9Uyb948ycnJkdzcXFm0aJG4uLhIXFyclJSUGN1WpVJJs2bNTN5nbSz279y5I/b29rXuuIhqsGSLDONxdnZGhw4d9Ja1bt0afn5+yMzMxKVLlwAAffr00fu3cTmtVouSkhL88ssvVd7nxo0bAQC9evUyWLdt2zaj09Pdf6MVAN0Yw+zs7Crv92F9BgYGGvRZnrV37956bZ2cnBAZGYmbN28a/ZfwM88889D9V5xLu3y8b8Xl/v7+BsdpztejomvXrqFu3boAgH37/j97dx4XVb3/D/w1yAwMiwOCsolL5FJEI2ImXkkRA0vURBBTu1pXW/waiWmplXU1s5Ty6tUKt9sNswtoeAOXUtRuKhZukCVhkrmwOIAMi4Ag798f/GZimGGZcYYzA+/n48EffM5nPud9lhnenPmc9/kBs2fPxmOPPYb4+PgOi0HF0P3fnmPbESQSCQYPHoxPPvkEkyZNwooVK3D48OEOjUFf+uw7e3t79dQIFV2fH6Zw7NgxlJaWIjAw0GTraA/VdCixWNzu14wYMQJxcXGoqqpCVFSUzqmLgGnP/71798LKykqrDKu7uzt8fX1x5swZ9ZQ9c5OQkICtW7fixRdfRGxsLNzc3ODq6ornn39eXVN/06ZNOl9rbW3d4v7uaq5evYq7d+/yNB7GzIhJkn3VnPLmevXqBeDPB24olUqsWLECfn5+cHZ2Vs8NVdUNv337drvWV1tbC6VSCVtbW73KsTW/qVFVJuxeSgg2H1MikWiM2Vasbm5uABrvJ2jO3t6+zfU3fzy5lZUVunXrBjs7O432bt26aW2nsY5Ha65evYrJkyfD29sbX331lXr/dFQM97L/2zq2Qpg4cSIAIC0tTbAY2kOffefk5KRzjOafH52Zra0tAOiswtSamJgYREdH48KFCzrLdZry/FeN3dDQAJlMpnVvztmzZwEAly5d0mubOsrBgwcBAOPGjdNaFhISAqDxwpEu9fX1Jr152JJcuXIFADjZZ8yMmCTZVyqVOttVf6RVf7QnTpyIVatWYd68ecjNzUVDQwOICOvXrwcArSeD6voHAmi8IiWTyVBTU6N106m5aStW1YNi3N3dOzo0vY+HvioqKhAeHo66ujqkpaWhR48e9xxDS+dES8x5/xtCVW6ztLRU4EiMp6SkROe51vzzA2j8Z7b5k02Bxm+SdNH3fBGKh4cHgJY/S1uzbds2DBo0CDt27EBCQoLGMlOe/zY2NnBycoK1tTXq6upARDp/goOD9R67I1RVVbXZp7KyUqutvLwcRKQ+Zl3d77//Dnt7e40b5BljwjJJsl9ZWYmsrCyNtp9++gn5+fmQy+Xw8PDA3bt3ceLECbi7uyMmJgY9e/ZU/yFu6etQOzs7jT/sgwYNwpYtWwA0lj8DGh+j3py/vz9iY2ONsm3GoIq1eam22tpapKenQyqVIiwsrENjMuR46Dv+9OnTkZOTgz179mhUtYiMjMTevXuNfk60xBz3f2sWL16MWbNm6VymutLYfIqFJaupqdF4eBGg/fmh4uHhgRs3bmj0LSwsxNWrV3WObcj5IoSHHnoIAAya8uLg4IA9e/bA3t4eH3/8sdZyU57/ERERqK+v16q8BgAffPAB+vTpg/r6eoPGNjXV1NP09HStZUeOHAHQOFWqOdX5pzpmXR1X4mHM/Jgk2be3t8eCBQvwww8/oKqqCqdPn8asWbMgkUiwYcMGAI3TSMaMGYPCwkKsW7cOxcXFqK6uxtGjR/Hpp5/qHHfo0KHIzc3FtWvXkJGRgby8PAQFBQEA1qxZg/79+yM2Nhb79u1DRUUFrl+/jvnz56OgoMCskn1VrAsXLkRaWhoqKiqQm5uLGTNmoKCgABs2bFB/nd5RDDke+oiNjcX+/fuxZcsWjBkzxmgxtHZOtMQc939bdu3ahZUrV+LKlSuora3FlStX8Prrr2Pnzp0ICAjA3LlzhQ7RaGQyGZYvX46MjIwWPz9UQkNDkZ+fj02bNqGyshKXL1/GK6+8onH1v6m2zpexY8fCxcUFp06dMuk2tkUul6NXr15aF03ay9fXV+t+GBVTnv9r1qyBj48PnnvuORw4cABKpRKlpaWIj4/HypUrERcXp1HudNasWRCJRPj9998NWl9b9Bl//vz5GDBgAD755BNs3LgRN2/eRElJCbZv3473338fXl5eWLx4sdbrVCVFQ0NDjR6/Jbpy5Qon+4yZm5Zu3dW3Wse6devUpcq8vLzoxx9/pODgYHJwcCCpVEqjR4+m48ePa7xGoVDQCy+8QN7e3iQWi8nNzY3mzJlDS5cuVY/VtHpDTk4OBQUFkb29PXl7e2tVqiguLqaFCxdS//79SSwWk4eHB02fPp1yc3OJqLEyhWpc1c8bb7xB1DhnQONnwoQJ7dpuQ8dsHqtMJqOwsDBKT09vdezmx6Sl9WdmZmq1r1mzhr7//nut9rfffluv49H0WDddZ0pKilb7zJkz6fTp0zq3o+lPSkqKUc+JlmK51/1/r+eLiqrEqK6f5qUPlUolbdu2jcLCwqhfv34kkUjIwcGBAgICaM2aNXT79m291k1kvGo8Le1nQ/edqsLTL7/8QmFhYeTo6Nji5wcRUVlZGc2dO5c8PDxIKpXSqFGjKDMzkwICAtTjv/766+r+bX2GBAUFmUU1HiKi5cuXk7W1Nd24cUPdplAotPZfaxVuXnrpJZ1ViUx5/peUlNCiRYvovvvuI7FYTD179qTQ0FA6dOiQVhxjx44lBwcHqq+vb9c+0ed9Y8j4paWltGTJEho8eDDZ2NiQRCIhHx8fWrBggUaFoqaioqLIy8uL7ty50651NIVOWI1n5MiR9PLLLwsdBmPsT0kiIt0TsZOSkhAdHX3P87QZY+bHXN/fQ4YMQXFxsdlWbDFEVFQUACA5OVmv1ymVSvj6+iI8PNwo366Zm7KyMnh6emLmzJnYunWrxY0PND78zN/fH7t27cL06dP1fr1IJEJiYiKmTZtmguiE4eLigr///e86bxBnjAki2WRP0GWMMWY4mUyG1NRU7N69G5s3bxY6HKMiIsTExKB79+5YtWqVxY0PAHl5eYiIiMCyZcsMSvQ7o2vXrqG0tBQPP/yw0KEwxprgZJ8xxsyUv78/Tp8+jQMHDqC8vFzocIymqKgIeXl5SE9PN0nlK1OPDwDx8fFYvXo1Vq9ebZLxLVF2djaAxudiMMbMByf7rWheJ1rXzzvvvCN0mMxM8PliuLi4OIhEImRlZeHGjRsQiUR48803hQ7LLPTr1w9paWlaz9CwZO7u7jh+/Dh8fX0tcnygsboQX9HXlJ2djT59+sDZ2VnoUBhjTVi33aXrMrf5zMy88fliuMWLF+usdMIYsxw//fQTT+FhzAzxlX3GGGOM3bPs7GxO9hkzQ5zsM8YYY+ye1NbWIjc3l+frM2aGONlnjDHG2D25ePEi6urq+Mo+Y2aIk33GGGOM3ZPs7GzY2Nhg4MCBQofCGGumzRt0VQ+EYYx1HqqHVvH72/ROnToFgPc169x++uknPPjgg7C25rofjJkbvrLPGGOMsXuSmZmJoUOHCh0GY0yHNv8F1/cR74wx85eUlITo6Gh+f3cA1RV93tesOZFIJHQIRlFXV4fMzEzMnj1b6FAYYzrwlX3GGGOMGezcuXO4ffs2AgMDhQ6FMaYDJ/uMMcYYM9jJkyfh4uKCQYMGCR0KY0wHTvYZY4wxZrCMjAyMGDGi00xLYqyz4WSfMcYYYwbLyMjgKTyMmTGzTPYdHBwgEol0/tjZ2UEul+Ojjz7C3bt3BY1z7969GrHV1NS02r+4uFijv7+/v87XNO8nEokwbNgwU21Gh4qLi1NvU+/evYUOhzGz98cff2DSpEkoLy/nz5D/b//+/Rg4cKDRyzzW19dj+/btGD58OFxcXODs7IyAgABs2rQJd+7c0ei7dOlSJCYmGnX9lujGjRu4du0aRo4cKXQojLEWmGWyX1lZiXPnzgEAJk+eDCICEaG8vBwHDx4EALz66qtYsmSJkGHiqaeeAhFh8uTJ7erv6uoKIkJmZiYA4Pz581i4cGGL/TIyMuDi4gIiwunTp40au1AWL14MIoJcLtdaVllZiQEDBiA8PFyAyMw3FtZ1nT9/HsOGDUNoaCi6d+/e5T9DLl++jEmTJmHZsmUoKioy+vjPPvss5s6di3HjxuHixYv47bffEB0djZdffhlTp07V6Dtv3jwsW7YMb731ltHjsCTHjx9Ht27d8MgjjwgdCmOsBWaZ7LfE0dERjz32GD799FMAQHx8POrq6gwez8HBAaNGjTJWeHqxsbGBi4sL4uPj8eWXXwoSg7khIjQ0NKChoaFD1tfa8e/oWJiw70dzWH9z5eXlmDhxIqZOnYoFCxZoLe+KnyFvvfUWRo4ciTNnzsDR0dGoY+fl5WHnzp3w9/fHe++9h169esHFxQWvvfYaHn/8caSlpan/yQIAHx8fpKSkYPXq1UhKSjJqLJYkIyMDcrkcDg4OQofCGGuBRSX7Kqo7/m/fvg2lUilwNIaxtbXFF198ASsrK7zwwgvIzc0VOiTBOTo64vLly9i/f7/QoZhVLKxrWrt2LQoLC7FixQqdy7viZ8j27duxdOlSkzyl9dq1awCABx54QGvZ4MGDAQBXr17VaJfL5YiMjMSrr76K+vp6o8dkCU6ePMnz9RkzcxaZ7P/6668AgJ49e8LV1VXgaAwXFhaGN998ExUVFYiKimpzzj9jrGsgImzbtg2PPvooPD09W+zX1T5DpFKpycYePHgwxGIxcnJytJbl5ORAJBLBz89Pa9mUKVNw/fp17Nu3z2SxmSulUomzZ89izJgxQofCGGuFRSX7lZWV+P777/Hiiy/Czs5OPZ1Hpb6+HomJiXj88cfh7u4OqVQKPz8/bNiwQWM6huom0aqqKpw4cUJ9A1vzq0UlJSVYtGgRfHx8YGNjg969e2PcuHH47LPPUF1drRVfYWEhoqOj4eTkBBcXF4SHh+Py5cutbtPbb7+N0NBQZGdn4+WXX27Xfmgal0QigbOzM5544gkcPXpU3af5zcO//vorpk2bBhcXF3Xbtm3bNPr88ccfiI6OhqOjI1xcXPDMM8/g1q1buHLlCiZOnAhHR0d4eHhg3rx5qKioMGjft6S1m52dnJxavGHbysoK169f1yuGto5/WzdeG7L/r1y5ove5YY7as+3vvvuuerubTos5ePCgur3pP+ltHY/mN3VnZmYiJCQEjo6OsLOzQ3BwME6cOGGy9QshKysLRUVFOu9taa6jPkPaew4rFArExMSgX79+kEgk6NmzJyIiInD+/Pn27wABuLm5IS4uDllZWVi+fDkUCgVKS0uxdu1aHD58GCtWrMDAgQO1XjdkyBAAwDfffNPRIQvu6NGjICJO9hkzd9SCxMREamWxyZ07d44A6PwZNGgQ7dmzR+s1qampBIDee+89Ki0tJYVCQRs3biQrKytavHixVn97e3v6y1/+onP9BQUF1L9/f3J3d6fU1FQqLy+nwsJCWrVqFQGg9evXq/tOnjyZANDkyZPp5MmTVFlZSenp6dS9e3d65JFHtMbOzMwkmUym/l2hUJC3tzcBoJ07d6rbMzIyyMXFRWdcbm5ulJqaSmPaMowAACAASURBVEqlkn799VeKiIggkUhEW7du1eivim306NF09OhRqqqqolOnTlG3bt1IoVBo9ImIiKDTp09TZWUlff755wSAnnjiCZo8eTKdO3eOKioq6NNPPyUAFBsbe0/7Xi6Xk5eXl1a7Kpbq6mp1m0wmo4qKCo1+K1euVK/P0BhaO/4txWLo/m96bhw6dIikUqnOc6OjGPL+1nfbW9q/AQEBWud1a/1V5HI52dvbU2BgoHpfZmZm0sMPP0wSiYSOHTtm0vUHBwdTjx49KCMjo8U+ukRGRlJkZKRer0lISNA6v5sS4jOkPedwfn4+9e3bl9zc3Gjfvn1UUVFBFy5coNGjR5OtrS2dPHlSr/3QGi8vL+rWrZvRxlNJSkqi3r17q//euLq60vbt21vsr1QqCQAFBQXpvS4AlJiYeC/hCmrBggU0dOhQocNgjLUuyeyT/cmTJ6vb6urqKC8vj95++20SiUQUERFBd+7cUS9PTU2lMWPGaI01a9YsEovFpFQqNdpb++M+Z86cFj+Ix48frzPZT01N1eg3Y8YMAqBOqlWa/6EmavyjLBaLyd7eni5evKhua/6HWhXXl19+qdFeU1NDnp6eJJVKqbCwUCu2/fv369zOpn327dun0e7r60sA6LvvvtNo79+/Pw0aNEijTd99fy/JfmJiIolEIpozZ849xWBIsm/o/m9+bkRGRuo8NzqKIe9vfbfdFMk+ADp37pxGe3Z2NgEguVzervEMXf/o0aPJ2dlZ74TVkGR/7dq1BIA2b96sc7kQnyHtOYdnz55NAOiLL77Q6FtQUEA2NjYUEBDQzj3QNmMn+w0NDTRv3jwSi8X00UcfUWFhISkUCoqPjyepVErR0dFUV1en87UikYjuv/9+vddp6cn+Aw88QEuWLBE6DMZY65IsahqPtbU1+vfvj3feeQczZszAV199hY0bN6qXh4eHa3wNrSKXy1FXV4eff/653etKSUkBADzxxBNayw4cOKCz3F3z0mNeXl4AgPz8/DbXN2LECMTFxaGqqgpRUVE6pwk1jWvChAka7TY2NggJCUF1dbXOr5OHDx/eZgzN63Cr5go3b/fy8tLaJmPu++bKysrUlR5++OEHzJ49G4899hji4+M7LAYVQ/d/83PD29sbQPvODXNh6LYbk729vXrahIqfnx88PT2RlZWFgoICk6372LFjKC0t7ZCbEVVTx8RicbtfY+rPkPacw3v37oWVlZVWyVp3d3f4+vrizJkz6ml35iYhIQFbt27Fiy++iNjYWLi5ucHV1RXPP/+8uqb+pk2bdL7W2tq6xf3dWRUUFCAnJwchISFCh8IYa4NFJftNPfbYYwCA9PR0dZtSqcSKFSvg5+cHZ2dn9VxTVT3+27dvt2vs2tpaKJVK2Nra6lXeTSaTafxuZdW4e9tbvjEmJgbR0dG4cOGCzlJ7bcXl5uYGoPHegebs7e3bXH/37t214u/WrRvs7Ow02rt166a1Tcba9625evUqJk+eDG9vb3z11VeQSCQdGsO97P/m54Yqdksp7Xkv225MTk5OOtt79eoFALh586ZJ199RbG1tAUDv0sKm/Axp6xxWjd3Q0ACZTKZ1f83Zs2cBAJcuXdJrmzqK6hku48aN01qmSmgPHDig87X19fUmvXnYHB0+fBhisdisytUyxnSz2GSfiABoJnATJ07EqlWrMG/ePOTm5qKhoQFEhPXr12u8RkUkEukc28bGBjKZDDU1NVo3opratm3bMGjQIOzYsQMJCQl6xaV6yIy7u3uHxNqUvvteXxUVFQgPD0ddXR3S0tLQo0ePe46hpePfEnPe/6ZmyLZbWVlpPXUUaPymRpf2HI+SkhKd55IqyVcl/aZaf0fx8PAAAINKCwv1GWJjYwMnJydYW1ujrq5O/TDE5j/BwcF6j90Rqqqq2uxTWVmp1VZeXg4iUh+zriI9PR2BgYHtupDEGBOWxSb733//PYA/v1q+e/cuTpw4AXd3d8TExKBnz57qP94tfb1qZ2enkQwMGjQIW7ZsAdBYTg2Azjrr/v7+iI2NNd7GNOHg4IA9e/bA3t4eH3/8sdZyVVzNy7zV1tYiPT0dUqkUYWFhJomtJYbse33Hnz59OnJycrBnzx6NihiRkZHYu3ev0Y9/S8xx/3cUfbfdw8MDN27c0OhbWFioVatcpT3Ho6amRuPBRgDw008/IT8/H3K5XCPhMsX6O8pDDz0EAAZNeRHyMyQiIgL19fUa1ZFUPvjgA/Tp08ds69E/+uijADS/LVY5cuQIgMapUs2pzjHVMesqjhw5wlN4GLMQFpXs19fX48qVK3jnnXewa9cueHl5YdGiRQAap5aMGTMGhYWFWLduHYqLi1FdXY2jR49qlehUGTp0KHJzc3Ht2jVkZGQgLy8PQUFBAIA1a9agf//+iI2Nxb59+1BRUYHr169j/vz5KCgoMFmyDwC+vr5a89FVVHEtXLgQaWlpqKioQG5uLmbMmIGCggJs2LBB/VV8RzFk3+sjNjYW+/fvx5YtW1os8Wbs498Sc9z/HUXfbQ8NDUV+fj42bdqEyspKXL58Ga+88orG1fem2nM8ZDIZli9fjoyMDFRVVeH06dOYNWsWJBIJNmzYoNHX2OsfO3YsXFxccOrUKUN3YbvJ5XL06tULWVlZBr1eqM+QNWvWwMfHB8899xwOHDgApVKJ0tJSxMfHY+XKlYiLi9MoaTpr1iyIRCL8/vvvBq2vLfqMP3/+fAwYMACffPIJNm7ciJs3b6KkpATbt2/H+++/Dy8vLyxevFjrdaqSoqGhoUaP31yp3ie6pjwxxsxQS7fuClmNx97eXmfJTZFIRI6OjiSXy+m1116joqIijdcpFAp64YUXyNvbm8RiMbm5udGcOXNo6dKl6jGaVoPIycmhoKAgsre3J29vb63KF8XFxbRw4ULq378/icVi8vDwoOnTp1Nubi4RNVa6aB7jG2+8QUSk1T5hwgRSKBRa7a1Vp3jppZd0Vg1pHpdMJqOwsDBKT09X99EVW/Pj2VL8mZmZWu1r1qyh77//Xqv97bff1mvfr1u3Tuc6U1JStNpnzpxJp0+fbrEEq+onJSXFqMe/pVjudf+3dm50NEPf3+3ZdpWysjKaO3cueXh4kFQqpVGjRlFmZiYFBASot/31119X92/r/aiq4PTLL79QWFgYOTo6klQqpdGjR9Px48dNvv6goKAOq8ZDRLR8+XKytramGzduqNuE/gxpzzlcUlJCixYtovvuu4/EYjH17NmTQkND6dChQ1pxjB07lhwcHKi+vr5d+0RVXlfXT/OSoYaMX1paSkuWLKHBgweTjY0NSSQS8vHxoQULFmhUKGoqKiqKvLy8NCrDtRcstBrPP//5T+revXuL1YkYY2YlSUSkezJ1UlISoqOj73muNWPM/Fji+3vIkCEoLi4222ouLYmKigIAJCcn6/U6pVIJX19fhIeHG+UbMnNTVlYGT09PzJw5E1u3brW48YHGh5/5+/tj165dmD59ut6vF4lESExMxLRp00wQnemMHz8eMpkMiYmJQofCGGtbskVN42GMsa5CJpMhNTUVu3fvxubNm4UOx6iICDExMejevTtWrVplceMDQF5eHiIiIrBs2TKDEn1LVVVVhe+++06rdCtjzHxxss8YY2bK398fp0+fxoEDB1BeXi50OEZTVFSEvLw8pKenm6R6lanHB4D4+HisXr0aq1evNsn45urQoUO4c+dOpy1EwFhnZN12F8YYE05cXJz6WQlA49SHN954A++++66AUXWcfv36IS0tTegwjMrd3R3Hjx+32PGBxupCXdG+ffswfPjwTluIgLHOiK/sM8bM2uLFi7VqtXeVRJ8xc0JEOHDgAE/hYczCcLLPGGOMsTadPXsWN27cQHh4uNChMMb0wMk+Y4wxxtqUlpYGT09PyOVyoUNhjOmBk33GGGOMtWnfvn2YOHGi+unkjDHLwMk+Y4wxxlpVVFSEM2fO4MknnxQ6FMaYnjjZZ4wxxlirvv76a9ja2mLcuHFCh8IY01ObpTf56zrGOi9+f3cc3tfMkn311VcYP3487OzshA6FMaanFpP9kSNH8qOwGbMg69evBwDExsYKHAljrL1GjhwpdAhtUiqVOHLkCLZv3y50KIwxA4iIiIQOgjF276ZNmwYASEpKEjgSxlhnsmvXLsyZMwdFRUVwdnYWOhzGmH6Sec4+Y4wxxlqUkpKC4OBgTvQZs1Cc7DPGGGNMp5qaGnzzzTeYMmWK0KEwxgzEyT5jjDHGdPr2229RVVWFSZMmCR0KY8xAnOwzxhhjTKeUlBSMGDECnp6eQofCGDMQJ/uMMcYY03L37l2kpaXxFB7GLBwn+4wxxhjTcuzYMRQXF+Opp54SOhTG2D3gZJ8xxhhjWpKSkjB06FDcf//9QofCGLsHnOwzxhhjTEN9fT327t2LqKgooUNhjN0jTvYZY4wxpuHIkSO4efMmIiMjhQ6FMXaPONlnjDHGmIbk5GQMGzaMp/Aw1glwss8YY4wxtfr6evz3v//lKTyMdRKc7DPGGGNM7fDhw1AoFJg6darQoTDGjICTfcYYY4ypJScnY/jw4fDx8RE6FMaYEXCyzxhjjDEAQF1dHVfhYayT4WSfMcYYYwCAQ4cO4datW1yFh7FOhJN9xhhjjAH4cwpPv379hA6FMWYknOwzxhhjDHV1dfj66695Cg9jnQwn+4wxxhjDN998w1N4GOuEONlnjDHGGJKTkzFixAj07dtX6FAYY0bEyT5jjDHWxd25cwepqak8hYexToiTfcYYY6yLO3jwIMrKyvhBWox1QpzsM8YYY11ccnIyRo4ciT59+ggdCmPMyDjZZ4wxxrqw2tpansLDWCfGyT5jjDHWhX3zzTeoqKjgKTyMdVKc7DPGGGNdWHJyMgIDA9G7d2+hQ2GMmQAn+4wxxlgXVVtbi6+//hrTpk0TOhTGmIlwss8YY4x1UQcPHkRFRQWmTJkidCiMMRPhZJ8xxhjronbv3o2RI0fC29tb6FAYYybCyT5jjDHWBXEVHsa6Bk72GWOMsS7o22+/RXl5OU/hYayT42SfMcYY64JUVXj4QVqMdW6c7DPGGGNdzJ07d5CWlsZTeBjrAqyFDoAxpr/i4mKUl5drtFVVVQEA8vLyNNq7d+8OV1fXDouNMWb+vv32W5SVlSEiIkLoUBhjJiYiIhI6CMaYfv71r3/hueeea1ffHTt24NlnnzVxRIwxSzJ79mxcunQJJ0+eFDoUxphpJfM0HsYsUEREBMRicZv9xGIxX7ljjGmoq6vjKjyMdSGc7DNmgWQyGZ588klYW7c8E8/a2hoTJkyATCbrwMgYY+aOp/Aw1rVwss+YhZo1axbu3r3b4vKGhgbMmjWrAyNijFmC5ORkDB8+HH379hU6FMZYB+BknzELFR4eDjs7uxaX29ra4sknn+zAiBhj5o6n8DDW9XCyz5iFsrW1bXHuvlgsRmRkJKRSqQCRMcbM1aFDh3Dr1i1MnTpV6FAYYx2Ek33GLNiMGTNQV1en1V5XV4cZM2YIEBFjzJwlJyfjkUceQb9+/YQOhTHWQTjZZ8yCjRs3Dj169NBqd3JyQkhIiAARMcbMVV1dHb7++muewsNYF8PJPmMWzNraGk8//bTGVB6xWIxZs2a1WqmHMdb1HD58GKWlpVyFh7EuhpN9xizc008/rTGVp66uDk8//bSAETHGzNGePXswbNgw3HfffUKHwhjrQJzsM2bhRo4cCS8vL/XvHh4eCAwMFDAixpi5uXv3LlJTU/mqPmNdECf7jFk4kUiEZ555BhKJBBKJBLNnz4ZIJBI6LMaYGcnIyMDNmzfx1FNPCR0KY6yDcbLPWCfw9NNP486dO7hz5w5X4WGMafn666/h4+ODBx54QOhQGGMdrNPfwcdVB1hX4eDgAABYuXKlwJEw1jGSk5OFDsFifP3113xVn7EuqtNf2d+9ezeuX78udBisEzl16hROnToldBha+vbt2+lqZ/P7l+ly/fp17N69W+gwLMalS5fw66+/YtKkSUKHwhgTQKe/sg8AsbGxmDZtmtBhsE5C9W2RuV1VzMvLA4BOVWlDJBLx+5dpSUpKQnR0tNBhWIyUlBT06NEDI0eOFDoUxpgAukSyz1hX0JmSfMaY8aSmpiI8PJyfvcFYF9Xpp/EwxhhjXVVJSQkyMjJ4Cg9jXRgn+4wxxlgn9fXXX8Pa2hqhoaFCh8IYEwgn+4wxxlgntX//fgQHB8PR0VHoUBhjAuFkn1mk/fv3Y+DAga3OQSUinDhxAv/3f/+HgQMHwsbGBr169cKoUaOwc+dOEFEHRsw62h9//IFJkyahvLwcxcXFEIlE6h9/f3/U1NRovaZ5P5FIhGHDhgkQvWm0531jiPr6emzfvh3Dhw+Hi4sLnJ2dERAQgE2bNuHOnTsafZcuXYrExESjrp/pdvfuXRw5cgTjx48XOhTGmIA42TcDlZWVGDBgAMLDw4UOBYD5xdPU5cuXMWnSJCxbtgxFRUWt9v31118xatQo5ObmYvfu3VAqlTh16hT69OmDZ555BkuWLOmgqFtmzvvakp0/fx7Dhg1DaGgounfvDldXVxARMjMz1csXLlyo9TpVv4yMDLi4uICIcPr06Y4O3+j0ed8Y4tlnn8XcuXMxbtw4XLx4Eb/99huio6Px8ssvY+rUqRp9582bh2XLluGtt94yehxM048//ojS0lKEhYUJHQpjTECc7HcQBwcHjBo1SucyIkJDQwMaGhq6bDzt9dZbb2HkyJE4c+ZMu76Wtra2RlJSEh5++GHY2trivvvuw2effQYXFxds2rQJtbW1HRB1y8x5XzfX2jljTsrLyzFx4kRMnToVCxYs0FpuY2MDFxcXxMfH48svvxQgwo6n7/tGH3l5edi5cyf8/f3x3nvvoVevXnBxccFrr72Gxx9/HGlpaep/sgDAx8cHKSkpWL16NZKSkowaC9P0zTffoHfv3hg8eLDQoTDGBMR1uMyAo6MjLl++LHQYauYWT1Pbt2+HVCptV9/Bgwejrq5Oq10ikcDb2xvnz59HTU0NbGxsjB1mu5nzvrZUa9euRWFhIVasWKFzua2tLb744gs8+eSTeOGFFxAQEICBAwd2cJQdS5/3jb6uXbsGAHjggQe0lg0ePBiHDh3C1atX8cgjj6jb5XI5IiMj8eqrryIiIoJLQprIN998gyeeeELoMBhjAuMr+8yiGCNhKSsrw6VLl+Dv7w+ZTGaEqJi5ICJs27YNjz76KDw9PVvsFxYWhjfffBMVFRWIiorSOX+/MzFVog80JvRisRg5OTlay3JyciASieDn56e1bMqUKbh+/Tr27dtnsti6slu3biEzM5On8DDGONlvrr6+HomJiXj88cfh7u4OqVQKPz8/bNiwQedUi5KSEixatAg+Pj6wsbFB7969MW7cOHz22Weorq5GXFwcRCIRqqqqcOLECfVNf6orWXv37tW4GbCmpgZlZWVaNwm+++676viatkdGRuoVtyHxtLS9EokEzs7OeOKJJ3D06FF1n+ZjXLlyBdHR0XBycoKLiwvCw8MFuZpdXl6OEydOYNKkSXB3d8fnn3/e4TE01dK+1nf/qY6pSCRC7969kZmZiZCQEDg6OsLOzg7BwcE4ceKEuv+7776r7t90Ws7BgwfV7a6urlrjt3TOmJOsrCwUFRVBLpe32fftt99GaGgosrOz8fLLL7drfFOe/wqFAjExMejXrx8kEgl69uyJiIgInD9/vv07QABubm6Ii4tDVlYWli9fDoVCgdLSUqxduxaHDx/GihUrdH5zMmTIEACNV5+Z8R0+fBgAEBwcLHAkjDHBUScHgBITE9vdPzU1lQDQe++9R6WlpaRQKGjjxo1kZWVFixcv1uhbUFBA/fv3J3d3d0pNTaXy8nIqLCykVatWEQBav369uq+9vT395S9/aXG9kydPJgBUXV2tbhs/fjxZWVnRb7/9ptU/MDCQdu3aZVDchsaj2l43NzdKTU0lpVJJv/76K0VERJBIJKKtW7fqHGPy5Ml08uRJqqyspEOHDpFUKqVHHnmkxXW3l5eXF3Xr1q1dfVXHBACNGTOGsrOzDV5vZGQkRUZGGvz65nTt66bt7d1/crmc7O3tKTAwUN0/MzOTHn74YZJIJHTs2DGN/i2dAwEBAeTi4qLV3tY5ExwcTD169KCMjIz2bnqb9H3/JiQkqN8HumRmZpJMJlP/rlAoyNvbmwDQzp071e0ZGRla+8CU539+fj717duX3NzcaN++fVRRUUEXLlyg0aNHk62tLZ08ebLd+6At+rxv9JGUlES9e/dWv89cXV1p+/btLfZXKpUEgIKCgvReV2JiInWBP1/35G9/+xuNHDlS6DAYY8JL6vSfloYk+2PGjNFqnzVrFonFYlIqleq2OXPmtDj++PHj7znZP3z4MAGg+fPna/Q9fvw49enTh+rq6gyK29B4VNv75ZdfavStqakhT09PkkqlVFhYqDVGamqqRv/IyEgCQAqFosX1t4e+SUttbS1dvHiRXnzxRerWrRutXLnSoPV2dLLf3v0nl8sJAJ07d06jPTs7mwCQXC7XaDd2sj969GhydnY2amKq7/t37dq1BIA2b96sc3nzZJ+oMbEXi8Vkb29PFy9eVLc13wemPP9nz55NAOiLL77Q6FtQUEA2NjYUEBDQzj3QNmMn+w0NDTRv3jwSi8X00UcfUWFhISkUCoqPjyepVErR0dEan1VNiUQiuv/++/VeJyf7bevTpw/9/e9/FzoMxpjwkngaTzPh4eEaX8mryOVy1NXV4eeff1a3paSkAIDOG6AOHDigs7SfPkJCQuDv74/PPvsMJSUl6vZ169Zh4cKFGtMo9InbUKrtnTBhgka7jY0NQkJCUF1drfMr+aY35gGAt7c3ACA/P/+eY9KHRCLB4MGD8cknn2DSpElYsWKF+qtuc6bP/rO3t1dPj1Dx8/ODp6cnsrKyUFBQYLI4jx07htLSUgQGBppsHW1RTYUSi8Xtfs2IESMQFxeHqqoqREVFobq6Wmc/U57/e/fuhZWVlVYJVnd3d/j6+uLMmTO4fv16u7epIyUkJGDr1q148cUXERsbCzc3N7i6uuL5559X19TftGmTztdaW1u3uL+Z4S5evIirV6/yU3MZYwB4zr4WpVKJFStWwM/PD87Ozup5t6qa7Ldv3wYA1NbWQqlUwtbW1qRPJnz11Vdx+/ZtfPzxxwCA3Nxc/O9//8PcuXMNittQbW2vm5sbAKCwsFBrWfObYCUSCQAIWm5y4sSJAIC0tDTBYmgvffafk5OTzjF69eoFALh586aRozMvtra2AKCzClNrYmJiEB0djQsXLugs12nK8181dkNDA2Qymdb9OmfPngUAXLp0Sa9t6igHDx4EAIwbN05rWUhICIDGix+61NfXm/Tm4a7q2LFjcHBw6FQPhGOMGY6T/WYmTpyIVatWYd68ecjNzUVDQwOICOvXrwcA9VNXbWxsIJPJUFNTg4qKijbHFYlEBsUTHR0Nb29vdU34Dz/8EPPmzdNKONobt6HxtLW9qgf1uLu76zWuUFTlNktLSwWOxLhKSkp0PhlYleSrkn4AsLKy0nq6KdBYrUgXQ8/hjuTh4QGg8Z9ffW3btg2DBg3Cjh07kJCQoLHMlOe/jY0NnJycYG1tjbq6OhCRzh9zvdGyqqqqzT6VlZVabeXl5SAi9TFjxvP9999j1KhRZnkTPWOs43Gy38Tdu3dx4sQJuLu7IyYmBj179lQnOLq+ap4yZQqAxkfQN+fv74/Y2Fj173Z2dhqJ1aBBg7Bly5Y2Y7K2tsYrr7yCmzdv4sMPP8R//vMfxMTE3FPchsaj2t7mpfJqa2uRnp4OqVRqVmXeFi9ejFmzZulcprrS2HyKhaWrqanReIARAPz000/Iz8+HXC7XSKw8PDxw48YNjb6FhYW4evWqzrENPYc70kMPPQQABk15cXBwwJ49e2Bvb6/+Jq0pU57/ERERqK+v16iapPLBBx+gT58+qK+vN2hsU3v00UcBAOnp6VrLjhw5AqBxqlRzqnNPdcyY8Rw/fhxBQUFCh8EYMxOc7DfRrVs3jBkzBoWFhVi3bh2Ki4tRXV2No0eP4tNPP9Xqv2bNGvTv3x+xsbHYt28fKioqcP36dcyfPx8FBQUayf7QoUORm5uLa9euISMjA3l5ee3+MH7++echk8nw5ptv4qmnnoKXl9c9xW1oPKrtXbhwIdLS0lBRUYHc3FzMmDEDBQUF2LBhg3o6g7nYtWsXVq5ciStXrqC2thZXrlzB66+/jp07dyIgIEBrOpSlk8lkWL58OTIyMlBVVYXTp09j1qxZkEgk2LBhg0bf0NBQ5OfnY9OmTaisrMTly5fxyiuvaFz9b6qtc2bs2LFwcXHBqVOnTLqNrZHL5ejVqxeysrIMer2vry/i4+N1LjPl+b9mzRr4+Pjgueeew4EDB6BUKlFaWor4+HisXLkScXFxGldpZ82aBZFIhN9//92g9bVFn/Hnz5+PAQMG4JNPPsHGjRtx8+ZNlJSUYPv27Xj//ffh5eWFxYsXa71OVVKU55Ub1+XLl3Ht2jU89thjQofCGDMXwtwY3HGgZzUPhUJBL7zwAnl7e5NYLCY3NzeaM2cOLV26VF1SrmlljOLiYlq4cCH179+fxGIxeXh40PTp0yk3N1dj3JycHAoKCiJ7e3vy9vZWVwtJSUlRj6v6mTlzplZcS5YsIQCUlZVllLgNjaf59spkMgoLC6P09HR1n4yMDK0x3njjDfXxaPozYcKEdh8boj9LjOr6aV76UKlU0rZt2ygsLIz69etHEomEHBwcKCAggNasWUO3b9/Wa90qxqrG09K+NnT/yeVy8vLyol9++YXCwsLI0dGRpFIpjR49mo4fP661/rKyMpo7dy55eHiQVCqlUaNGUWZmJgUEBKjHf/3119X9WzpnVIKCggSvxkNEtHz5PQEfgAAAIABJREFUcrK2tqYbN26o2xQKhda+a63CzUsvvaSzIpEpz/+SkhJatGgR3XfffSQWi6lnz54UGhpKhw4d0opj7Nix5ODgQPX19e3aJ/q8bwwZv7S0lJYsWUKDBw8mGxsbkkgk5OPjQwsWLNCoUNRUVFQUeXl50Z07d9q1jqa4Gk/LduzYQTY2NlrVvRhjXVaSiEjHBN9ORCQSITExEdOmTRM6FNZJREVFAQCSk5MFjkTTkCFDUFxcbLZVWwxhyPtXqVTC19cX4eHhLX6zZcnKysrg6emJmTNnYuvWrRY3PtD48DN/f3/s2rUL06dP1/v1SUlJiI6O1nl/Slf33HPPIS8vD8eOHRM6FMaYeUjmaTyMsU5FJpMhNTUVu3fvxubNm4UOx6iICDExMejevTtWrVplceMDQF5eHiIiIrBs2TKDEn3Wuv/97388hYcxpoGTfcZYp+Pv74/Tp0/jwIEDKC8vFzocoykqKkJeXh7S09NNUvnK1OMDQHx8PFavXo3Vq1ebZPyurKCgAJcvX+abcxljGjjZZ4JrXldc188777wjdJhmKy4uDiKRCFlZWbhx4wZEIhHefPNNocMSXL9+/ZCWlobu3bsLHYrRuLu74/jx4/D19bXI8YHG6kJ8Rd80vvvuO1hbW+usfsQY67q4CC8THM+7vTeLFy/WWe2EMda1ZGRkYMiQISZ90CNjzPLwlX3GGGOsEzhz5gw/NZcxpoWTfcYYY8zCNTQ0ICsrC0OHDhU6FMaYmeFknzHGGLNwOTk5qKysREBAgNChMMbMDCf7jDHGmIU7e/YsJBKJSW+uZoxZJk72GWOMMQt39uxZ+Pn5wcbGRuhQGGNmpks8QZcxxljn08n/fOll9OjRGDRoELZs2SJ0KIwx85LcJUpvLly4EIGBgUKHwTqJ9evXAwBiY2MFjqTzi46O5vcv05KRkYF//OMfQodhNogIWVlZePrpp4UOhTFmhrpEsh8YGIhp06YJHQbrJJKTkwGAz6kOEB0dze9fphMn+3+6dOkSlEol35zLGNOJ5+wzxhhjFuzcuXMQi8Xw8/MTOhTGmBniZJ8xxhizYBcvXoSPjw9sbW2FDoUxZoY42WeMMcYsWG5uLgYOHCh0GIwxM8XJPmOMMWbBLl26hAEDBggdBmPMTHGyb2KXLl2CSCTCiBEjhA6FsS7ljz/+wKRJk1BeXo7i4mKIRCL1j7+/P2pqarRe07yfSCTCsGHDBIjeNPbv34+BAwfC2tq4tRnq6+uxfft2DB8+HC4uLnB2dkZAQAA2bdqEO3fuaPRdunQpEhMTjbr+ro6TfcZYazjZN7F//etfAIAffvgBv/zyi0nXVVlZiQEDBiA8PNyk62kvc4uHdR3nz5/HsGHDEBoaiu7du8PV1RVEhMzMTPXyhQsXar1O1S8jIwMuLi4gIpw+fbqjwze6y5cvY9KkSVi2bBmKioqMPv6zzz6LuXPnYty4cbh48SJ+++03REdH4+WXX8bUqVM1+s6bNw/Lli3DW2+9ZfQ4uqKioiIolUqexsMYaxEn+ybU0NCAzz//HP7+/gD+TPzvhYODA0aNGqVzGRGhoaEBDQ0N97weS42nq2rtOHSF9TdVXl6OiRMnYurUqViwYIHWchsbG7i4uCA+Ph5ffvmlABF2vLfeegsjR47EmTNn4OjoaNSx8/LysHPnTvj7++O9995Dr1694OLigtdeew2PP/440tLS1P9kAYCPjw9SUlKwevVqJCUlGTWWrujSpUsAwFf2GWMt4mTfhL799ltYW1urn2iYkJCA+vp6k63P0dERly9fxv79+022Dn2YWzysa1i7di0KCwuxYsUKncttbW3xxRdfwMrKCi+88AJyc3M7OMKOt337dixdutTo03cA4Nq1awCABx54QGvZ4MGDAQBXr17VaJfL5YiMjMSrr75q0s/EriA3Nxd2dnbw8vISOhTGmJniZN+EduzYgTlz5mDYsGF4+OGHUVRUxIkvYyZERNi2bRseffRReHp6ttgvLCwMb775JioqKhAVFaVz/n5nIpVKTTb24MGDIRaLkZOTo7UsJycHIpFIZ/33KVOm4Pr169i3b5/JYusKVPP1RSKR0KEwxswUJ/smUlpaitTUVMyePRtA45xWoPEfAF1KSkqwaNEi+Pj4wMbGBr1798a4cePw2Wefobq6GnFxcRCJRKiqqsKJEyfUNw+qrtTt3btX46bCmpoalJWVad1s+O677wJovKGuaXtkZKS6PTExEY8//jjc3d0hlUrh5+eHDRs2aEzHMSSelrZXIpHA2dkZTzzxBI4eParu03yMK1euIDo6Gk5OTnBxcUF4eDguX75sjMPVIdqzze+++656e5tOizl48KC63dXVVd3e1nFQLReJROjduzcyMzMREhICR0dH2NnZITg4GCdOnDDZ+jtaVlYWioqKIJfL2+z79ttvIzQ0FNnZ2Xj55ZfbNb4pz1uFQoGYmBj069cPEokEPXv2REREBM6fP9/+HSAANzc3xMXFISsrC8uXL4dCoUBpaSnWrl2Lw4cPY8WKFTrnkw8ZMgQA8M0333R0yJ3KpUuXeL4+Y6x11MkBoMTExA5f7z//+U8KDg5W/65QKEgsFpO1tTUVFRVp9C0oKKD+/fuTu7s7paamUnl5ORUWFtKqVasIAK1fv17d197env7yl7+0uN7JkycTAKqurla3jR8/nqysrOi3337T6h8YGEi7du1S/56amkoA6L333qPS0lJSKBS0ceNGsrKyosWLF2u93pB4VNvr5uZGqamppFQq6ddff6WIiAgSiUS0detWnWNMnjyZTp48SZWVlXTo0CGSSqX0yCOPtLhuU4mMjKTIyEi9XqPvNre0XwMCAsjFxUWrva3jIJfLyd7engIDA9X7MDMzkx5++GGSSCR07Ngxk64/ODiYevToQRkZGS320UXf929CQoL6/NUlMzOTZDKZ+neFQkHe3t4EgHbu3Kluz8jI0NpOU563+fn51LdvX3Jzc6N9+/ZRRUUFXbhwgUaPHk22trZ08uTJdu+Dtnh5eVG3bt2MNp5KUlIS9e7dmwAQAHJ1daXt27e32F+pVBIACgoK0ntdiYmJ1AX+fLWLXC6nZcuWCR0GY8x8JXX6T0uhkv2hQ4fS559/rtE2ZcoUAkBxcXEa7XPmzGkxzvHjx99zsn/48GECQPPnz9foe/z4cerTpw/V1dWp21JTU2nMmDFa486aNYvEYjEplUqNdkPiUW3vl19+qdG3pqaGPD09SSqVUmFhodYYqampGv0jIyMJACkUihbXbwqGJPv6brMpkn0AdO7cOY327OxsAkByubxd4xm6/tGjR5Ozs7PeSau+79+1a9cSANq8ebPO5c2TfaLGxF4sFpO9vT1dvHhR3dZ8O0153s6ePZsA0BdffKHRt6CggGxsbCggIKCde6Btxk72GxoaaN68eSQWi+mjjz6iwsJCUigUFB8fT1KplKKjozU+Y5oSiUR0//33671OTvb/1KNHD/r444+FDoMxZr6SeBqPCWRnZ+PSpUtaJedUU3maV+VJSUkBADzxxBNaYx04cEBniUB9hISEwN/fH5999hlKSkrU7evWrcPChQs1plyEh4drTElQkcvlqKurw88//3xPsQB/bu+ECRM02m1sbBASEoLq6mqdX+0/8sgjGr97e3sDAPLz8+85JlMzdJuNyd7eXj11QsXPzw+enp7IyspCQUGBydZ97NgxlJaWIjAw0GTrAKCeLiYWi9v9mhEjRiAuLg5VVVWIiopCdXW1zn6mPG/37t0LKysrrTK17u7u8PX1xZkzZ3D9+vV2b1NHSkhIwNatW/Hiiy8iNjYWbm5ucHV1xfPPP6+uqb9p0yadr7W2tm5xf7O21dTU4NatW3xzLmOsVZzsm8COHTtQUVEBe3t7jbm7kyZNAgD8/PPP+PHHHwEAtbW1UCqVsLW1NXpJvKZeffVV3L59Gx9//DGAxgoO//vf/zB37lyNfkqlEitWrICfnx+cnZ3VsS9ZsgQAcPv27XuKo63tdXNzAwAUFhZqLZPJZBq/SyQSADD70p73ss3G5OTkpLO9V69eAICbN2+adP0dwdbWFgBQV1en1+tiYmIQHR2NCxcu6CzXacrzVjV2Q0MDZDKZ1n02Z8+eBfBniUVzc/DgQQDAuHHjtJaFhIQAaLxooUt9fb1Jbx7u7G7cuAEi4mSfMdYqTvaNrK6uDl988QVOnDgBItL6UV2lV13dt7GxgUwmQ01NDSoqKtoc39CKC9HR0fD29samTZtQW1uLDz/8EPPmzdNKXCZOnIhVq1Zh3rx5yM3NRUNDA4gI69evB9BY7eRe4mlre1UP/HF3d9drXHNmyDZbWVlpPXkUAMrKynSuoz3HoaSkROv4AX8m+aqk31Tr7wgeHh4AGv9p1de2bdswaNAg7NixAwkJCRrLTHne2tjYwMnJCdbW1qirq9P5uUFECA4O1nvsjlBVVdVmn8rKSq228vJyEJH6mDH9qb4daq3yFGOMcbJvZKmpqXB1dcXIkSN1Lv/b3/4GAPjyyy/VX19PmTIFAHSW5fT390dsbKz6dzs7O40kbNCgQeo6/q2xtrbGK6+8gps3b+LDDz/Ef/7zH8TExGj0uXv3Lk6cOAF3d3fExMSgZ8+e6iSupa/aDYlHtb3NS+7V1tYiPT0dUqkUYWFhbW6TJdF3mz08PHDjxg2NvoWFhVr1ylXacxxqamo0Hm4EAD/99BPy8/Mhl8s1ki5TrL8jPPTQQwBg0JQXBwcH7NmzB/b29upvwJoy5XkbERGB+vp6jcpIKh988AH69OljtvXoH330UQBAenq61rIjR44AaJwq1Zzq/FIdM6a/goICdOvWTeMfdcYY09Lx9wl0LHTwDbrh4eG0du3aVvsMHz5co/qHqsqHh4cHpaWlUXl5OV27do1eeuklcnNzoz/++EP92vHjx5NMJqOrV6/SyZMnydramn755Rf1cl03xKqUl5eTTCYjkUhEf/3rX3XGNnbsWAJAa9euJYVCQbdv36YjR45Qnz59CAAdOnRIo78h8TSvalJeXq5R1WTLli0a62hpm15//XWdN52amjGq8bS1zQsWLCAA9M9//pMqKirot99+o2nTppGXl5fOG2TbOg5yuZxkMhmFhIS0qxqPsdffUdV4GhoaqFevXi3eLKzrBt3mdu7cSQDarMZjzPO2qKiIfHx86L777qP9+/dTWVkZlZSU0Keffkp2dnZa+2DmzJkEgPLy8trcJ8215wZdfca/desWDRgwgMRiMW3YsIGKioqouLiYtm3bRnZ2duTl5UX5+flar9u1axcBoJSUFL23gW/QbbR582ZydXUVOgzGmHnjajzGcu3aNXXJOQD06KOPavX5/fffNfoAIDc3NyIiKi4upoULF1L//v1JLBaTh4cHTZ8+nXJzczXGyMnJoaCgILK3tydvb2911ZGUlBStsWfOnKkVw5IlSwgAZWVl6dwOhUJBL7zwAnl7e5NYLCY3NzeaM2cOLV26VD1u08oghsbTfHtlMhmFhYVRenq6uk9GRobWGG+88QYRkVb7hAkT2nWcjMGQZJ+ofdusUlZWRnPnziUPDw+SSqU0atQoyszMpICAAPU2v/766+r+LR0HFblcTl5eXvTLL79QWFgYOTo6klQqpdGjR9Px48dNvv6goKAOqcZDRLR8+XKytramGzduqNsUCoXWOdNahZuXXnpJ5z81pjxvS0pKaNGiRXTfffeRWCymnj17UmhoqNY/2ESN/5Q7ODhQfX19u/aJqqSurp/mJUMNGb+0tJSWLFlCgwcPJhsbG5JIJOTj40MLFizQqFDUVFRUFHl5edGdO3fatY6mONlvtHLlSho0aJDQYTDGzFuSiEjHJN5ORCQSITExEdOmTRM6FNZJREVFAQCSk5MFjqT9hgwZguLiYrOt6NISQ96/SqUSvr6+CA8Px6effmrC6IRRVlYGT09PzJw5E1u3brW48YHGh5/5+/tj165dmD59ut6vT0pKQnR0tM57ULqS2NhY/PDDDzh58qTQoTDGzFcyz9lnjHUqMpkMqamp2L17NzZv3ix0OEZFRIiJiUH37t2xatUqixsfAPLy8hAREYFly5YZlOizP5WWlsLFxUXoMBhjZo6TfcZYp+Pv74/Tp0/jwIEDKC8vFzocoykqKkJeXh7S09NNUrHK1OMDQHx8PFavXo3Vq1ebZPyu5NatW3B2dhY6DMaYmbNuuwtjzFLFxcWpn5EANE6LeeONN/Duu+8KGFXH6NevH9LS0oQOw6jc3d1x/Phxix0faKwuxIyjsrISvXv3FjoMxpiZ42SfsU5s8eLFWLx4sdBhMMZMoKqqCvb29kKHwRgzczyNhzHGGLNAnOwzxtqDk33GGGPMAlVWVnKyzxhrEyf7jDHGmAWqqamBVCoVOgzGmJnjZJ8xxhizQPX19ejWrZvQYTDGzFyXuEE3IyND6BBYJ6J6MFVSUpLAkXQN/P5lAFBXVwexWAyAzwmVhoYGWFnxNTvGWOu6xBN0GWOMdT6d/M9Xm5ycnLBu3TrMmzdP6FAYY+YrudNf2e/qfwxY1zFt2jQA/I0D65y+//57/OMf/8B///tfuLu7Y/78+SguLoarq6vQoQmGr+wzxtqDPyUYY4yZvaCgIOzZswdXr17F3Llz8dFHH6F3797461//iqysLKHDEwQR8bfXjLE2cbLPGGPMYnh6euKdd97B9evXsWXLFpw7dw5DhgzBqFGjkJqaKnR4HUosFqOurk7oMBhjZo6TfcYYYxbH1tYWf/3rX5GdnY0DBw5ALBZj0qRJGDFiBPbu3YuGhgahQzQ5Gxsb1NbWCh0GY8zMcbLPGGPMYolEIowfPx5Hjx7F2bNnMXDgQERGRmLgwIHYsGEDampqhA7RZCQSCe7cuSN0GIwxM8fJPmOMsU7B398fn3/+ObKzszFq1CgsWbIEAwcOxMcff9wpk2K+ss8Yaw9O9hljjHUqDz74ID777DP89ttveOqpp/Dqq69iwIAB2Lp1a6ea425ra9upv7lgjBkHJ/uMMcY6pT59+mDjxo34448/8PTTTyMmJgYDBgzAli1bUF9fL3R496x79+4oLy8XOgzGmJnjZJ8xxlin1qtXL7z//vvIycnB448/jgULFuDBBx9EQkKCRd/I6+TkhLKyMqHDYIyZOU72GWOMdQl9+/bF1q1bcenSJQQHB+O5557DQw89hLS0NKFDMwgn+4yx9uBknzHGWJfSt29fxMfHIzs7GwMGDMDEiRMxfvx4ZGdnCx2aXpycnKBUKoUOgzFm5jjZZ4wx1iU98MAD+O9//4uTJ0+ioqIC/v7+mDZtGv744w+hQ2sXJycn3Lp1S+gwGGNmjpN9xhhjXVpgYCCOHz+OhIQE/Pjjj/D19cWKFStw+/ZtoUNrVa9evVBUVCR0GIwxM8fJPmOMsS5PJBJhxowZyMnJwYoVK7Bx40Y8+OCDSElJETq0Fnl4eEChUHSKykKMMdPhZJ8xxhj7/2xtbfHaa68hJycHjz32GKZOnYqQkBBcvHhR6NC0eHh4oKGhATdv3hQ6FMaYGeNknzHGGGvG3d0dn3/+Ob777jsUFxdDLpfjlVdeQWVlpdChqbm7uwMACgoKBI6EMWbOONlnjDHGWhAUFIQzZ85g3bp1+Pe//w0/Pz+kpqYKHRaAxiv7AJCfny9wJIwxc8bJPmOMMdYKa2trvPLKK8jJycGoUaMwadIkzJgxA8XFxYLGZW9vjx49elhM9SDGmDA42WeMMcbawd3dHQkJCThw4ABOnDiBgQMHYsuWLYLG5OPjg7y8PEFjYIyZN072GWOMMT2MHz8eP/30E5555hm89NJLCA8Px40bNwSJxcfHB5cvXxZk3Ywxy8DJPmOMMaan7t27Y8OGDTh06BAuXrwIPz8//Pvf/+7wODjZZ4y1hZN9xhhjzEBjx47FhQsX8Pzzz+Nvf/sbIiIiUFJS0mHrV03jIaIOWydjzLJwss8YY4zdA6lUivfffx+HDh1CZmYmfH19cfDgwQ5Z98CBA1FdXc036TLGWsTJ/v9j787joqr3/4G/zjDDIuCIg7KJaShSiCPhhkqKKGQhJIJYrt2fZHmVXEvNpW9qlpFeSytUzHIL1Kv3i2vJzdww0RTzJpKYOyCLsokI8f794XfmOswgDM7MGeD9fDzmD875nM95zZkzw5vhcz6HMcYYM4DAwEBcuHABgwYNwssvv4x33nkHDx8+NOo+u3btCkEQcOHCBaPuhzHWeHGxzxhjjBmIXC7H1q1bsXHjRmzYsAF9+/ZFZmamUffXrl07LvYZY7XiYp8xxhgzsHHjxuHMmTMAgBdeeAGbN2822r66du3KxT5jrFZc7DPGGGNG4OnpiRMnTmDSpEkYN24cpk6dapRhPT4+PlzsM8ZqxcU+Y4wxZiSWlpb47LPPsHv3bmzatAn9+vUz+MW0Pj4+uHjxIioqKgzaL2OsaeBinzHGGDOysLAw/PLLLygvL0fPnj2RkpJisL579eqFhw8f4ty5cwbrkzHWdHCxzxhjjJlAly5dkJqaioEDB+Kll17CJ598YpD58Tt37gyFQoFffvnFACkZY00NF/uMMcaYidjb2yMxMRFLly7F+++/j/Hjxz/1OH5BENCjRw+cOnXKQCkZY00JF/uMMcaYCQmCgHfffRd79+7Fv/71LwQHB6OwsPCp+uzduzd/s88Y04mLfcYYY0wEISEhOH78OK5evYrevXvj0qVLDe6rd+/eyMrKQn5+vgETMsaaAi72GWOMMZF07doVJ0+ehIODA/r27YsjR440qJ9+/fpBIpE0eHvGWNMlkCGuDmKMmdSRI0eQmpqqsWzLli0AgNGjR2ss9/f3x4svvmiybIwx/ZWVlWH06NE4cOAAEhIStN7H9dGjRw/4+/vjiy++MEJCxlgjtV0qdgLGmP4qKysxZ84cyGQySCSa/6BbtGgRAKC6uhqVlZU4dOiQGBEZY3qwtbXFzp07MWvWLIwdOxYFBQWIjY3Vq4+BAwfiwIEDRkrIGGusuNhnrBEKDAxEmzZtkJeX98R2jo6OGDhwoGlCMcaeioWFBVauXAlXV1dMmzYNJSUleP/99+u9fWBgIFasWIHc3Fw4OTkZMSljrDHhMfuMNUISiQSjR4+GpaVlrW0sLS0xZswYWFhYmDAZY+xpzZ49G1999RUWLlyI9957r95z8b/44ouwsLDAzz//bOSEjLHGhIt9xhqp11577Ynzcz98+BCvvfaaCRMxxgxl0qRJ2Lx5M1auXInJkyejurq6zm3s7e3Rs2dP/PDDDyZIyBhrLHgYD2ONVK9evfDMM8/g2rVrOte7u7ujZ8+eJk7FGDOU1157DXZ2dhg5ciSKi4vx7bffQip98q/tl19+GWvWrAERQRAEEyVljJkz/mafsUZs7NixkMlkWstlMhkmTJjAv+wZa+SGDRuGf/3rX9i9ezdef/11/PXXX09sHxoaipycHJw5c8ZECRlj5o6LfcYasdGjR6OyslJreWVlJaKjo0VIxBgztODgYOzbtw979+7F//t//++JQ3qUSiXatWuHvXv3mjAhY8yccbHPWCPm5eUFb29vrW/wn3/+eXh7e4uUijFmaAMGDMC//vUvJCYmIiYmptaLdgVBwMsvv8zFPmNMjYt9xhq5cePGacy4I5PJMH78eBETMcaMYfDgwfj+++/x3XffYcaMGbW2Cw0NxZkzZ5CdnW3CdIwxc8XFPmON3GuvvaYxjreqqgojR44UMRFjzFjCw8Oxbds2fPHFF/jwww91thkyZAjs7OywY8cOE6djjJkjLvYZa+Tc3d3Ru3dvSCQSSCQS9O7dGx06dBA7FmPMSCIjI/HVV1/hgw8+wIoVK7TWW1tbIzQ0FNu3bxchHWPM3HCxz1gTMHbsWAiCAIlEgrFjx4odhzFmZDExMfjss88wa9YsJCYmaq2PiorC8ePHcevWLRHSMcbMCRf7jDUBqmE7RITIyEiR0zDGTGH69Ol45513MGHCBJw4cUJj3dChQ2Fvb4+dO3eKlI4xZi4Equ99uNkT8XzmjDH2CP9aMZ3q6mqMGDECR48eRWpqKjp37qxeN3bsWFy9ehVHjx4VMSFjTGTbudg3EEEQMG3aNPj7+4sdpdlauXIlgEffdjVHR44cgSAICAgIMPq+oqOj+XxnWlJTU/GPf/yDi30TKy8vx8CBA1FcXIwTJ07AwcEBALBnzx6EhYUhKysLHTt2FDklY0wkXOwbiiAISExM5FlQRBQVFQUAzfaitJKSEgCAvb290ffF5zvTJSkpCdHR0VzsiyA7Oxt9+vRBhw4d8MMPP8DKygpVVVVo37493nzzTXzwwQdiR2SMiWM7j9lnrImwt7c3SaHPGDM/Li4u+N///V+cPXsWkydPBgBIpVKMHj0aGzdufOJddxljTRsX+4wxxlgToFQqsW3bNmzcuBFr164FALzxxhu4du0aDh8+LG44xphouNhnjDHGmohXXnkF8+bNQ2xsLM6cOYPnn38ePXv2xDfffCN2NMaYSLjYZ4wxxpqQ//mf/8GAAQMwYsQIFBQU4G9/+xv++c9/4t69e2JHY4yJgIv9RiAtLQ0TJkxAx44dYWNjg9atW6Nr164YMWIEvvrqK2RlZYkdUQsR4fjx4/j73/8OT09PWFlZoW3btujfvz82b97MF/A1Y9euXUNYWBiKi4uRn58PQRDUD19fXzx48EBrm5rtBEFAjx49REhvHPv27YOnpyekUqlB+62qqkJCQgJ69eoFhUIBBwcH+Pn5YfXq1Xj48KFG2zlz5ui8ORNrfCQSCTZt2oSqqipMmDABo0aNgkQiwbfffit2NMaYCLjYN2PV1dWYPXs2+vbti7Zt22L//v24d+8eLl68iJUrV6K4uBiTJ09Gp06dUFVVJXZcDZcuXUL//v2RmZmJHTt2oKioCCdPnkT79u0xduxYzJ49W+xzExoJAAAgAElEQVSIT1RaWorOnTsjNDRU7ChNyrlz59CjRw8EBwejZcuWcHR0BBEhLS1NvX7atGla26napaamQqFQgIhw+vRpU8c3uKysLISFhWHu3LnIzc01eP9vvPEGJk6ciMGDB+PixYu4fPkyoqOjMXXqVIwYMUKjbUxMDObOnYsFCxYYPAczvbZt22LHjh344YcfsG7dOowZMwarV6/mC3UZa46IGQQASkxMNGif8+bNIwC0du1aneurqqpo6NChBIAqKysNuu+ndfHiRZJKpVRYWKixvKKighQKBVlZWdGDBw8Mus/IyEiKjIw0SF/FxcX07LPP0tChQw3SnzHZ2tpSv379TLrPhpzvRUVF1K5dO5o0aZLWurS0NLKysiKFQkEAaOvWrTr7SE1NJYVC0aDM5ui1116jZcuWUWVlJbm5uZGFhYXB+s7KyiIA5Ovrq7VuyJAhBIBOnTqlsfzcuXMkCEKDP8sSExOJf62Yl08//ZSkUilt2rSJBEGggwcPih2JMWZaSfzNvpnKyMjAxx9/DD8/P8TExOhsY2FhYbbfwnl5eaGyslJ9cxcVS0tLuLu7o6KiQudwDXNhb2+PrKws7Nu3T+woTcby5cuRk5ODhQsX6lxvbW2NLVu2QCKRYNKkScjMzDRxQtNLSEjAnDlzDD58BwBu3LgBAHjuuee01nl5eQEArl+/rrFcqVQiMjISM2fONLv/FrKGmTlzJoYOHYqFCxeiX79+WLNmjdiRGGMmxsW+mVq7di2qq6vVN4qqjb+/P4jIKMWCMdy7dw9//PEHfH19IZfLxY7DTISIsH79evTu3Ruurq61tgsJCcH8+fNRUlKCqKgos/6D0BBsbGyM1reXlxdkMhkyMjK01mVkZEAQBPj4+GitGz58OG7evIm9e/caLRszHUEQkJCQgLKyMtjY2GDPnj34888/xY7FGDMhLvbN1JEjRwAA3bp103vbgoICzJgxAx4eHrC0tISDgwOGDh2Kn376Sd1m9+7dGhc7Xr16FdHR0WjVqhUUCgVCQ0PVF/7eu3dP6+LIJUuWAHh0AeDjyyMjI3VmKi4uxvHjxxEWFgZnZ2d89913ej8vU6l5bFQFpz7HDADi4uLUbdu1a4e0tDQEBQXB3t4eLVq0QGBgII4fP65uv2TJEnX7/v37q5cfOHBAvdzR0VGr/7KyMhw/flzdxhz/8EtPT0dubi6USmWdbRctWoTg4GCcP38eU6dOrVf/hj7nH5eXl4fY2Fh06NABlpaWaNOmDSIiInDu3Ln6HwARODk5IS4uDunp6Zg3bx7y8vJQWFiI5cuX49ChQ1i4cCE8PT21tuvevTsA4ODBg6aOzIykTZs2iI+Px6FDh+Dg4IAvv/xS7EiMMVMSeyBRUwEDj9l3cXEhAPTLL7/otV12djZ17NiRnJycKDk5mYqKiujSpUsUERFBgiDQunXrNNqHh4cTAAoPD6cTJ05QaWkp/fjjj2RjY0M9e/bUaPvSSy+RRCKhy5cva+3X39+/1nHWixcvJgAEgAYOHEjnz5/X6znVlyHH7BP999iUl5frXF6fY0ZEpFQqydbWlvz9/dXt09LSqFu3bmRpaUmHDx/WaF/bGHw/Pz+d49XrGrMfGBhIrVu3ptTU1Po+9Trpe75v2rSJANBHH32kc31aWhrJ5XL1z3l5eeTu7k4AaPPmzerlusbsG/Ocv337Nj3zzDPk5OREe/fupZKSErpw4QINGDCArK2t6cSJE/U+BnUx9Jh9laSkJGrXrp36Pejo6EgJCQm1ti8qKiIAFBAQoPe+eMy+eRs1ahS1bNmS7Ozs6O7du2LHYYyZRhJ/KhuIsYr9mhfQ1WXChAkEgLZt26ax/MGDB+Tq6ko2NjaUk5OjXq4qfJKTkzXaR0ZGEgDKy8tTLzt06BABoMmTJ2u0PXbsGLVv3/6JFwlXVFTQxYsX6a233iILCwv68MMP9Xpe9WHqYr8+x4zoUbEPgM6ePaux/Pz58wSAlEqlxnJDF/sDBgwgBwcHgxam+p7vy5cvJwC0Zs0anetrFvtEjwp7mUxGtra2dPHiRfWymsfAmOf8+PHjCQBt2bJFo212djZZWVmRn59fPY9A3Qxd7FdXV1NMTAzJZDJasWIF5eTkUF5eHsXHx5ONjQ1FR0fX+p4VBIE6deqk9z652Ddvd+/eJVdXV7K0tKRly5aJHYcxZhp8ga65Uo1rzs/P12u7Xbt2AXh0F8XHWVlZISgoCOXl5Tr/Pd+zZ0+Nn93d3QEAt2/fVi8LCgqCr68vNm7ciIKCAvXyTz/9FNOmTXvi8BFLS0t4eXnhq6++QlhYGBYuXIhDhw7p9dzMTX2OmYqtra16eISKj48PXF1dkZ6ejuzsbKPlPHz4MAoLC+Hv72+0fdRFNRRKJpPVe5s+ffogLi4OZWVliIqKQnl5uc52xjznd+/eDYlEojUFq7OzM7y9vXHmzBncvHmz3s/JlDZt2oR169bhrbfewvTp0+Hk5ARHR0e8+eab6jn1V69erXNbqVRa6/FmjVerVq0QHx+Phw8f4pNPPmny18Qwxh7hYt9MDRgwAABw/vz5em9TUVGBoqIiWFtbw97eXmu9k5MTACAnJ0drXc2LZS0tLQFAa07mmTNn4v79++oxn5mZmThy5AgmTpxY75zDhg0DAOzZs6fe25ij+h4z4NEvWV3atm0LALhz546B05kXa2trAEBlZaVe28XGxiI6OhoXLlzAlClTtNYb85xX9V1dXQ25XK513cqvv/4KAPjjjz/0ek6mcuDAAQDA4MGDtdYFBQUBAPbv369z26qqKqNePMzEExoaiujoaBQVFWHdunVix2GMmQAX+2Zq0qRJkEql2LFjxxPbvfvuu5BIJMjIyICVlRXkcjkePHiAkpISrbaqm/Y4Ozs3OFd0dDTc3d2xevVqVFRU4LPPPkNMTIzOQqs2VlZWAIDCwsIG52hsCgoKdN41WFXkq4p+4NHdL2ve3RRArbe6FwTBQCmNx8XFBQBQVFSk97br169Hly5dsGHDBmzatEljnTHPeSsrK7Rq1QpSqRSVlZUgIp2PwMBAvfs2hbKysjrblJaWai0rLi4GEalfM9b0fPnll7CyssKiRYv4JluMNQNc7JspT09PLFq0CKdPn8aGDRt0trl06RLi4+MxcuRI9bzZw4cPBwCtafMqKiqQkpICGxsbhISENDiXVCrFO++8gzt37uCzzz7D999/j9jYWK12s2bNwpgxY3T2ofo2seYwiqbswYMH6rvEqvz222+4ffs2lEqlRmHl4uKCW7duabTNycnRmhNdpUWLFhp/HHTp0gVr1641YPqn17VrVwBo0JAXOzs77Ny5E7a2tjpnETHmOR8REYGqqiqNWZNUPvnkE7Rv395s56Pv3bs3ACAlJUVr3b///W8Aj4ZK1aQ691SvGWt6WrdujXfffRd3797FZ599JnYcxpiRcbFvxubPn485c+bgrbfewpw5c5CZmYmHDx/i1q1bSEhIQGBgILp164aEhAT1NsuWLUPHjh0xbdo07NmzByUlJcjMzMTrr7+O7OxsrFq1Sj20oaHefPNNyOVyzJ8/H6+++irc3Nx0ttu6dSs+/PBDXL16FRUVFbh69Sree+89bN68GX5+fnoN/Wns5HI55s2bh9TUVJSVleH06dMYM2YMLC0tsWrVKo22wcHBuH37NlavXo3S0lJkZWXhnXfe0fj2/3EvvPACMjMzcePGDaSmpuLKlSsICAhQrx80aBAUCgVOnjxp1Of4JEqlEm3btkV6enqDtvf29kZ8fLzOdcY855ctWwYPDw/87W9/w/79+1FUVITCwkLEx8fjww8/RFxcnMa1KmPGjIEgCEabx1yf/idPnozOnTvjq6++wueff447d+6goKAACQkJ+Pjjj+Hm5oZZs2ZpbaeaUjQ4ONjg+Zn5WLRoERQKBT744AP89ddfYsdhjBmTeBcHNy0w8Gw8jzt16hSNHTuW3N3dSSaTkb29PfXp04dWrVpFFRUVWu3z8/Np2rRp1LFjR5LJZCSXyykkJIRSUlLUbVJTU9VT8ake77//vvq5PP545ZVXtPYxe/ZsAkDp6ek6MxcVFdH69espJCSEOnToQJaWlmRnZ0d+fn60bNkyun//voGOzn8ZajaeXbt2aR2D0aNHN/iYKZVKcnNzo99//51CQkLI3t6ebGxsaMCAAXTs2DGt/d+7d48mTpxILi4uZGNjQ/3796e0tDTy8/NT9//ee++p22dkZFBAQADZ2tqSu7u71ow3AQEBos/GQ0Q0b948kkqldOvWLfWyvLw8rWP3pBlu3n77bZ0zEhnznC8oKKAZM2bQs88+SzKZjNq0aUPBwcH0448/auUYNGgQ2dnZUVVVVb2OSXJysta+VY+aU4Y2pP/CwkKaPXs2eXl5kZWVFVlaWpKHhwdNmTJFY4aix0VFRZGbmxs9fPiwXvt4HM/G07js3LmTANDUqVPFjsIYM54kgUjHQGKmN0EQkJiYiJEjR4odpdlS3W14+/btIifR1L17d+Tn55vtrC0N0ZDzvaioCN7e3ggNDcXXX39txHTiuHfvHlxdXTF69GijXPho7P6BRzc/8/X1xdatWzFq1Ci9t09KSkJ0dLTO61OYeerUqROuXbuG/Px8vqs5Y03Tdh7GwxgzCblcjuTkZOzYsQNr1qwRO45BERFiY2PRsmVLLF68uNH1DwBXrlxBREQE5s6d26BCnzVOmzdvRlVVFcaOHSt2FMaYkXCxzxgzGV9fX5w+fRr79+9HcXGx2HEMJjc3F1euXEFKSspTzXYlVv8AEB8fj6VLl2Lp0qVG6Z+Zpz59+qBXr17Ys2cPbty4IXYcxpgRcLHPmJHExcVBEASkp6fj1q1bEAQB8+fPFzuW6Dp06IA9e/agZcuWYkcxGGdnZxw7dgze3t6Nsn/g0exC/I1+8/Ttt98CAMaNGydyEsaYMXCxz5iRzJo1S2tO9iVLlogdizHGNHh5eSEwMBCHDx/Gb7/9JnYcxpiBcbHPGGOMNXPbtm2DRCLB+PHjxY7CGDMwLvYZY4yxZq5t27YYMWIEzp49i59//lnsOIwxA+JinzHGGGP45ptvIJPJmtUNDxlrDrjYZ4wxxhhsbW3x5ptv4vLly8jMzBQ7DmPMQKR1N2H1lZqaKnaEZk1106qkpCSRkzQPfL6zmvicaPz+8Y9/YPz48fD09BQ7CmPMQPgOugYiCILYERhjzCzwrxXGGDMb2/mbfQNKTEzEyJEjxY7RbEVFRQEAtm/fLnKSpk8QBD7fmZakpCRER0eLHYM9pcOHD8PCwgIBAQFiR2GMGQAX+4wxxhhTW7VqFW7duoVTp06JHYUxZgB8gS5jjDHG1ObOnYu0tDQcPXpU7CiMMQPgYp8xxhhjar169UK/fv3w6aefih2FMWYAXOwzxhhjTMPs2bOxZ88e/P7772JHYYw9JS72GWOMMaYhLCwMXl5eWLFihdhRGGNPiYt9M5CWloYJEyagY8eOsLGxQevWrdG1a1eMGDECX331FbKyssSO+ET79u2Dp6cnpNLar/e2s7ODIAgaD4lEAgcHByiVSkyePBlnzpwxYWomlmvXriEsLAzFxcXIz8/XOCd8fX3x4MEDrW1qthMEAT169BAhvXHU5z3UEFVVVUhISECvXr2gUCjg4OAAPz8/rF69Gg8fPtRoO2fOHCQmJhp0/6zxEgQB06dPx+bNm5GdnS12HMbYU+BiX0TV1dWYPXs2+vbti7Zt22L//v24d+8eLl68iJUrV6K4uBiTJ09Gp06dUFVVJXZcLVlZWQgLC8PcuXORm5v7xLalpaU4e/YsACA8PBxEhMrKSmRkZODDDz9ERkYGevTogTfeeAP37983RXwmgnPnzqFHjx4IDg5Gy5Yt4ejoCCJCWlqaev20adO0tlO1S01NhUKhABHh9OnTpo5vcPq8hxrijTfewMSJEzF48GBcvHgRly9fRnR0NKZOnYoRI0ZotI2JicHcuXOxYMECg+dgjdO4cePQunVrfPHFF2JHYYw9DWIGAYASExP12mbevHkEgNauXatzfVVVFQ0dOpQAUGVlpSFiGtRrr71Gy5Yto8rKSnJzcyMLC4sntj979iwBoPDwcJ3r3333XQJAYWFhVF1drXeeyMhIioyM1Hs7Y7K1taV+/fo1uf035HwvKiqidu3a0aRJk7TWpaWlkZWVFSkUCgJAW7du1dlHamoqKRSKBmU2R/q+h/SRlZVFAMjX11dr3ZAhQwgAnTp1SmP5uXPnSBAEvV9blcTEROJfK03L0qVLycHBgYqLi8WOwhhrmCT+Zl8kGRkZ+Pjjj+Hn54eYmBidbSwsLMz6W7aEhATMmTPHYEMPPv74Y/Tu3Rv/+7//i++//94gfTLzsXz5cuTk5GDhwoU611tbW2PLli2QSCSYNGkSMjMzTZzQ9Az9HnrcjRs3AADPPfec1jovLy8AwPXr1zWWK5VKREZGYubMmWb530Rmem+99RYqKyuRkJAgdhTGWANxsS+StWvXorq6Wn3X19r4+/uDiIxSDDwtGxsbg/YnCAKmTJkCAPjyyy8N2jcTFxFh/fr16N27N1xdXWttFxISgvnz56OkpARRUVE6x+83JYZ+Dz3Oy8sLMpkMGRkZWusyMjIgCAJ8fHy01g0fPhw3b97E3r17jZaNNR6tW7fGG2+8gdWrV6O6ulrsOIyxBuBiXyRHjhwBAHTr1k3vbQsKCjBjxgx4eHjA0tISDg4OGDp0KH766Sd1m927d2tczHj16lVER0ejVatWUCgUCA0NVV/4e+/ePa2LH5csWQLg0QV+jy+PjIw0wLOvXf/+/QEAJ0+eRGVlpVH3pVKf47lkyRL1MVBlBIADBw6olzs6OqqXx8XFQRAElJWV4fjx4+o2qj/aVOsFQUC7du2QlpaGoKAg2Nvbo0WLFggMDMTx48eNtn9TS09PR25uLpRKZZ1tFy1ahODgYJw/fx5Tp06tV/+Gfk88Li8vD7GxsejQoQMsLS3Rpk0bRERE4Ny5c/U/ACJwcnJCXFwc0tPTMW/ePOTl5aGwsBDLly/HoUOHsHDhQnh6empt1717dwDAwYMHTR2ZmampU6fiypUrfE4w1liJPZCoqYCeY5hdXFwIAP3yyy967Sc7O5s6duxITk5OlJycTEVFRXTp0iWKiIggQRBo3bp1Gu3Dw8PV4+RPnDhBpaWl9OOPP5KNjQ317NlTo+1LL71EEomELl++rLVff3//WsdRE5FBxuwTEZWXlxMAAkC3b99+Yn81NWTMvr7Hs7Yx8H5+fjrHktc1Zl6pVJKtrS35+/urX5+0tDTq1q0bWVpa0uHDh426/8DAQGrdujWlpqbW2kYXfc/3TZs2EQD66KOPdK5PS0sjuVyu/jkvL4/c3d0JAG3evFm9XNeYfWO+J27fvk3PPPMMOTk50d69e6mkpIQuXLhAAwYMIGtrazpx4kS9j0FdDD1mXyUpKYnatWunfl85OjpSQkJCre2LiooIAAUEBOi9Lx6z33QFBQVRaGio2DEYY/pL4k9lA2losV/zArm6TJgwgQDQtm3bNJY/ePCAXF1dycbGhnJyctTLVYVNcnKyRvvIyEgCQHl5eeplhw4dIgA0efJkjbbHjh2j9u3bP/EiYUMV+/fv3zdpsa/v8TRGsQ+Azp49q7H8/PnzBICUSmW9+mvo/gcMGEAODg56F636nu/Lly8nALRmzRqd62sW+0SPCnuZTEa2trZ08eJF9bKaz9OY74nx48cTANqyZYtG2+zsbLKysiI/P796HoG6GbrYr66uppiYGJLJZLRixQrKycmhvLw8io+PJxsbG4qOjq71PS0IAnXq1EnvfXKx33Tt2LGDJBIJXblyRewojDH98AW6YlGNW87Pz9dru127dgEAXnnlFY3lVlZWCAoKQnl5uc5/tfbs2VPjZ3d3dwDA7du31cuCgoLg6+uLjRs3oqCgQL38008/xbRp00wyBEQ1n7NMJtMYlmIsDT2ehmRra6seOqHi4+MDV1dXpKenG3WO68OHD6OwsBD+/v5G2wcA9dh7mUxW72369OmDuLg4lJWVISoqCuXl5TrbGfM9sXv3bkgkEoSGhmq0dXZ2hre3N86cOYObN2/W+zmZ0qZNm7Bu3Tq89dZbmD59OpycnODo6Ig333xTPaf+6tWrdW4rlUprPd6seQoPD4erqyvi4+PFjsIY0xMX+yIZMGAAAOD8+fP13qaiogJFRUWwtraGvb291nonJycAQE5OjtY6uVyu8bOlpSUAaF1wNXPmTNy/f199gWxmZiaOHDmCiRMn1jvn0zh27BiARxcm61MYNsTTHE9DatWqlc7lbdu2BQDcuXPHqPs3BWtrawDQ+zqM2NhYREdH48KFC+qLtx9nzPeEqu/q6mrI5XKt61p+/fVXAMAff/yh13MylQMHDgAABg8erLUuKCgIALB//36d21ZVVRn14mHW+EilUsTExCAhIaHJXzjPWFPDxb5IJk2aBKlUih07djyx3bvvvguJRIKMjAxYWVlBLpfjwYMHKCkp0WqruimPs7Nzg3NFR0fD3d0dq1evRkVFBT777DPExMToLKQMrbq6GmvWrAEA/P3vfzf6/hpyPCUSidadR4FHFznrIghCnTkKCgpARFrLVUW+qug31v5NwcXFBQBQVFSk97br169Hly5dsGHDBmzatEljnTHfE1ZWVmjVqhWkUikqKytBRDofgYGBevdtCmVlZXW2KS0t1VpWXFwMIlK/ZoypvPnmmygqKkJSUpLYURhjeuBiXySenp5YtGgRTp8+jQ0bNuhsc+nSJcTHx2PkyJHqebGHDx8OAFrT4lVUVCAlJQU2NjYICQlpcC6pVIp33nkHd+7cwWeffYbvv/8esbGxDe5PH3PnzsWpU6cwfPjwOqckNRR9j6eLiwtu3bql0TYnJ0drvnKVFi1aaBTnXbp0wdq1azXaPHjwQH0HWZXffvsNt2/fhlKp1Ci6jLF/U+jatSsANGjIi52dHXbu3AlbW1udU7Ia8z0RERGBqqoqjZmRVD755BO0b9/ebOej7927NwAgJSVFa92///1vAI+GStWkOr9UrxljKs7Ozhg+fDhPjcxYYyPe9QJNCxpwR1Eiojlz5pBMJqP33nuPLl26RBUVFXTz5k1av349ubi4UP/+/am0tFTdvubMI8XFxRozj9S8G6/qYsTy8nKN5e+9957OC0OJiIqLi0kul5MgCDRu3Lh6PY+GXKD7119/UW5uLu3evZsGDRpEAOhvf/sb3b9/v177rMkQs/HUdTynTJlCAOiLL76gkpISunz5Mo0cOZLc3Nx0XiD70ksvkVwup+vXr9OJEydIKpXS77//rl6vVCpJLpdTUFBQvWbjMfT+TTUbT3V1NbVt27bWi4V1XaBb0+bNmwlAnbPxGPI9kZubSx4eHvTss8/Svn376N69e1RQUEBff/01tWjRQusYjB49mgA06CLG+ryH9On/7t271LlzZ5LJZLRq1SrKzc2l/Px8Wr9+PbVo0YLc3Nx0XgS/detWAkC7du3S+znwBbpN3+HDhwkApaWliR2FMVY/PBuPoTS02CciOnXqFI0dO5bc3d1JJpORvb099enTh1atWkUVFRVa7fPz82natGnUsWNHkslkJJfLKSQkhFJSUtRtUlNT1bPaqB7vv/++Ouvjj1deeUVrH7NnzyYAlJ6eXmvu5ORkrb5UD11TVtZsIwgCyeVy8vHxobfffpvOnDnToOOn0pBin6h+x1Pl3r17NHHiRHJxcSEbGxvq378/paWlkZ+fn/p5vffee+r2GRkZFBAQQLa2tuTu7q41G41SqSQ3Nzf6/fffKSQkhOzt7cnGxoYGDBhAx44dM/r+AwICTDIbDxHRvHnzSCqV0q1bt9TL8vLytM6LJ81w8/bbb+v8o8aY74mCggKaMWMGPfvssySTyahNmzYUHBxMP/74o1aOQYMGkZ2dHVVVVdXrmOjzHmpI/4WFhTR79mzy8vIiKysrsrS0JA8PD5oyZYrGDEWPi4qKIjc3N3r48GG99vE4Lvabh+eff54mTZokdgzGWP0kCUQ6BgszvQmCgMTERIwcOVLsKM2WaujP9u3bRU5Sf927d0d+fr7ZzuhSm4ac70VFRfD29kZoaCi+/vprI6YTx7179+Dq6orRo0dj3bp1ja5/4NHNz3x9fbF161aMGjVK7+2TkpIQHR2t8xoU1nR8+umnWLp0KbKzs/lCbsbM33Yes88YMwm5XI7k5GTs2LFDfSF2U0FEiI2NRcuWLbF48eJG1z8AXLlyBREREZg7d26DCn3WfIwbNw5lZWXYs2eP2FEYY/XAxT5jzGR8fX1x+vRp7N+/H8XFxWLHMZjc3FxcuXIFKSkpTzUbllj9A0B8fDyWLl2KpUuXGqV/1nQ4OTlh8ODB+Pbbb8WOwhirBy72GRNBXFwcBEFAeno6bt26BUEQMH/+fLFjmUSHDh2wZ88etGzZUuwoBuPs7Ixjx47B29u7UfYPPJpdiL/RZ/U1fvx4HDx40Oj3IWGMPT0u9hkTwaxZs7Tma1+yZInYsRhjrF5effVV2NnZYevWrWJHYYzVgYt9xhhjjOnF2toaUVFR+Oabb8SOwhirAxf7jDHGGNPb+PHjceHCBZw7d07sKIyxJ+BinzHGGGN669evH7p06cIX6jJm5rjYZ4wxxliDvP7660hMTER1dbXYURhjteCbahmIIAjo06cP2rVrJ3aUZuvkyZMAgD59+oicpOnbsWMHn+9My82bN3Hy5Em+qVYzcunSJXh5eeHo0aPo37+/2HEYY9q2c7FvIKq7tzImlt9++w0A4OPjI3IS1tw1prtYs6f3/PPPIyQkBCtXrhQ7CmNMGxf7jDUVI0eOBAAkJSWJnIQx1pwsWLAAGzduxPXr1yEIgthxGGOatvOYfcYYY4w12IgRI3Dz5k2cPn1a7CiMMR242GeMMTPPw44AACAASURBVMZYg3Xv3h0eHh7YuXOn2FEYYzpwsc8YY4yxpzJixAi+VoMxM8XFPmOMMcaeyogRI3DlyhWkp6eLHYUxVgMX+4wxxhh7Kj179oS7uzv++c9/ih2FMVYDF/uMMcYYeyqCIGDYsGHYt2+f2FEYYzVwsc8YY4yxpxYcHIxff/0VeXl5YkdhjD2Gi33GGGOMPbVBgwbBwsICKSkpYkdhjD2Gi33GGGOMPTV7e3v4+/vj4MGDYkdhjD2Gi33GGGOMGURwcDAOHDgAIhI7CmPs/3CxzxhjjDGDCAkJQU5ODi5cuCB2FMbY/+FinzHGGGMG8cILL6Bt27b44YcfxI7CGPs/XOwzxhhjzCAkEgmCgoJ43D5jZoSLfcYYY4wZzJAhQ3Ds2DE8fPhQ7CiMMXCxzxhjjDED6t+/P8rLy/Hrr7+KHYUxBi72GWOMMWZAnTt3hpOTE06cOCF2FMYYuNhnjDHGmIH16dMHqampYsdgjIGLfcYYY4wZmL+/P44dOyZ2DMYYuNhnjDHGmIH17dsXOTk5+PPPP8WOwlizx8U+Y4wxxgyqR48esLS05HH7jJkBLvYZY4wxZlA2NjZ44YUXeNw+Y2aAi33GGGOMGZy/vz8X+4yZAS72GWOMMWZw3bt3x3/+8x9UVVWJHYWxZo2LfcYYY4wZnI+PDyoqKvDHH3+IHYWxZo2LfcYYY4wZ3PPPPw+pVIrffvtN7CiMNWtc7DPGGGPM4KysrNCpUycu9hkTGRf7jDHGGDOKbt26cbHPmMi42GeMMcaYUfj4+HCxz5jIuNhnjDHGmFH4+Pjgzz//RHFxsdhRGGu2uNhnjDHGmFF07doVRISMjAyxozDWbHGxzxhjjDGjeOaZZyCVSvHnn3+KHYWxZouLfcYYY4wZhVQqhZubG65evSp2FMaaLS72GWOMMWY0HTp0wLVr18SOwVizJRU7AGNMf9999x1WrFiBv/76S70sPz8fwKML4lQsLCwwY8YMjBs3zuQZGWMMeFTs8zf7jImHi33GGqE+ffogPT1d57qcnByttowxJpYOHTrg1KlTYsdgrNniYTyMNUKenp5QKpUQBKHWNoIgQKlUwtPT04TJGGNM0zPPPIOrV6+CiMSOwlizxMU+Y43UuHHjYGFhUet6qVSK8ePHmzARY4xp69ChA8rLy3Hnzh2xozDWLHGxz1gjNWrUKFRXV9e6vqqqCiNHjjRhIsYY09a+fXsAwI0bN0ROwljzxMU+Y42Uq6sr+vbtC4lE+20skUjQr18/uLm5iZCMMcb+y9HREQBQUFAgchLGmicu9hlrxMaOHatzuSAIPAMPY8wstGzZElKpFIWFhWJHYaxZ4mKfsUYsKipK57h9QRAQEREhQiLGGNMkCAIcHBy42GdMJFzsM9aIOTg4YMiQIRoFv4WFBUJCQqBQKERMxhhj/6VQKLjYZ0wkXOwz1siNGTNG40JdIsKYMWNETMQYY5pat27NxT5jIuFin7FGLjw8HFZWVuqfLS0tMWzYMBETMcaYJi72GRMPF/uMNXItWrTA8OHDIZPJIJPJMHz4cNja2oodizHG1LjYZ0w8XOwz1gS8/vrrqKysRGVlJV5//XWx4zDGmAZ7e3uUlpaKHYOxZkla24qbN2/ixIkTpszCGGugv/76Cy1atAARobi4GElJSWJHYozVQ9++fdGuXTuxYxidTCZDZWWl2DEYa5ZqLfZPnDiB6OhoU2ZhjBnA6NGjxY7AGKunxMTEZnGna6lUysU+YyKptdhXISJT5GCMPaWff/4ZgiDgxRdfrLNtUlISoqOj+f1tAlFRUQCA7du3i5yEmRtBEMSOYDL8zT5j4qmz2GeMNQ4BAQFiR2CMMZ242GdMPFzsM9ZESCR8vT1jzDxJpVJUVVWJHYOxZomrA8YYY4wZFX+zz5h4uNhnjDHGmFHxBbqMiYeLfcYYY4wZVUVFhcadvhljpmOwYj8uLg6CIEAQBLOdM3j37t3qjIIg4MGDB2JHapQaw2vdWOzbtw+enp6QSvW7fCYsLAyCIGDJkiVGSsbMxbVr1xAWFobi4mLk5+drfIb5+vrq/Byr2U4QBPTo0UOE9MbR0PdNXaqqqpCQkIBevXpBoVDAwcEBfn5+WL16NR4+fKjRds6cOUhMTDTo/puy8vJy2NjYiB2DsWbJYMX+rFmzQERQKpWG6tLgXn31VRARwsPDxY7SqD3ptS4tLUXnzp0RGhoqQjLzzVJTVlYWwsLCMHfuXOTm5uq17XfffYfk5GQjJdOfOR/nxu7cuXPo0aMHgoOD0bJlSzg6OoKIkJaWpl4/bdo0re1U7VJTU6FQKEBEOH36tKnjG9zTvG/q44033sDEiRMxePBgXLx4EZcvX0Z0dDSmTp2KESNGaLSNiYnB3LlzsWDBAoPnaIq42GdMPI1qGI+dnR369+8vdgz2BESE6upqVFdXm2R/TzonTJ1FHwsWLEDfvn1x5swZ2Nvb13u727dvY9q0aRg7dqwR0+nHnI9zTY3pM6S4uBjDhg3DiBEjMGXKFK31VlZWUCgUiI+Px7Zt20RIaHoNfd/Ux5UrV7B582b4+vrio48+Qtu2baFQKPDuu+9iyJAh2LNnj/qPLADw8PDArl27sHTpUr5jdT08ePCAi33GRMJTbzKDsre3R1ZWltgxAJhXlpoSEhIa9IsvJiYGUVFRCAgIwKZNm4yQTH/mfJwbs+XLlyMnJwcLFy7Uud7a2hpbtmzByy+/jEmTJsHPzw+enp4mTmlaDX3f1MeNGzcAAM8995zWOi8vL/z444+4fv06evbsqV6uVCoRGRmJmTNnIiIiwuDDipoS/mafMfE0qm/2GWsqGvJLb8OGDfjPf/6DuLg4IyRi5oSIsH79evTu3Ruurq61tgsJCcH8+fNRUlKCqKioJn8dkjGLRS8vL8hkMmRkZGity8jIgCAI8PHx0Vo3fPhw3Lx5E3v37jVatqaAi33GxGO0Yj8jIwOvvPIK5HI5WrRogcDAQBw/flyjTVVVFRITEzFkyBA4OzvDxsYGPj4+WLVqlcaQANUFoWVlZTh+/Lj6grOa36IUFBRgxowZ8PDwgJWVFdq1a4fBgwdj48aNKC8v18qYk5OD6OhotGrVCgqFAqGhoXp/Q1nzot+rV6/Wq8/Hs1paWsLBwQFDhw7FTz/9VGvfly5dwsiRI6FQKNTL1q9fr9Hm2rVriI6Ohr29PRQKBcaOHYu7d+/i6tWrGDZsGOzt7eHi4oKYmBiUlJQ06PWo77F4vPBo1aqV1gWDqodEIsHNmzf1ylDXOVHXxdgNOf71fW2N4ebNm5g5cyY2bNhg8OELT6O246zvsat50XdaWhqCgoJgb2+v8/NjyZIl6vaPD8s5cOCAermjo6NW/3V9hpiL9PR05Obm1usaqEWLFiE4OBjnz5/H1KlT69W/Mc//vLw8xMbGokOHDrC0tESbNm0QERGBc+fO1f8AiMDJyQlxcXFIT0/HvHnzkJeXh8LCQixfvhyHDh3CwoULdf7npHv37gCAgwcPmjpyo1JeXo4WLVqIHYOx5olqkZiYSE9YXSulUklyuZwCAwPp2LFjVFJSQmlpadStWzeytLSkw4cPq9smJycTAProo4+osLCQ8vLy6PPPPyeJREKzZs3S6tvW1pb69eunc7/Z2dnUsWNHcnZ2puTkZCouLqacnBxavHgxAaCVK1eq24aHhxMACg8PpxMnTlBpaSmlpKRQy5YtqWfPnno/59r6/PHHH8nGxkarT1VWJycnSk5OpqKiIrp06RJFRESQIAi0bt06nX0PGDCAfvrpJyorK6OTJ0+ShYUF5eXlabSJiIig06dPU2lpKX333XcEgIYOHUrh4eF09uxZKikpoa+//poA0PTp0zX2o+/roVQqyc3NrdZjUV5erl4ml8uppKREo92HH36o3l9DMzzpnKgtS0OPf31e24Zwc3MjCwuLJ7YJCQmhyZMnq3/etGkTAaDFixc3aJ8NfX/XRtdxfnx5fY+dUqkkW1tb8vf3V7ev7fODqPbX38/PjxQKhdbyus6XwMBAat26NaWmptb3qdcpMjKSIiMj9dpG9fo+/t54XFpaGsnlcvXPeXl55O7uTgBo8+bN6uWpqalax8GY5//t27fpmWeeIScnJ9q7dy+VlJTQhQsXaMCAAWRtbU0nTpzQ6zg8SX3eNw2RlJRE7dq1IwAEgBwdHSkhIaHW9kVFRQSAAgIC9N4XAEpMTHyauI3GwIED6e233xY7BmPNUZJRin0AWr8sz58/TwBIqVSqlyUnJ9PAgQO1+hgzZgzJZDIqKirSWP6kX9QTJkyo9YPzpZde0lnsJycna7R7/fXXCYC6gNZHbX1GRkZq9anKum3bNo22Dx48IFdXV7KxsaGcnBytvvft21fn/vfu3aux3NvbmwDQzz//rLG8Y8eO1KVLF41l+r4eT1PsJyYmkiAINGHChKfK0JBiv6HHvz6vbUPUVbSsXbuWnn32WSotLVUva2zFfn2Pnerz4+zZsxrLdX1+EBm+2B8wYAA5ODgYtChtSLG/fPlyAkBr1qzRub5msU/0qLCXyWRka2tLFy9eVC+reRyMef6PHz+eANCWLVs02mZnZ5OVlRX5+fnV8wjUzdDFfnV1NcXExJBMJqMVK1ZQTk4O5eXlUXx8PNnY2FB0dDRVVlbq3FYQBOrUqZPe+2xOxf5zzz1HH3zwgdgxGGuOkowyjMfa2hq9e/fWWObj4wNXV1ekp6cjOzsbABAaGqrxb2MVpVKJyspK/Oc//6n3Pnft2gUAGDp0qNa6/fv365ye7vELrQDAzc0NwKMZTxqqZp/u7u5afaqyvvLKKxptraysEBQUhPLycp3/Eu7Vq1ed+685l7ZqvG/N5W5ublrP05CvR0337t2DnZ0dAOCXX37B+PHj8eKLLyI+Pt5kGVQaevzr89oa2vXr1zF79mxs2LABtra2RtuPselz7GxtbdVDI1R0fX4Yw+HDh1FYWAh/f3+j7aM+VMOhZDJZvbfp06cP4uLiUFZWhqioKJ1DFwHjnv+7d++GRCLRmobV2dkZ3t7eOHPmjHrInrnZtGkT1q1bh7feegvTp0+Hk5MTHB0d8eabb6rn1F+9erXObaVSaa3Hmz2Sm5uLtm3bih2DsWbJKMW+akx5Tao3+p07dwAARUVFWLhwIXx8fODg4KAeGzp79mwAwP379+u1v4qKChQVFcHa2lqv8cxyuVzjZ4nk0eF4mikEa/ZpaWmp0WddWZ2cnAA8up6gpvoUey1bttT4WSKRwMLCQmuspIWFhdbzNNTr8STXr19HeHg43N3d8c9//lN9fEyV4WmOf12vrTEkJyejqKgIAwcO1Bg/rZp6c8GCBeplly9fNlqOp6XPsWvVqpXOPmp+fjRl1tbWAIDKykq9touNjUV0dDQuXLigc7pOY57/qr6rq6shl8u1rs359ddfAQB//PGHXs/JVA4cOAAAGDx4sNa6oKAgAI++ONKlqqqKLz59gqqqKty9e1d9fjHGTMsoxX5RUZHO5apf0qpf2sOGDcPixYsRExODzMxMVFdXg4iwcuVKAI9mpHicrj8ggEffSMnlcjx48EDrolNzU1dW1Y1inJ2dTR1N79dDXyUlJQgNDUVlZSX27NmD1q1bP3WG2s6J2pjz8dfl73//O4hI66GadnPx4sXqZZ06dRI5rWEUFBToPNdqfn4Aj/6YrXlnU+DRf5J00fd8EYuLiwuA2j9Ln2T9+vXo0qULNmzYoDU9qzHPfysrK7Rq1QpSqRSVlZU6z1siQmBgoN59m0JZWVmdbUpLS7WWFRcXg4jUrxnTdufOHRARf7PPmEiMUuyXlpYiPT1dY9lvv/2G27dvQ6lUwsXFBX/99ReOHz8OZ2dnxMbGok2bNupfxLX9O7RFixYav9i7dOmCtWvXAng0/Rnw6DbqNfn6+mL69OkGeW6GoMpac6q2iooKpKSkwMbGBiEhISbN1JDXQ9/+R40ahYyMDOzcuVNjVovIyEjs3r3b4OdEbczx+LP/evDggcbNiwDtzw8VFxcX3Lp1S6NtTk4Orl+/rrPvhpwvYujatSsANGjIi52dHXbu3AlbW1t8+eWXWuuNef5HRESgqqpKa+Y1APjkk0/Qvn17VFVVNahvY1MNPU1JSdFa9+9//xvAo6FSNanOP9VrxrSp/ojkYp8xcRil2Le1tcWUKVPwyy+/oKysDKdPn8aYMWNgaWmJVatWAXg0jGTgwIHIycnBp59+ivz8fJSXl+Onn37C119/rbPfF154AZmZmbhx4wZSU1Nx5coVBAQEAACWLVuGjh07Yvr06di7dy9KSkpw8+ZNTJ48GdnZ2WZV7KuyTps2DXv27EFJSQkyMzPx+uuvIzs7G6tWrTL5vzsb8nroY/r06di3bx/Wrl2LgQMHGizDk86J2pjj8Wf/JZfLMW/ePKSmptb6+aESHByM27dvY/Xq1SgtLUVWVhbeeeedWouKus6XQYMGQaFQ4OTJk0Z9jnVRKpVo27at1pcm9eXt7a11PYyKMc//ZcuWwcPDA3/729+wf/9+FBUVobCwEPHx8fjwww8RFxenMd3pmDFjIAgC/vzzzwbtry769D958mR07twZX331FT7//HPcuXMHBQUFSEhIwMcffww3NzfMmjVLazvVlKLBwcEGz99U6PqvHGPMhGq7dFff2To+/fRT9VRlbm5udOrUKQoMDCQ7OzuysbGhAQMG0LFjxzS2ycvLo0mTJpG7uzvJZDJycnKiCRMm0Jw5c9R9PT57Q0ZGBgUEBJCtrS25u7trzVSRn59P06ZNo44dO5JMJiMXFxcaNWoUZWZmEtGjmSlU/aoe77//PtGjMQMaj1deeaVez7uhfdbMKpfLKSQkhFJSUp7Yd83XpLb9p6WlaS1ftmwZHT16VGv5okWL9Ho9Hn+tH9/nrl27tJaPHj2aTp8+rfN5PP7YtWuXQc+J2rI87fF/2vNFRTXFqK5HzakPHzdp0iSd24SEhOi1f0PNxlPbcW7osVPN8PT7779TSEgI2dvb1/r5QUR07949mjhxIrm4uJCNjQ3179+f0tLSyM/PT93/e++9p25f12dIQECAWczGQ0Q0b948kkqldOvWLfWyvLw8reP3pBlu3n77bZ2zEhnz/C8oKKAZM2bQs88+SzKZjNq0aUPBwcH0448/auUYNGgQ2dnZUVVVVb2Oib7vG337LywspNmzZ5OXlxdZWVmRpaUleXh40JQpUzRmKHpcVFQUubm50cOHD+u1j8ehmczG880335C1tTVVV1eLHYWx5ihJINI9EDspKQnR0dFPPU6bMWZ+zPX93b17d+Tn55vtjC0NERUVBQDYvn27XtsVFRXB29sboaGhBvnvmrm5d+8eXF1dMXr0aKxbt67R9Q88uvmZr68vtm7dilGjRum9vSAISExMxMiRI42QznwsWLAAu3btwoULF8SOwlhztN1od9BljDHWcHK5HMnJydixYwfWrFkjdhyDIiLExsaiZcuWWLx4caPrHwCuXLmCiIgIzJ07t0GFfnNy+fLlJjOBAGONERf7jDFmpnx9fXH69Gns378fxcXFYscxmNzcXFy5cgUpKSlGmfnK2P0DQHx8PJYuXYqlS5capf+mJCsri4t9xkTExf4T1JwnWtfjgw8+EDsmMxN8vjRcXFwcBEFAeno6bt26BUEQMH/+fLFjmYUOHTpgz549WvfQaMycnZ1x7NgxeHt7N8r+gUezC/E3+vVz+fJleHh4iB2DsWZLWneT5svcxjMz88bnS8PNmjVL50wnjLHGraCgAHfv3uVv9hkTEX+zzxhjjDGjyMrKAgAu9hkTERf7jDHGGDOKP/74A5aWlnB3dxc7CmPNFhf7jDHGGDOKc+fOwdvbW+Nmaowx0+JinzHGGGNGcfbsWXTv3l3sGIw1a3X+qa26IQxjrOlQ3bSK39/Gd/LkSQB8rFnzlJ6ejvDwcLFjMNas8Tf7jDHGGDO469evIz8/n7/ZZ0xkdX6zr+8t3hlj5i8pKQnR0dH8/jYB1Tf6fKxZTYIgiB3BqM6dOwdBENCtWzexozDWrPE3+4wxxhgzuLNnz8LDwwNyuVzsKIw1a1zsM8YYY8zgzp49C6VSKXYMxpo9LvYZY4wxZlBEhNTUVPj7+4sdhbFmj4t9xhhjjBlURkYG7ty5gxdffFHsKIw1e2ZZ7NvZ2UEQBJ2PFi1aQKlUYsWKFfjrr79Ezbl7926NbA8ePHhi+/z8fI32vr6+Orep2U4QBPTo0cNYT8Ok4uLi1M+pXbt2YsdhzOxdu3YNYWFhKC4u5s+Q/7Nv3z54enoa/EZNVVVVSEhIQK9evaBQKODg4AA/Pz+sXr0aDx8+1Gg7Z84cJCYmGnT/TcmRI0dgZ2fHM/EwZgbMstgvLS3F2bNnAQDh4eEgIhARiouLceDAAQDAzJkzMXv2bDFj4tVXXwUR1XsOYUdHRxAR0tLSADyaqWDatGm1tktNTYVCoQAR4fTp0wbNLpZZs2aBiHSO4ywtLUXnzp0RGhoqQjLzzcKar3PnzqFHjx4IDg5Gy5Ytm/1nSFZWFsLCwjB37lzk5uYavP833ngDEydOxODBg3Hx4kVcvnwZ0dHRmDp1KkaMGKHRNiYmBnPnzsWCBQsMnqMpOHr0KPz9/SGTycSOwlizZ5bFfm3s7e3x4osv4uuvvwYAxMfHo7KyssH92dnZoX///oaKpxcrKysoFArEx8dj27ZtomQwN0SE6upqVFdXm2R/T3r9TZ2Fift+NIf911RcXIxhw4ZhxIgRmDJlitb65vgZsmDBAvTt2xdnzpyBvb29Qfu+cuUKNm/eDF9fX3z00Udo27YtFAoF3n33XQwZMgR79uxR/5EFAB4eHti1axeWLl2KpKQkg2ZpCo4ePYqAgACxYzDG0MiKfZUuXboAAO7fv4+ioiKR0zSMtbU1tmzZAolEgkmTJiEzM1PsSKKzt7dHVlYW9u3bJ3YUs8rCmqfly5cjJycHCxcu1Lm+OX6GJCQkYM6cOQYfvgMAN27cAAA899xzWuu8vLwAPLpJ1OOUSiUiIyMxc+ZMVFVVGTxTY3Xt2jVcv36dx+szZiYaZbF/6dIlAECbNm3g6OgocpqGCwkJwfz581FSUoKoqKg6x/wzxpoHIsL69evRu3dvuLq61tquuX2G2NjYGK1vLy8vyGQyZGRkaK3LyMiAIAjw8fHRWjd8+HDcvHkTe/fuNVq2xubIkSOwsrJCr169xI7CGEMjK/ZLS0tx9OhRvPXWW2jRooV6OI9KVVUVEhMTMWTIEDg7O8PGxgY+Pj5YtWqVxnAM1UWiZWVlOH78uPoCtprfFhUUFGDGjBnw8PCAlZUV2rVrh8GDB2Pjxo0oLy/XypeTk4Po6Gi0atUKCoUCoaGhyMrKeuJzWrRoEYKDg3H+/HlMnTq1Xsfh8VyWlpZwcHDA0KFD8dNPP6nb1Lx4+NKlSxg5ciQUCoV62fr16zXaXLt2DdHR0bC3t4dCocDYsWNx9+5dXL16FcOGDYO9vT1cXFwQExODkpKSBh372jzpYudWrVrVesG2RCLBzZs39cpQ1+tf14XXDTn+V69e1fvcMEf1ee5LlixRP+/Hh8UcOHBAvfzxP9Lrej1qXtSdlpaGoKAg2Nvbo0WLFggMDMTx48eNtn8xpKenIzc3t15zlJvqM6S+53BeXh5iY2PRoUMHWFpaok2bNoiIiMC5c+fqfwBE4OTkhLi4OKSnp2PevHnIy8tDYWEhli9fjkOHDmHhwoXw9PTU2k51AerBgwdNHdlsHTx4EH379jXqH2eMMT1QLRITE+kJq43u7NmzBEDno0uXLrRz506tbZKTkwkAffTRR1RYWEh5eXn0+eefk0QioVmzZmm1t7W1pX79+uncf3Z2NnXs2JGcnZ0pOTmZiouLKScnhxYvXkwAaOXKleq24eHhBIDCw8PpxIkTVFpaSikpKdSyZUvq2bOnVt9paWkkl8vVP+fl5ZG7uzsBoM2bN6uXp6amkkKh0JnLycmJkpOTqaioiC5dukQREREkCAKtW/f/2bvzuKjq/X/grwEGREAgVPbc0y4pkpobhgiKJuoVQSwtvaVZfg2XNHGvXCokzT3cMs0FtLSLSqao3VQs9LpUZriUiiyyJJuAjHx+f/ibuQ4zCDPMcAZ4PR8P/uCcz5zzOssMb858zudsVGuvzObn5yeOHz8uioqKxJkzZ4S5ubnIyspSaxMSEiLOnj0rCgsLxbZt2wQAMWjQIDFs2DBx/vx5UVBQID7//HMBQEybNq1G+97b21u4u7trTFdmKS4uVk2zt7cXBQUFau0+/PBD1fr0zfCk419ZFn33/+PnxpEjR4S1tbXWc6O26PP+1nXbK9u/Xbp00Tivn9ReydvbW9jY2IiePXuq9mVycrLo1KmTsLS0FCdOnDDq+v39/cVTTz0lkpKSKm2jTWhoqAgNDdXpNdu3b9c4vx8nxWdIdc7htLQ00aJFC+Hs7CwOHjwoCgoKxK+//ir8/PxEo0aNxOnTp3XaD0/i7u4uzM3NDbY8pbi4OOHh4aH6e9O0aVOxefPmStvn5eUJAKJPnz46rwuAiI2NrUlck/Pw4UPRvHlzERUVJXUUInokzuSL/WHDhqmmlZWViRs3boiFCxcKmUwmQkJCxIMHD1Tz4+PjRd++fTWWNWbMGCGXy0VeXp7a9Cf9cR83blylH8QDBw7UWuzHx8ertXvllVcEAFVRrVTxD7UQj/4oy+VyYWNjI37//XfVtIp/qJW5du3apTa9pKREuLm5CWtra5GRkaGR7dChQ1q38/E2Bw8eVJvu5eUlAIgffvhBbXqrVq1E+/bt1abpuu9rUuzHxsYKmUwmxo0bV6MM+hT7+u7/iudGaGio1nOjtujz/tZ1241R7AMQ58+fV5t+6dIlAUB4e3tXa3n6rt/Pz084OjrqXLDqU+xHRUUJAGLt2rVa50vxGVKd7VenRAAAIABJREFUc3js2LECgNixY4da2/T0dGFlZSW6dOlSzT1QNUMX++Xl5WLChAlCLpeL5cuXi4yMDJGVlSViYmKEtbW1CA8PF2VlZVpfK5PJRNu2bXVeZ30s9n/66ScBQPzyyy9SRyGiR+LqVDceCwsLtGrVCu+//z5eeeUVfPPNN1i1apVqfnBwsNrX0Ere3t4oKyvDb7/9Vu117du3DwAwaNAgjXkJCQlah7vr1q2b2u/u7u4AgLS0tCrX16NHD0RHR6OoqAhhYWFauwk9nmvw4MFq062srBAQEIDi4mKtXydXp+9kxXG4lX2FK053d3fX2CZD7vuK7t27B1tbWwDATz/9hLFjx+LFF19ETExMrWVQ0nf/Vzw3PD09AVTv3DAV+m67IdnY2GiM292xY0e4ubnh4sWLSE9PN9q6T5w4gdzc3Fp5Iqiy65guwxYa+zOkOufw/v37YWZmpjFkrYuLC7y8vHDu3DlVtztTs337dmzcuBFvvfUWpk2bBmdnZzRt2hRvvvmmakz9NWvWaH2thYVFpfu7oUlISICHhwe8vLykjkJE/1+dKvYfp7zLPzExUTUtLy8PCxYsQMeOHeHo6Kjqa6ocj//+/fvVWnZpaSny8vLQqFEjnYZ3s7e3V/vdzOzR7q3u8I0REREIDw/Hr7/+qnWovapyOTs7A3h070BFNjY2Va6/SZMmGvnNzc3RuHFjtenm5uYa22Soff8kt27dwrBhw+Dp6YlvvvkGlpaWtZqhJvu/4rmhzF5XhvasybYbkoODg9bpzZs3BwDcvXvXqOuvLY0aNQIAnYcWNuZnSFXnsHLZ5eXlsLe317i/5r///S8A4OrVqzptU21RPsMlMDBQY15AQACAR4WsNgqFgv3T/7+EhAS89NJLkMlkUkchov+vzhb7QggA6gXckCFDsGjRIkyYMAEpKSkoLy+HEAIrVqxQe41SZR9GVlZWsLe3R0lJicaNqMa2adMmtG/fHlu2bMH27dt1yqV8yIyLi0utZH2crvteVwUFBQgODkZZWRkOHDiAp556qsYZdP1jZMr739j02XYzMzONp44Cj76p0aY6xyMnJ0fruaQs8pVFv7HWX1tcXV0BQK+hhaX6DLGysoKDgwMsLCxQVlamehhixR9/f3+dl10bioqKqmxTWFioMS0/Px9CCNUxa8iys7ORnJys9RtxIpJOnS32f/zxRwD/+2r54cOHOHXqFFxcXBAREYFmzZqp/nhX9vVq48aN1YqB9u3bY8OGDQAeDacGQOs46z4+Ppg2bZrhNuYxtra2+Prrr2FjY4N169ZpzFfmqjjMW2lpKRITE2FtbY2goCCjZKuMPvte1+WPGjUKV65cwddff602IkZoaCj2799v8ONfGVPc/7VF1213dXXFnTt31NpmZGRojFWuVJ3jUVJSovZgIwD45ZdfkJaWBm9vb7WCyxjrry3PPfccAOjV5UXKz5CQkBAoFAq10ZGUPvnkEzz99NMmOx599+7dAah/W6x07NgxAI+6SlWkPMeUx6whO3z4MMzNzdGvXz+poxDRY+pUsa9QKPDXX3/h/fffx86dO+Hu7o7p06cDeNS1pG/fvsjIyMCyZcuQnZ2N4uJiHD9+XGOITqXnn38eKSkpuH37NpKSknDjxg3VE/8++ugjtGrVCtOmTcPBgwdRUFCA1NRUTJo0Cenp6UYr9gHAy8tLoz+6kjLX1KlTceDAARQUFCAlJQWvvPIK0tPTsXLlStVX8bVFn32vi2nTpuHQoUPYsGED+vbta7AMTzr+lTHF/V9bdN32AQMGIC0tDWvWrEFhYSGuX7+OKVOmqF19f1x1joe9vT3mzJmDpKQkFBUV4ezZsxgzZgwsLS2xcuVKtbaGXn+/fv3g5OSEM2fO6LsLq83b2xvNmzfHxYsX9Xq9VJ8hH330Edq0aYPXX38dCQkJyMvLQ25uLmJiYvDhhx8iOjpabUjTMWPGQCaT4c8//9RrfVXRZfmTJk1Cu3btsH79eqxatQp3795FTk4ONm/ejI8//hju7u6YMWOGxuuUQ4oOGDDA4Pnrmm+++QZ9+/bV6BJKRBKr7NZdKUfjsbGx0TrkpkwmE3Z2dsLb21u89957IjMzU+11WVlZYuLEicLT01PI5XLh7Owsxo0bJyIjI1XLeHw0iCtXrog+ffoIGxsb4enpqTHyRXZ2tpg6dapo1aqVkMvlwtXVVYwaNUqkpKQIIR6NdFEx49y5c4UQQmP64MGDRVZWlsb0J41O8fbbb2sdNaRiLnt7exEUFCQSExNVbbRlq3g8K8ufnJysMf2jjz4SP/74o8b0hQsX6rTvly1bpnWd+/bt05g+evRocfbs2UqHYFX+7Nu3z6DHv7IsNd3/Tzo3apu+7+/qbLvSvXv3xPjx44Wrq6uwtrYWvr6+Ijk5WXTp0kW17bNmzVK1r+r9qBzB6fLlyyIoKEjY2dkJa2tr4efnJ06ePGn09ffp06fWRuMRQog5c+YICwsLcefOHdU0qT9DqnMO5+TkiOnTp4vWrVsLuVwumjVrJgYMGCCOHDmikaNfv37C1tZWKBSKau0T5fC62n4qDhmqz/Jzc3PFzJkzRYcOHYSVlZWwtLQUbdq0EZMnT1YboehxYWFhwt3dXW1kuOpCPRqNp6CgQFhbW2s9DkQkqTiZENo7U8fFxSE8PLzGfa2JyPTUxfd3586dkZ2dbbKjuVQmLCwMALBnzx6dXpeXlwcvLy8EBwcb5BsyU3Pv3j24ublh9OjR2LhxY51bPvDo4Wc+Pj7YuXMnRo0apfPrZTIZYmNjMXLkSCOkq127du3Ca6+9hrS0NDRr1kzqOET0P3vqVDceIqKGwt7eHvHx8di7dy/Wrl0rdRyDEkIgIiICTZo0waJFi+rc8gHgxo0bCAkJwezZs/Uq9OubPXv2oF+/fiz0iUwQi30iIhPl4+ODs2fPIiEhAfn5+VLHMZjMzEzcuHEDiYmJRhm9ytjLB4CYmBgsWbIES5YsMcry65KioiIcPnxY9S0WEZkWi6qbEBFJJzo6WvWsBOBR14e5c+di8eLFEqaqPS1btsSBAwekjmFQLi4uOHnyZJ1dPvBodCF6JD4+Hg8ePMCwYcOkjkJEWrDYJyKTNmPGDK2joBCRadi7dy/69u3LLjxEJordeIiIiEgvf//9Nw4ePIiXX35Z6ihEVAkW+0RERKSX3bt3QyaTYcSIEVJHIaJKsNgnIiIivXz55ZcYMWIE7O3tpY5CRJVgsU9EREQ6S0lJwU8//YSxY8dKHYWInoDFPhEREensiy++gIeHB/z9/aWOQkRPUOVoPDKZrDZyEJEE+P6uPdzXVJ+Ul5djx44dGDt2LMzNzaWOQ0RPUGmx36tXL8TGxtZmFiIykpiYGKSnp+P999+XOgoRPaZXr15SR9DLkSNHkJqaitdee03qKERUBZkQQkgdgoiMa+vWrXjrrbeQl5cHKysrqeMQUR0XGhqKzMxM/Pjjj1JHIaIn28M++0QNgK+vL0pLS3Hu3DmpoxBRHZeWloZ///vfmDRpktRRiKgaWOwTNQBt27aFq6srTp48KXUUIqrjYmJi4ODggJCQEKmjEFE1sNgnaiB69+6NU6dOSR2DiOowhUKBzZs3Y8KECewSSFRHsNgnaiB69+6NkydPory8XOooRFRH7d+/H+np6ZgwYYLUUYiomljsEzUQvr6+yM3NxZUrV6SOQkR11Pr16zF48GC0bNlS6ihEVE0s9okaiM6dO8POzo6jZxCRXq5cuYLjx4/jrbfekjoKEemAxT5RA2FhYYHu3buz3z4R6WX16tVo3bo1Bg4cKHUUItIBi32iBkTZb5+ISBe5ubn48ssvMWXKFJiZsXQgqkv4jiVqQHx9ffHnn38iNTVV6ihEVIesX78elpaW+Ne//iV1FCLSEYt9ogakZ8+ekMvl7MpDRNX24MEDrF27FhMnToStra3UcYhIRyz2iRoQGxsbdO7cmcU+EVXbzp07kZ2dzSfmEtVRLPaJGhhfX1/22yeialu5ciXCw8Ph6ekpdRQi0gOLfaIGpnfv3rh06RLy8vKkjkJEJu7IkSO4cOECIiIipI5CRHpisU/UwPj6+uLhw4c4c+aM1FGIyMQtW7YM/v7+6Natm9RRiEhPLPaJGhhnZ2e0a9eO/faJ6ImSk5Nx5MgRzJkzR+ooRFQDLPaJGiD22yeiqixZsgTdunVDYGCg1FGIqAYspA5ARLWvd+/e2L17Nx48eABLS0up4xCRibl8+TLi4+PxzTffSB2FiGqIV/aJGiBfX18UFxfj/PnzUkchIhO0ZMkSdOjQAUOGDJE6ChHVEIt9ogbomWeeQfPmzdmVh4g03LhxA3FxcZg3bx7MzFgmENV1fBcTNUAymQy9e/dmsU9EGj766CO0aNECYWFhUkchIgNgsU/UQCmLfSGE1FGIyETcunUL27ZtQ2RkJCwseFsfUX3AYp+ogfL19UV2djb++OMPqaMQkYlYsmQJXF1d8dprr0kdhYgMhMU+UQP1/PPPo3HjxuzKQ0QAgJs3b2Lr1q1YsGABR+kiqkdY7BM1UHK5HN27d+fDtYgIALBo0SJ4enryqj5RPcNin6gB48O1iAgArl+/jm3btmH+/Pnsq09Uz7DYJ2rAfH19ce3aNaSnp0sdhYgktGjRIrRo0QKjR4+WOgoRGRiLfaIGrFevXrCwsGBXHqIG7Nq1a9ixYwcWLlzIq/pE9RCLfaIGzNbWFp06dWKxT9SAvf/++2jbti1efvllqaMQkRHwX3iiBo799okargsXLmDXrl3YvXs3zM3NpY5DREbAK/tEDVzv3r1x4cIFFBQUSB2FiGrZrFmz0KVLF4SGhkodhYiMhMU+UQP34osvQqFQ4KeffpI6ChHVohMnTuD777/Hxx9/DJlMJnUcIjISFvtEDZyLiwtat26ttSuPEEKCRERkbEIIzJgxA4MHD0a/fv2kjkNERsQ++0QEX19fnDp1Cjk5OTh9+jR+/PFH/PDDD+jcuTNiYmKkjkdEBhYbG4vz58/j3LlzUkchIiNjsU/UgN24cQMnT55Eamoqfv75ZzRr1gwAYGlpibKyMvTv31/ihERkaGVlZZg/fz5effVVdO7cWeo4RGRkLPaJGpiCggKMHz8ex44dQ3Z2NszMzGBubo6ysjJVm9LSUlhYWMDd3V3CpERkDJ9//jlSU1PxwQcfSB2FiGoBi32iBsbOzg5NmjRBdnY2AKC8vBzl5eUa7RQKBYt9onqmsLAQS5YsweTJk9GiRQup4xBRLeANukQNUHR0NJo3bw4zsyd/BHh6etZSIiKqDcuWLUNpaSkiIyOljkJEtYTFPlEDZG9vjzVr1mi9ov84Xtknqj/u3r2LFStWIDIyEk5OTlLHIaJaIhMcW4+owRoyZAgOHz6s1l9fycLCAg8ePOD420T1xKRJk/Dtt9/i6tWraNy4sdRxiKh27OGVfaIGLCYmBpaWllrnNW/enIU+UT1x9epVbNq0CR9++CELfaIGhsU+UQPm5uZW6dMzPTw8JEhERMYwd+5ctGnTBmPHjpU6ChHVMhb7RA3cpEmT8MILL0Aul6ummZmZoWXLltKFIiKDSU5Oxt69e/HJJ5/AwoKD8BE1NCz2iRo4MzMzbN26FY/fvmNhYcEr+0T1xMyZM9GrVy8MHTpU6ihEJAEW+0SEDh06IDIyEubm5qppHImHqO7bu3cv/vOf/2D58uVSRyEiibDYJyIAwLx589CiRQvV03RZ7BPVbaWlpZg9ezZeffVVvPDCC1LHISKJsNgnIgCAlZUVvvjiC5SXl0MIwW48RHXcp59+irS0NCxevFjqKEQkId6pYwDLly9HUlKS1DGIDKJly5b4888/sWTJEtjY2Egdh0hS06dPR8+ePaWOobPMzEx88sknmDNnDp+ETdTA8cq+ASQlJeHMmTNSx6B6JDU1FXv37pVk3Z06dYK1tTWsra0lWX9tO3PmDN+/pNXevXtx+/ZtqWPoJTIyEvb29pg2bZrUUYhIYryybyA9evTAnj17pI5B9URcXBzCw8MlO6eOHz8Of39/SdZd28LCwgCA71/SUFcfKnf+/Hls27YNu3bt4gO0iIhX9olIU0Mp9InqoylTpqBHjx6qf2SJqGHjlX0iIqJ6Yvfu3Th16hTOnDlTZ7+ZICLD4pV9IiKieqC4uBiRkZEYN24cunXrJnUcIjIRLPaJiIjqgWXLliE3N5dDbRKRGhb7RE9w6NAhPPPMM7Cw0K3H29ChQyGTyfhHtwG4efMmhg4divz8fGRnZ0Mmk6l+fHx8UFJSovGaiu1kMhm6du0qQXrj0Pd9UxWFQoHNmzfjhRdegJOTExwdHdGlSxesWbMGDx48UGsbGRmJ2NhYg67flN25cwdRUVGYO3cuXF1dpY5DRCaExX4DUlhYiHbt2iE4OFjqKABML8/jrl+/jqFDh2L27NnIzMzU6bXbtm1DfHy8kZLpzpT3c1134cIFdO3aFQMGDECTJk3QtGlTCCGQnJysmj916lSN1ynbJSUlwcnJCUIInD17trbjG1xN3jfV8a9//Qvjx49HYGAgfv/9d1y7dg3h4eF45513MGLECLW2EyZMwOzZszF//nyD5zBFs2bNgrOzM6ZMmSJ1FCIyMSz26xlbW1v4+vpqnSeEQHl5OcrLyxtsnuqaP38+evXqhXPnzsHOzq7ar0tLS8PUqVPx6quvGjGdbkx5P1f0pPPF1OTn52PIkCEYMWIEJk+erDHfysoKTk5OiImJwa5duyRIWPv0fd9Ux40bN/DVV1/Bx8cHS5cuRfPmzeHk5IT33nsP/fv3x4EDB1T/ZAFAmzZtsG/fPixZsgRxcXEGzWJqfvrpJ+zcuRPR0dFo1KiR1HGIyMRwNJ4GxM7ODtevX5c6hoqp5Xnc5s2b9Xqo1IQJExAWFoY+ffpg+/btRkimO1Pez3VZVFQUMjIysGDBAq3zGzVqhB07duCll17CxIkT0aVLFzzzzDO1nLJ26fu+qQ7lw62effZZjXkdOnTAkSNHcOvWLbUbU729vREaGop3330XISEhBu9WZAqEEHj33XfRt29fDB8+XOo4RGSCeGWfSAt9CpYtW7bgt99+Q3R0tBESkSkRQmDTpk3o3r073NzcKm0XFBSEefPmoaCgAGFhYVr779cnxnzqcocOHSCXy3HlyhWNeVeuXIFMJkPHjh015g0fPhypqak4ePCg0bJJaceOHThz5gyWL18udRQiMlEs9iWiUCgQGxuL/v37w8XFBdbW1ujYsSNWrlyptbtFTk4Opk+fjjZt2sDKygoeHh4IDAzE1q1bUVxcjOjoaMhkMhQVFeHUqVOqm/6UV7L279+vdjNgSUkJ7t27p3GToPKGUoVCoTY9NDRUp9z65Klsey0tLeHo6IhBgwbh+PHjqjYVl/HXX38hPDwcDg4OcHJyQnBwcK1d0U5NTcW7776LLVu2GLz7Qk1Utp913XfK4ymTyeDh4YHk5GQEBATAzs4OjRs3hr+/P06dOqVqv3jxYlX7x7vlfPfdd6rpTZs21Vh+ZeeLqbl48SIyMzPh7e1dZduFCxdiwIABuHTpEt55551qLd+Y539WVhYiIiLQsmVLWFpaolmzZggJCcGFCxeqvwMk4OzsjOjoaFy8eBFz5sxBVlYWcnNzERUVhaNHj2LBggVavznp3LkzAODw4cO1HdnoCgoKMGvWLIwfP161nUREGgTVWGhoqAgNDdXpNfHx8QKAWLp0qcjNzRVZWVli1apVwszMTMyYMUOtbXp6umjVqpVwcXER8fHxIj8/X2RkZIhFixYJAGLFihWqtjY2NqJ3796VrnfYsGECgCguLlZNGzhwoDAzMxPXrl3TaN+zZ0+xc+dOvXLrm0e5vc7OziI+Pl7k5eWJP/74Q4SEhAiZTCY2btyodRnDhg0Tp0+fFoWFheLIkSPC2tpadOvWrdJ1V5e7u7swNzd/YpugoCAxadIk1e/bt28XAMSiRYv0WmdsbKww5NtT235+fHp19523t7ewsbERPXv2VLVPTk4WnTp1EpaWluLEiRNq7Ss7/l26dBFOTk4a06s6X/z9/cVTTz0lkpKSqrvpVdLn/as8vkuXLtU6Pzk5Wdjb26t+z8rKEp6engKA+Oqrr1TTk5KSNPaDMc//tLQ00aJFC+Hs7CwOHjwoCgoKxK+//ir8/PxEo0aNxOnTp3XaD09SnfeNPuLi4oSHh4cAIACIpk2bis2bN1faPi8vTwAQffr00XldAERsbGxN4hrVe++9JxwdHUVWVpbUUYjIdMWx2DcAfYv9vn37akwfM2aMkMvlIi8vTzVt3Lhxlf7RGThwYI2L/aNHjwoAasWqEEKcPHlSPP3006KsrEyv3PrmUW7vrl271NqWlJQINzc3YW1tLTIyMjSWER8fr9Y+NDRUAKjxH8KqipYNGzaI1q1bi8LCQtW0ulbsV3ffeXt7CwDi/PnzatMvXbokAAhvb2+16YYu9v38/ISjo6NBi1J93r9RUVECgFi7dq3W+RWLfSEeFfZyuVzY2NiI33//XTWt4n4w5vk/duxYAUDs2LFDrW16erqwsrISXbp0qeYeqJqhi/3y8nIxYcIEIZfLxfLly0VGRobIysoSMTExwtraWoSHh6t9Vj1OJpOJtm3b6rxOUy72r169KqysrCo9B4mI/r84duORSHBwsNpX8kre3t4oKyvDb7/9ppq2b98+AMCgQYM02ickJGgd2k8XAQEB8PHxwdatW5GTk6OavmzZMkydOlWtK4UuufWl3N7BgwerTbeyskJAQACKi4u1fiVf8YmRnp6eAB6NkGMst27dwsyZM7FlyxbY2NgYbT3Gpsu+s7Gx0egy0LFjR7i5ueHixYtIT083Ws4TJ04gNzcXPXv2NNo6qkPZHUoul1f7NT169EB0dDSKiooQFhaG4uJire2Mef7v378fZmZmGsOwuri4wMvLC+fOnUNqamq1t6k2bd++HRs3bsRbb72FadOmwdnZGU2bNsWbb76pGlN/zZo1Wl9rYWFR6f6uqyIiItCuXTu8+eabUkchIhPHYl8ieXl5WLBgATp27AhHR0dVv9uZM2cCAO7fvw8AKC0tRV5eHho1amTUvuDvvvsu7t+/j3Xr1gEAUlJS8J///Afjx4/XK7e+qtpeZ2dnAEBGRobGPHt7e7XfLS0tAcCoQ07Gx8cjLy8Pffv2Ves/rRx6c/78+app165dM1qOmtJl3zk4OGhdRvPmzQEAd+/eNXA606Mc3rCsrEyn10VERCA8PBy//vqr1uE6jXn+K5ddXl4Oe3t7jft1/vvf/wIArl69qtM21ZbvvvsOABAYGKgxLyAgAMCjix/aKBQKo948XNu+/fZbJCQkYM2aNSZ7XwsRmQ4W+xIZMmQIFi1ahAkTJiAlJQXl5eUQQmDFihUAHo32ATy6mmdvb4+SkhIUFBRUuVyZTKZXnvDwcHh6emLNmjUoLS3Fp59+igkTJmgUHNXNrW+eqrZX+aAeFxcXnZZrLP/3f/8HIYTGj3LYzUWLFqmmtW3bVuK0hpGTk6NxnIH/FfnKoh8AzMzMNJ5sCgD37t3Tumx9z9/apnxCaV5ens6v3bRpE9q3b48tW7ZoDM9qzPPfysoKDg4OsLCwQFlZmdbzVggBf39/nZddG4qKiqpsU1hYqDEtPz8fQoh681TZ0tJSzJw5E6+88gr8/PykjkNEdQCLfQk8fPgQp06dgouLCyIiItCsWTNVkaPtq2bl2MmHDh3SmOfj44Np06apfm/cuLFacdW+fXts2LChykwWFhaYMmUK7t69i08//RS7d+9GREREjXLrm0e5vRWHyistLUViYiKsra0RFBRU5TaRcZSUlKg9vAgAfvnlF6SlpcHb21utqHJ1dcWdO3fU2mZkZODWrVtal63v+VvbnnvuOQDQq8uLra0tvv76a9jY2Ki+SXucMc//kJAQKBQKtZGTlD755BM8/fTTUCgUei3b2Lp37w4ASExM1Jh37NgxAI+6SlWkPP+Ux6yui4qKQnp6OqKioqSOQkR1BIt9CZibm6Nv377IyMjAsmXLkJ2djeLiYhw/fhyff/65RvuPPvoIrVq1wrRp03Dw4EEUFBQgNTUVkyZNQnp6ulqx//zzzyMlJQW3b99GUlISbty4gT59+lQr15tvvgl7e3vMmzcP//znP+Hu7l6j3PrmUW7v1KlTceDAARQUFCAlJQWvvPIK0tPTsXLlSlV3Bqp99vb2mDNnDpKSklBUVISzZ89izJgxsLS0xMqVK9XaDhgwAGlpaVizZg0KCwtx/fp1TJkyRe3q/+OqOl/69esHJycnnDlzxqjbWBVvb280b94cFy9e1Ov1Xl5eiImJ0TrPmOf/Rx99hDZt2uD1119HQkIC8vLykJubi5iYGHz44YeIjo5W6xYyZswYyGQy/Pnnn3qtryq6LH/SpElo164d1q9fj1WrVuHu3bvIycnB5s2b8fHHH8Pd3R0zZszQeJ1ySNEBAwYYPH9tu337Nj755BPMmzdP4/OZiKhStXxHcL2kz2geWVlZYuLEicLT01PI5XLh7Owsxo0bJyIjI1VDyj0+MkZ2draYOnWqaNWqlZDL5cLV1VWMGjVKpKSkqC33ypUrok+fPsLGxkZ4enqqRmrYt2+farnKn9GjR2vkmjlzpgAgLl68aJDc+uapuL329vYiKChIJCYmqtokJSVpLGPu3LlCCKExffDgwTodH+UQo9p+Kg59+LiJEydqfU1QUJBO6zfUaDyV7Wd99523t7dwd3cXly9fFkFBQcLOzk5YW1sLPz8/cfLkSY3137t3T4wfP164uroKa2tr4evrK5KTk0WXLl1Uy581a5aqfWXni1KfPn1MYjQeIYSYM2eOsLCwEHfu3FFNy8rK0th/Txrh5u2339Y6KpExz/+cnBwxffp00bp1ayGXy0WzZs3EgAEDxJEjRzRy9OvXT9ja2gqFQlGNV5g8AAAgAElEQVStfaLr+0bX5efm5oqZM2eKDh06CCsrK2FpaSnatGkjJk+erDZC0ePCwsKEu7u7ePDgQbXW8TiY2Gg8oaGhom3btqKkpETqKERUd8TJhNDS+ZZ0EhYWBgDYs2ePxEmovoiLi0N4eLjWvvFS6ty5M7Kzs012xBZ96Pv+zcvLg5eXF4KDgyv9Zqsuu3fvHtzc3DB69Ghs3Lixzi0fePTwMx8fH+zcuROjRo3S+fUymQyxsbEYOXKkEdLp5tixYwgICMDBgwfx0ksvSR2HiOqOPezGQ0SkB3t7e8THx2Pv3r1Yu3at1HEMSgiBiIgINGnSBIsWLapzyweAGzduICQkBLNnz9ar0DclCoUCU6dOxdChQ1noE5HOWOwTEenJx8cHZ8+eRUJCAvLz86WOYzCZmZm4ceMGEhMTjTLylbGXDwAxMTFYsmQJlixZYpTl16bVq1cjJSUF0dHRUkchojqIxT41GBXHFdf28/7770sd0yRFR0dDJpPh4sWLuHPnDmQyGebNmyd1LJPQsmVLHDhwAE2aNJE6isG4uLjg5MmT8PLyqpPLBx6NLlTXr+gDj4a0/fDDDzFz5ky0a9dO6jhEVAfxaRzUYJha//e6ZMaMGVpHOiEi45o1axZsbW0RGRkpdRQiqqNY7BMREZmgs2fPYtu2bdi9ezdsbGykjkNEdRS78RAREZmY8vJyvP322/Dz81ONGEVEpA9e2SciIjIxmzdvxoULF3D+/HmpoxBRHccr+0RERCbk77//xty5c/HOO+/gueeekzoOEdVxLPaJiIhMyNy5c2FmZoYFCxZIHYWI6gF24zGQvXv3QiaTSR2D6hmeU7WH+5pMwfnz57FhwwZs2bIFDg4OUschonqAxb6B9OjRA9OmTZM6BtUTSUlJ+OyzzxAbGyt1lHpvxYoVAMD3L2kIDw+v1fUJITB16lR0794dr776aq2um4jqLxb7BuLh4YGRI0dKHYPqkc8++4znVC3Ys2cPAHBfk4baLva//PJLnDx5EmfOnOE3TURkMOyzT0REJLH8/HzMmTMHb731Frp16yZ1HCKqR1jsExERSWzBggUoLS3Fhx9+KHUUIqpn2I2HiIhIQr/99hvWrVuHtWvXwsnJSeo4RFTP8Mo+ERGRhN555x106tQJb7zxhtRRiKgeYrFfD1y9ehUymQw9evSQOgpRg3Pz5k0MHToU+fn5yM7OhkwmU/34+PigpKRE4zUV28lkMnTt2lWC9MZx6NAhPPPMM7CwMOyXxwqFAps3b8YLL7wAJycnODo6okuXLlizZg0ePHig1jYyMrJOjGa1a9cu/PDDD1i7di3MzPgnmYgMj58s9cAXX3wBAPjpp59w+fJlo66rsLAQ7dq1Q3BwsFHXU12mlocalgsXLqBr164YMGAAmjRpgqZNm0IIgeTkZNX8qVOnarxO2S4pKQlOTk4QQuDs2bO1Hd/grl+/jqFDh2L27NnIzMw0+PL/9a9/Yfz48QgMDMTvv/+Oa9euITw8HO+88w5GjBih1nbChAmYPXs25s+fb/AchlJYWIiZM2fi9ddfR/fu3aWOQ0T1FIv9Oq68vBzbtm2Dj48PgP8V/jVha2sLX19frfOEECgvL0d5eXmN11NX8zRUTzoODWH9FeXn52PIkCEYMWIEJk+erDHfysoKTk5OiImJwa5duyRIWPvmz5+PXr164dy5c7CzszPosm/cuIGvvvoKPj4+WLp0KZo3bw4nJye899576N+/Pw4cOKD6JwsA2rRpg3379mHJkiWIi4szaBZDWbRoEe7fv4+lS5dKHYWI6jEW+3Xc999/DwsLC2zYsAEAsH37digUCqOtz87ODtevX8ehQ4eMtg5dmFoeajiioqKQkZGBBQsWaJ3fqFEj7NixA2ZmZpg4cSJSUlJqOWHt27x5MyIjIw3efQcAbt++DQB49tlnNeZ16NABAHDr1i216d7e3ggNDcW7775r1M9FfVy9ehUrV67EokWL0KxZM6njEFE9xmK/jtuyZQvGjRuHrl27olOnTsjMzGThS2RkQghs2rQJ3bt3h5ubW6XtgoKCMG/ePBQUFCAsLExr//36xNra2mjL7tChA+RyOa5cuaIx78qVK5DJZOjYsaPGvOHDhyM1NRUHDx40WjZ9TJkyBe3atcPEiROljkJE9RyL/TosNzcX8fHxGDt2LIBH/VmBR/8AaJOTk4Pp06ejTZs2sLKygoeHBwIDA7F161YUFxcjOjoaMpkMRUVFOHXqlOrGQeVVuv3796vdUFhSUoJ79+5p3Gi4ePFiAI9upnt8emhoqGp6bGws+vfvDxcXF1hbW6Njx45YuXKlWnccffJUtr2WlpZwdHTEoEGDcPz4cVWbisv466+/EB4eDgcHBzg5OSE4OBjXr183xOGqFdXZ5sWLF6u29/FuMd99951qetOmTVXTqzoOyvkymQweHh5ITk5GQEAA7Ozs0LhxY/j7++PUqVNGW78ULl68iMzMTHh7e1fZduHChRgwYAAuXbqEd955p1rLN+a5m5WVhYiICLRs2RKWlpZo1qwZQkJCcOHChervAAk4OzsjOjoaFy9exJw5c5CVlYXc3FxERUXh6NGjWLBgAZ555hmN13Xu3BkAcPjw4dqOXKmvv/4a3333HdasWSPpeUxEDYSgGgsNDRWhoaG1vt7Vq1cLf39/1e9ZWVlCLpcLCwsLkZmZqdY2PT1dtGrVSri4uIj4+HiRn58vMjIyxKJFiwQAsWLFClVbGxsb0bt370rXO2zYMAFAFBcXq6YNHDhQmJmZiWvXrmm079mzp9i5c6fq9/j4eAFALF26VOTm5oqsrCyxatUqYWZmJmbMmKHxen3yKLfX2dlZxMfHi7y8PPHHH3+IkJAQIZPJxMaNG7UuY9iwYeL06dOisLBQHDlyRFhbW4tu3bpVum5jiY2NFbq+PXXd5sr2a5cuXYSTk5PG9KqOg7e3t7CxsRE9e/ZU7cPk5GTRqVMnYWlpKU6cOGHU9fv7+4unnnpKJCUlVdpGG33ev9u3b1edw9okJycLe3t71e9ZWVnC09NTABBfffWVanpSUpLGthrz3E1LSxMtWrQQzs7O4uDBg6KgoED8+uuvws/PTzRq1EicPn1ap/3wJO7u7sLc3Nxgy1OKi4sTHh4eAoAAIJo2bSo2b95cafu8vDwBQPTp00fndQEQsbGxNYmroaioSLRo0UK8+uqrBl0uEVEl4ljsG4BUxf7zzz8vtm3bpjZt+PDhAoCIjo5Wmz5u3LhK/3ANHDiwxsX+0aNHBQAxadIktbYnT54UTz/9tCgrK1NNi4+PF3379tVY7pgxY4RcLhd5eXlq0/XJo9zeXbt2qbUtKSkRbm5uwtraWmRkZGgsIz4+Xq19aGioACCysrIqXb8x6FPs67rNxij2AYjz58+rTb906ZIAILy9vau1PH3X7+fnJxwdHXUuWPV5/0ZFRQkAYu3atVrnVyz2hXhU2MvlcmFjYyN+//131bSK22rMc3fs2LECgNixY4da2/T0dGFlZSW6dOlSzT1QNUMX++Xl5WLChAlCLpeL5cuXi4yMDJGVlSViYmKEtbW1CA8PV/uceZxMJhNt27bVeZ3GKPYXLlwomjRpItLS0gy6XCKiSsSxG08ddenSJVy9elVjuDllV56Ko/Ls27cPADBo0CCNZSUkJGgdHlAXAQEB8PHxwdatW5GTk6OavmzZMkydOlXtq+rg4GC17ghK3t7eKCsrw2+//VajLMD/tnfw4MFq062srBAQEIDi4mKtX+t369ZN7XdPT08AQFpaWo0zGZu+22xINjY2qm4TSh07doSbmxsuXryI9PR0o637xIkTyM3NRc+ePY22DiVllzG5XF7t1/To0QPR0dEoKipCWFgYiouLtbYz5rm7f/9+mJmZaQxV6+LiAi8vL5w7dw6pqanV3qbatH37dmzcuBFvvfUWpk2bBmdnZzRt2hRvvvmmakz9NWvWaH2thYVFpfu7Nt26dQvLli3D/Pnz4erqKnUcImogWOzXUVu2bEFBQQFsbGzU+u0OHToUwKPHr//8888AgNLSUuTl5aFRo0YGHw7vce+++y7u37+PdevWAQBSUlLwn//8B+PHj1drl5eXhwULFqBjx45wdHRUZZ85cyYA4P79+zXKUdX2Ojs7AwAyMjI05tnb26v9bmlpCQAmP7RnTbbZkBwcHLROb968OQDg7t27Rl1/bWnUqBEAoKysTKfXRUREIDw8HL/++qvW4TqNee4ql11eXg57e3uNe23++9//Ang0Sowp+u677wAAgYGBGvMCAgIAPLpwoY1CoTDqzcPVNW3aNLi5uVX73g0iIkNgsV8HlZWVYceOHTh16hSEEBo/yqv0yqv7VlZWsLe3R0lJCQoKCqpcvkwm0ytXeHg4PD09sWbNGpSWluLTTz/FhAkTNIqWIUOGYNGiRZgwYQJSUlJQXl4OIQRWrFgB4NFIJzXJU9X2Kh/24+LiotNyTZk+22xmZqbx1FEAuHfvntZ1VOc45OTkaBw/4H9FvrLoN9b6a4vyqmxeXp7Or920aRPat2+PLVu2YPv27WrzjHnuWllZwcHBARYWFigrK9P62SGEgL+/v87Lrg1FRUVVtiksLNSYlp+fDyGE5FfSExMT8c0332DVqlWwsrKSNAsRNSws9uug+Ph4NG3aFL169dI6/4033gDw6DHsyq+uhw8fDgBah+X08fHBtGnTVL83btxYrQhr3769ahz/J7GwsMCUKVNw9+5dfPrpp9i9ezciIiLU2jx8+BCnTp2Ci4sLIiIi0KxZM1URV9nX7PrkUW5vxeH2SktLkZiYCGtrawQFBVW5TXWJrtvs6uqKO3fuqLXNyMjQGKtcqTrHoaSkRO3BRgDwyy+/IC0tDd7e3moFlzHWX1uee+45ANCry4utrS2+/vpr2NjYqL4Fe5wxz92QkBAoFAq10ZGUPvnkEzz99NMmNx69kvIJs4mJiRrzjh07BuBRV6mKlOeY8phJQaFQYNq0aRg6dKjWrpREREYlwY0C9U5t36AbHBwsoqKintjmhRdeUBv5QznCh6urqzhw4IDIz88Xt2/fFm+//bZwdnYWN2/eVL124MCBwt7eXty6dUucPn1aWFhYiMuXL6vma7shVik/P1/Y29sLmUwmXnvtNa3Z+vXrJwCIqKgokZWVJe7fvy+OHTsmnn76aQFAHDlyRK29PnkqjmiSn5+vNqLJhg0b1NZR2TbNmjVL602nxmaI0Xiq2ubJkycLAGL16tWioKBAXLt2TYwcOVK4u7trvUG2quPg7e0t7O3tRUBAQLVG4zH0+mtzNJ7y8nLRvHnzSm8Y1naDbkVfffWVAFDlaDyGPHczMzNFmzZtROvWrcWhQ4fEvXv3RE5Ojvj8889F48aNNW5GHT16tAAgbty4UeU+qag6N+jqsvy///5btGvXTsjlcrFy5UqRmZkpsrOzxaZNm0Tjxo2Fu7u71pted+7cKQCIffv26bwNMNANusuXLxeWlpYiJSWlxssiItIRR+MxhNoq9m/fvq0abg6A6N69u0abP//8U60NAOHs7CyEECI7O1tMnTpVtGrVSsjlcuHq6ipGjRql8QfoypUrok+fPsLGxkZ4enqqRhzZt2+fxrJHjx6tkWHmzJkCgLh48aLW7cjKyhITJ04Unp6eQi6XC2dnZzFu3DgRGRmpWu7jo4Lom6fi9trb24ugoCCRmJioapOUlKSxjLlz5wohhMb0wYMHV+s4GYI+xb4Q1dtmpXv37onx48cLV1dXYW1tLXx9fUVycrLo0qWLaptnzZqlal/ZcVDy9vYW7u7u4vLlyyIoKEjY2dkJa2tr4efnJ06ePGn09ffp06fWRuMRQog5c+YICwsLcefOHdW0rKwsjfPmSSPcvP3221r/sTHmuZuTkyOmT58uWrduLeRyuWjWrJkYMGCAxj/ZQjz6x9zW1lYoFIpq7RPlsLrafioOGarP8nNzc8XMmTNFhw4dhJWVlbC0tBRt2rQRkydPVhuh6HFhYWHC3d1dPHjwoFrreJwhiv3MzEzh4OCgOjZERLUsTiaElg62pJOwsDAAwJ49eyROQvVFXFwcwsPDtfZ/N1WdO3dGdna2yY7mUhl93795eXnw8vJCcHAwPv/8c2NEk9S9e/fg5uaG0aNHY+PGjXVu+cCjh5/5+Phg586dGDVqlM6vl8lkiI2NxciRI/XO8MYbb+Dw4cO4cuUKbG1t9V4OEZGe9rDPPhGRHuzt7REfH4+9e/di7dq1UscxKCEEIiIi0KRJEyxatKjOLR8Abty4gZCQEMyePVuvQt8Qzp07h61bt2LZsmUs9IlIMiz2iYj05OPjg7NnzyIhIQH5+flSxzGYzMxM3LhxA4mJiUYZtcrYyweAmJgYLFmyBEuWLDHK8qsihMDkyZPRs2dPyf7ZICICAIuqmxARVS46Olr1jATgUdeHuXPnYvHixRKmqj0tW7bEgQMHpI5hUC4uLjh58mSdXT7waHQhKX355ZdITk7GuXPnTGrYWCJqeFjsE1GNzJgxAzNmzJA6BpHJKCgowJw5czBx4kR4e3tLHYeIGjh24yEiIjKgDz74ACUlJfjggw+kjkJExCv7REREhnL16lWsWbMGy5cvR9OmTaWOQ0TEK/tERESGMmXKFLRt2xZvvvmm1FGIiADwyj4REZFBfPvtt0hISMDx48dhYcE/r0RkGvhpZCCpqamIi4uTOgbVE0lJSQDAc6oWKB8Cxn1NNVFaWoqZM2fi5ZdfRt++faWOQ0SkwmLfQM6cOYPw8HCpY1A9w3Oq9nBfU01ER0cjLS1N8iE/iYgqkgkhhNQhiIiqcvPmTQQGBkIul+Po0aNwc3OTOhIRgEdP633uuecwf/58zJ49W+o4RESP28Nin4jqjIyMDAQGBqKsrAyJiYnw8PCQOhIRhgwZgqtXr+LixYuwsrKSOg4R0eP2cDQeIqozXFxckJiYiEaNGsHX1xfXr1+XOhI1cHv27MHBgwexfv16FvpEZJJ4ZZ+I6py///4bAwcOxO3bt3H06FH84x//kDoSNUAFBQV49tlnERQUhM2bN0sdh4hIG17ZJ6K6x9HREYcPH0bLli3Rr18//PLLL1JHogZo7ty5KCkpwccffyx1FCKiSrHYJ6I6ycHBAUeOHIGXlxf8/PyQnJwsdSRqQE6fPo1169YhOjoazZo1kzoOEVGl2I2HiOq0+/fv45///CeSk5ORkJCAHj16SB2J6rmioiL4+PigVatW+O677yCTyaSORERUGXbjIaK6rXHjxoiPj0ffvn0RGBiI48ePSx2J6rnp06fj77//xtatW1noE5HJY7FPRHWelZUVYmNjMXDgQAQHB+PIkSNSR6J66vvvv8fGjRuxdu1auLq6Sh2HiKhK7MZDRPXGw4cP8cYbb2D37t2IjY3FsGHDpI5E9Uh2djY6deqEwMBAbNu2Teo4RETVwW48RFR/mJubY8uWLRg9ejRGjhyJb775RupIVE8IITBx4kRYWFhg1apVUschIqo2C6kDEBEZkpmZGTZt2gQ7OzuMHDkSW7ZswWuvvSZ1LKrjVq5ciW+//RZHjx6Fg4OD1HGIiKqNxT4R1TsymQyfffYZbG1t8frrr0OhUOD111+XOhbVUT/99BNmzZqFxYsXo2/fvlLHISLSCYt9Iqq3Fi9eDDs7O4wfPx6FhYWIiIiQOhLVMbm5uRg1ahQCAwPx3nvvSR2HiEhnLPaJqF6bNWsWAGDq1KlQKBSYPn26xImorigvL8fo0aPx8OFDfPnllzAz421uRFT3sNgnonpv1qxZsLOzw+TJk1FQUICFCxdKHYnqgMWLF+PYsWP48ccf0bRpU6njEBHphcU+ETUIkyZNgoWFBd5++20UFxfj448/ljoSmbD9+/fjgw8+wOrVq/HCCy9IHYeISG8s9omowXjzzTdha2uLsWPHorCwEKtXr+YTUEnD5cuXMXbsWIwbNw6TJk2SOg4RUY2w2CeiBuWVV16BhYUFxowZA4VCgXXr1rEvNqnk5ORgyJAh8Pb2xvr166WOQ0RUYyz2iajBGTlyJBo3boywsDAUFhZi69atsLDgx2FDV1ZWhhEjRqC8vBxff/01LC0tpY5ERFRj/OtGRA1ScHAw9u3bh5CQECgUCmzfvh1yuVzqWCShiRMn4vz58zh9+jSaNWsmdRwiIoPgd9dE1GANHDgQCQkJOHToEEaMGIHS0lKpI5FE3n//fWzbtg07d+6El5eX1HGIiAyGxT4RNWh+fn5ISEjADz/8gOHDh6O4uFjqSFTLNm7ciA8++AArV67E4MGDpY5DRGRQLPaJqMHr3bs3jh07hp9//hmDBg1CYWGh1JGolhw4cACTJk3CBx98gP/7v/+TOg4RkcHJhBBC6hBERKbgwoULGDBgANq3b4+DBw+iSZMmUkciI/r555/Rr18/vPLKK9iwYYPUcYiIjGEPi30iosdcuXIFgYGBcHFxweHDh+Hk5CR1JDKCy5cv48UXX4Svry++/vprmJubSx2JiMgY9rAbDxHRYzp06IAff/wRubm5CAwMRFZWltSRyMCuXbuG/v374x//+Ad27drFQp+I6jUW+0REFbRq1QrHjx9HYWEh/Pz8kJaWJnUkMpDU1FQMGDAAzZs3x7fffgtra2upIxERGRWLfSIiLVq0aIEff/wRZmZm8Pf3R2pqqtSRqIbu3r2L/v37w9bWFkePHoWjo6PUkYiIjI7FPhFRJVxcXJCYmIhGjRrB19cX169flzoS6Sk7OxsBAQF4+PAhvv/+e96LQUQNBot9IqIncHZ2xokTJ+Ds7Iw+ffrg8uXLUkciHeXm5iIoKAhFRUU4duwYXFxcpI5ERFRrWOwTEVXB0dERhw8fRsuWLdGvXz/88ssvUkeiasrOzka/fv2Qm5uLxMREeHh4SB2JiKhWsdgnIqoGBwcHHDlyBF5eXvDz80NycrLUkagKd+/eRb9+/XDv3j0cO3YMrVq1kjoSEVGtY7FPRFRNNjY2iI+PR9euXTFgwACcOXNG6khUiczMTAQEBKCkpAQnT55koU9EDRaLfSIiHTRu3Bjx8fHo27cvAgMDcfz48UrbFhcX12IyUrpz5w78/PxQVlaGEydOsOsOETVoLPaJiHRkZWWF2NhYDBw4EMHBwThy5IhGmwsXLqBLly64f/++BAnrt/T0dKxbt07rvOvXr6NPnz4wNzfHiRMn4ObmVsvpiIhMC4t9IiI9WFpaIjY2FmFhYRgyZAi+/fZb1bzffvsN/v7++P333/H5559LmLJ+ioyMxOTJk7F//3616ZcvX4afnx+eeuopnDhxgqPuEBEBkAkhhNQhiIjqqvLyckyYMAFfffUVdu7ciU6dOqFXr164d+8eFAoFnnrqKdy6dQs2NjZSR60Xfv75Z/To0QNCCFhZWeHkyZPo2rUrkpOT8dJLL8HLywv//ve/0aRJE6mjEhGZgj28sk9EVANmZmbYtGkTxo8fj1GjRqFnz57Iy8uDQqEAAOTn52P9+vUSp6wfhBCYMmUKzM3NAQAKhQIDBw7E7t27ERAQgB49eiAhIYGFPhHRY3hln4jIAFJTU9GxY0cUFhaqCn0lBwcH3Lp1C3Z2dhKlqx+2b9+OsWPH4vE/W3K5HObm5hg6dCh27NgBCwsLCRMSEZkcXtknIqqpu3fvwt/fH0VFRRqFPgAUFhby6n4N3b9/H7NmzYJMJlObXlZWBoVCgbS0NJSXl0uUjojIdLHYJyKqgezsbLz44ou4efMmysrKtLZRKBRYsmQJCgoKajld/bFkyRJkZWVpLegVCgWSkpLw1ltvSZCMiMi0sdgnItJTSUkJBg4ciD/++KPSQl/p/v37WLNmTS0lq1/+/PNPLFu2TOu3JkoPHz7E1q1bERUVVYvJiIhMH/vsExHVwG+//YZly5Zhx44dMDMzw4MHDypt26RJE6SmprLvvo6GDx+OgwcPPvEfKplMBplMBisrK5w9exb/+Mc/ajEhEZHJYp99IqKa8PLywtatW5GamorZs2fDzs6u0ptE79+/j9WrV9dywrrt+PHj2L9/f6WFvlwuBwC0adMGS5cuxa1bt1joExE9hlf2iYgMqKCgAFu2bMHHH3+Mu3fvAoBaP3NbW1vcvn0bDg4OUkWsMx4+fIiOHTsiJSUFDx8+VE03MzODTCaDpaUlRowYgbFjxyIwMFDCpEREJotX9omIDMnOzg5TpkzBzZs38cUXX6Bt27YAoBobvqSkhH33qykmJgZ//PGHqtBXXsXv2LEj1q1bh7t372L79u0s9ImInoBX9omIjEgIgYMHD+Ljjz/GqVOnADz6h+D27duwt7eXOJ3p+vvvv9G6dWvcu3cPMpkMTZo0weuvv47x48ezmw4RUfXt0Sj24+LiEB4eLlUgIiIiIiLSg5Zr+HsqfdRgbGyscdNQvRIeHo6pU6eiZ8+eUkep15KSkvDZZ5/x/VnHpaen4/jx4wgNDYWlpaXUcUxOQUEBDh8+DD8/PzRr1kzqOEREJk9ZH2hT6ZV99u4hXchkMsTGxmLkyJFSR6nX+P4kIiKiip5QH/AGXSIiIiKi+orFPhERERFRPcVin4iIiIionmKxT0RERERUT7HYJ6rnvvrqK8hkMtWPra2t1nY3b97E0KFDkZ+fj+zsbLXX+Pj4oKSkROM1FdvJZDJ07drV2JtUaw4dOoRnnnkGFhaVDlymF4VCgc2bN+OFF16Ak5MTHB0d0aVLF6xZswYPHjxQaxsZGWmU0Zd4vDXxeKvj8dYPj7dpMvXjHRkZqbbve/ToYbiQooLY2FihZTLREwEQsbGxNV5OQUGBaNu2rRg8eLABUtU/+rw/t2/fLgCI9evXV9rm/PnzomnTpmL16tVq05OTkwUAAUBMnDix0tcnJSUJJycnnXKZsmvXrokhQ4aITp06iSZNmghzc3ODLn/MmDECgJg9e7bIzMwU2dnZ4mRZ9VgAACAASURBVJNPPhEARHBwsEaWVq1aiXnz5hls/Tze6ni8ebwNicfbtNTF421ubi66d++uU44n1AdxLParycbGRvTu3VvqGFWSKqehiv38/HzRunVrMWjQIAOkMi4p9rUxiv28vDzh4eGh9cM/OTlZWFlZCScnJwFA7Ny5U+sy6tsfh5dffll89NFHoqysTLi7uxv0j8P169cFAOHj46Mxr3///gKA+Pnnn9WmX7hwQchkMoO8x3i8NfF483gbCo+36amLx9vQxT678ZBJsbOzw/Xr13Ho0CGpozQYUVFRyMjIwIIFC7TOb9SoEXbs2AEzMzNMnDgRKSkptZyw9m3evBmRkZEG/7oXAG7fvg0AePbZZzXmdejQAQBw69Yttene3t4IDQ3Fu+++C4VCUaP183hr4vHm8TYUHm/TU5+Pd3Wx2CdqwIQQ2LRpE7p37w43N7dK2wUFBWHevHkoKChAWFiY1v6e9Ym1tbXRlt2hQwfI5XJcuXJFY96VK1cgk8nQsWNHjXnDhw9HamoqDh48qPe6eby14/Hm8TYUHm/TU1+Pty4MXuzn5ORg+vTpaNOmDaysrODh4YHAwEBs3boVxcXFWttZWlrC0dERgwYNwvHjx1Vt9u/fr3azwl9//YXw8HA4ODjAyckJwcHBuH79ul4ZFAoFYmNj0b9/f7i4uMDa2hodO3bEypUrUV5erlpWdHQ0ZDIZioqKcOrUKVWWiv8hZmVlISIiAi1btoSlpSWaNWuGkJAQXLhwoUbbI0VOqVTcP8oPIF33m3JfyGQyeHh4IDk5GQEBAbCzs0Pjxo3h7++PU6dOqdovXrxY1d7X11c1/bvvvlNNb9q0qcbyq9rXdcHFixeRmZkJb2/vKtsuXLgQAwYMwKVLl/DOO+9Ua/nGfJ+b8rn8JM7OzoiOjsbFixcxZ84cZGVlITc3F1FRUTh69CgWLFiAZ555RuN1nTt3BgAcPnxY73XzeNc+Hm8ebx5vHu+KDHG8daJDn58qpaeni1atWgkXFxcRHx8v8vPzRUZGhli0aJEAIFasWKHWztnZWcTHx4u8vDzxxx9/iJCQECGTycTGjRvVljts2DABQAwbNkycPn1aFBYWiiNHjghra2vRrVs3vTLEx8cLAGLp0qUiNzdXZGVliVWrVgkzMzMxY8YMjW17Uv/s/8fevcdFVef/A38NMMAwwKCg3MS8pW5ekNBHavJAoUADdSUQS91tW1pyUzTTlEzbSmt1fVR+N0uS7OKlQHto660yysf+VGzRAjOvi2YqgoAxIAKCvH9/9JhZhxmEwbnA8Ho+HvPHfM7nfM77nM+ZmTeHz/mcoqIiueeee8Tf3192794tVVVVcvz4cYmMjBR3d3c5dOhQm/fHnnGaAxYasy/yv+NTU1Njsrw1x01EJDQ0VNRqtYwaNUpfPy8vT4YOHSqurq6yf/9+g/rNHbvw8HCT4xdbGrM/btw46dq1q+Tm5rZ211tk6TH7umWvvfaayXXz8vJEo9Ho35eWlkpISIgAkE2bNunLTY3xtObn3JrnclOWHuOpk52dLT169NDfMOfn5yfvv/9+s/W1Wq0AkIiIiDZvk/3dMvY3+9sS2N/s77vp73Z9g+4TTzzRbNI3fvx4faKtq/fJJ58Y1KmtrZWgoCBRqVRSXFysL9edNDt37jSon5iYKACktLTU7Bh27twpY8eONaozY8YMUSqVotVqDcrvlNj98Y9/FACyefNmg/IrV66Im5ubhIeHG5Sbsz/2jNMctkz2W3PcRH5L9gHIDz/8YFB+7NgxASChoaEG5ZZO9iMjI6VLly4W/aKydLK/atUqASBr1641uW7THweR334IlEqlqNVqOXnypL6s6TGy5ufcmudyU5b+cWhsbJSnnnpKlEqlvPHGG1JcXCylpaWSkZEhKpVKkpOTpb6+3uS6CoVC+vXr1+Zts79bxv5mf98N9vdv2N9319/tOtnXaDQCQCorK9tcb+bMmQJAPvroI32Z7qS5/UQSEXn22WcFgBQUFJgdQ3P+8Y9/CACjBO1OiZ1GoxEnJyejxFtE5P777xcAcvHixTbtjz3jNIctk/3WHjfdlX1TgoKCBIAUFRXpyyyd7FuDpZP9V155RQDIe++9Z3JdUz8OIiJr1qwRADJ48GC5ceOGyR8Ha3/OrXUuN2XpH4ePPvpIAMicOXOMlr388ssG/4FsSqlUSnBwcJu3zf5uGfub/X032N+/YX/fXX+329l46urqoNVq4e7uDi8vrzbX8/f3BwAUFxcbLdNoNAbvXV1dAUA/dr21MQCAVqvFsmXLMGTIEHTp0kU/vmzhwoUAgBs3btxx/ab709jYCI1GY/RAiu+//x4AcPbsWbP3p73E2d605rjp+Pj4mGyje/fuAICrV69aOLqOxd3dHQBQX19v1nppaWlITk7G8ePHMXv2bKPltvicd9Rz+YsvvgAAPPTQQ0bLoqOjAQB79+41uW5DQ8Nd3WzG/rY99rch9jf7G2B/A3ff3+aw2B2Fbm5u0Gg00Gq1qKqqajbZbqleSUkJACAgIMBqMQDAxIkT8f/+3//DmjVr8Nhjj8HPzw8KhQJvvfUWnn32WYiIQX2FQtHsNn18fHD9+nXU1NRY/CbNjhJne1VeXg4RMTouuiRfl/QDgJOTk9HT7gCgoqLCZNvNHeuOJDAwEMBvf1SaKzMzE/n5+diwYYP+R0bH2p/zjnwuV1dXt1jn+vXrRmWVlZUQEX2ftQX72/bY3+Zhf7O/OxJ79rc5LDobz5QpUwDA5BzpYWFhePbZZw3qNZ1yqK6uDjk5OVCpVIiNjbVaDLdu3cLBgwcREBCAtLQ0dOvWTZ+43T5j0O08PDwMEsEBAwbgvffeAwAkJCSgoaHBYIYXnZUrV6Jnz55tmku1o8TZntXW1iIvL8+g7Mcff0RRURFCQ0MNPmiBgYG4fPmyQd3i4mKjOXJ17nSsO4rBgwcDAC5dumT2up6envjss8+gVqvxzjvvGC235ue8I5/LDzzwAAAgJyfHaNk333wDACYfk647N3V91hbsb9tjf5uP/d027G/bs2d/m8WMMT8t0t2tHRgYKLt27ZLKykq5ePGizJo1S/z9/eXChQsG9XR3dVdWVhrc1d10vFlzY7gXLVpkdANma2OIiooSALJq1SopLS2VGzduyDfffCM9e/YUALJv3z6DbY0fP140Go388ssvcujQIXFxcZETJ06IiEhJSYn07dtX+vTpI3v27JGKigopLy+XdevWiYeHh9FYdnP2x55xmgM2HLPfmuMm8tuYfY1GI9HR0a2ajWf27NkCQP75z39KVVWV/Pe//5WpU6dKcHCwyTH7dzrWIh1jNp7Gxkbp3r17s/ceNDfG83abNm0SAC3O3mDJz7m55/L06dMFgJw7d+6O+2JKa8Z4mtP+r7/+Kvfee68olUpZs2aN/vHqmZmZ4uHhIcHBwQb3kuhs2bJFAMj27dvbvG32d8vY34bY3+xvEfZ3cyzd3zrt+gZdEZGysjKZN2+e9O7dW5RKpQQGBsq0adPkzJkzd6yn0WgkNjZWcnJy9HVyc3MFgMFryZIlIiJG5XFxcWbFUFpaKqmpqRISEiJKpVL8/f3liSeekMWLF+vbvP0O8FOnTklERISo1WoJCQkxutu9vLxc5s+fL3369BGlUindunWTmJgYg2S8LftjjzjbwhLJ/vbt242Ow/Tp09t8HoSGhkpwcLCcOHFCYmNjxcvLS1QqlURGRsqBAweMtl9RUSEpKSkSGBgoKpVKxowZI3l5eRIeHq5vf9GiRfr6LR3riIiIdj8bj4jICy+8IC4uLnL58mV9WWlpqdGxvdOMCLNmzTL5B5E1P+fmnMtRUVHi6ekpDQ0NLR8w+d+Ut6ZeTaeYa0v7165dk4ULF8rAgQPFzc1NXF1dpW/fvjJ79myjG9p0kpKSJDg4WG7evHlX22Z/G2N/s7/Z3//D/rZff+u0+2SfOidLJPuWpkv2HYk1kv2KigoJDg6W1NRUS4TY7vz666+iUqkkJSWlQ7YvIpKfny8KhcJo2ru2bJv93b7bF2F/m4P9bYj93b7bF2m+v2/HZJ/aJSb7tmGNZF9E5PvvvxdfX195++237zbEdqWxsVFmzpwp/v7+cuXKlQ7XvohIYWGh9OnTR1544QWLbZv93T7bF2F/m4P9bRr7u322L9J8fzfVbqfeJKL2bdasWVAoFPD09DRaFhYWhiNHjmDv3r2orKy0Q3TWUVJSgnPnziEnJ6dNM0XYu30AyMjIwIoVK7BixQqLbZv93T7bB9jf5mB/m8b+bp/tA833NwAsXrxYP+XorVu3LLpdhYjh3I3Z2dlITk42mtKR6E4UCgWysrIwdepUe4eC1atX659DoLNkyRIsX77cThFZDj+fRERE1NQd8oOtHWtCU6JWWLBgARYsWGDvMIiIiIjsjsN4iIiIiIgcFJN9IiIiIiIHxWSfiIiIiMhBMdknIiIiInJQzd6gm52dbcs4yAHk5ubaOwSHpzvG/HwSERGRzp1ysGan3iQiIiIioo7DrKk3OY83maM9zbPvyDjPPhERETV1p4v1HLNPREREROSgmOwTERERETkoJvtERERERA6KyT4RERERkYNisk9ERERE5KAsnuzn5eXhiSeeQO/evaFSqdC1a1cMHjwYjz76KN59910UFhZaepNEREQGLly4gEmTJqGyshJlZWVQKBT6V1hYGGpra43WaVpPoVBg+PDhdojeOvbs2YP+/fvDxaXZifjMJiI4ePAgnnnmGfTv3x9ubm7o3r07xowZg02bNhnNHPbrr79i3bp1iIqKQteuXaFSqXDvvfdi+vTpKCgoMGp/8eLFyMrKsli8RJ2RxZL9xsZGLFy4EKNHj0b37t2xd+9eVFRU4OTJk3jzzTdRWVmJv/71r+jXrx8aGhostVkiIiID+fn5GD58OGJiYuDt7Q0/Pz+ICPLy8vTL582bZ7Serl5ubi58fX0hIjhy5Iitw7e4wsJCTJo0Cenp6SgpKbFo26dPn8aYMWNw5swZbNu2DVqtFocPH0bPnj0xc+ZMLFy40KD+woULMWfOHEyePBknTpxAeXk5NmzYgPz8fISHh2PHjh0G9Z966imkp6dj6dKlFo2bqDOxWLK/dOlSrF69Gu+88w5WrVqFgQMHws3NDf7+/nj44YfxxRdfYMKECZbanN14enpizJgx9g6jRR0lTmux9/7be/tEnVVlZSUmTpyIRx99FLNnzzZa7ubmBl9fX2RkZOCTTz6xQ4S2t3TpUowePRpHjx6Fl5eXxdt3cXFBdnY2hg4dCnd3d/Tp0wcffvghfH198fbbb6Ours6g/pNPPom5c+ciICAAHh4eiIiIwJYtW3Dr1i08//zzBnX79u2L7du3Y8WKFXxyOFEbWSTZP3XqFP7+978jPDwcTz31lMk6zs7O/MuciIisatWqVSguLsayZctMLnd3d8fmzZvh5OSE1NRUnDlzxsYR2t7777+PxYsXW3T4js7AgQNRX1+PLl26GJS7uroiJCQEdXV1BkOmMjMzkZGRYdROaGgoVCoVCgsLjYb+hIaGIjExEc899xxHBhC1gUWS/ffeew+NjY1ISkq6Y71Ro0ZBRKzyhUNERJ2biCAzMxMPPPAAgoKCmq0XGxuLF198EVVVVUhKSjI5ft+RqFQqm2+zoqICZ8+eRVhYGDQaTYv1q6urUVNTg8GDB0OhUBgtnzJlCi5duoTdu3dbI1wih2aRZP/f//43AGDo0KFmr1teXo758+ejb9++cHV1RZcuXTBhwgR8++23+jo7duwwuGHq559/RnJyMnx8fODr64v4+HiTN/7e3rabmxt69OiBhx56CB9++CFqamoAAA0NDcjKysLDDz+MgIAAqFQqDBkyBGvWrEFjY6O+rdWrV0OhUKC6uhoHDx7Ux9L0D5fS0lKkpaWhV69ecHV1Rbdu3ZCQkID8/Py72h97xGltren75cuX6/fh9mExX3zxhb7cz89PX97S/uuWKxQK9OjRA3l5eYiOjoaXlxc8PDwwbtw4HDx40GrbJyLrKSgoQElJCUJDQ1us+9JLLyEmJgbHjh3DnDlzWtW+NX+v2sN3siVUVlbi4MGDmDRpEgICAvDxxx+3ar2tW7cCAJYsWWJy+bBhwwAAX375pWUCJepMpImsrCwxUXxHgYGBAkC+++47s9a7cuWK9O7dW/z9/WXnzp2i1Wrl9OnTkpCQIAqFQtavX29Qf/LkyQJAJk+eLIcOHZLr16/Lvn37RKVSyYgRI0y2HRAQIDt37pTKykopLi6WV199VQDIm2++KSIiO3fuFADy2muvybVr16S0tFT+7//+T5ycnGTBggVGMavVannwwQdN7k9RUZHcc8894u/vL7t375aqqio5fvy4REZGiru7uxw6dKjN+2PPOFsDgGRlZbW6vrl939z+hIeHi6+vr1H5nfZfRCQ0NFTUarWMGjVKf+zz8vJk6NCh4urqKvv377fq9seNGyddu3aV3NzcZuuY0pbPJ1FnsXHjRv33pCl5eXmi0Wj070tLSyUkJEQAyKZNm/Tlubm5Rp9ra/5eWeM7uTnBwcHi7OxssfZup/t9BSBjx46VY8eOtWq94uJi8ff3l5SUlGbraLVaASARERGWCpfIodwhP8i2aLL/n//8x6z1nnjiCQEgn3zyiUF5bW2tBAUFiUqlkuLiYn257stz586dBvUTExMFgJSWlhq1bSoBHT9+vEGyP3bsWKM6M2bMEKVSKVqt1qD8TkncH//4RwEgmzdvNii/cuWKuLm5SXh4uEG5Oftjzzhbw9xk39y+t0ayD0B++OEHg/Jjx44JAAkNDW1Ve23dfmRkpHTp0sXsH3Em+0TNW7VqlQCQtWvXmlzeNNkX+S2xVyqVolar5eTJk/qypp9ra/5eWeM7uTnWTPZFROrq6uTkyZPy9NNPi7Ozs7zyyit3rF9WVibDhg2T5ORkaWhouGNdhUIh/fr1s2S4RA7jTsm+RYbx6MZGlpWVmbXe9u3bAQBxcXEG5W5uboiOjkZNTY3Jf9mNGDHC4H1ISAgAoKioyKhtUzMA7d27Vz/tWnx8vMG/YHVCQ0NRX1+Pn376qdX7s2PHDjg5OSE+Pt6gPCAgAIMGDcLRo0dx6dKlNu1Pe4jTktra95akVqv1/xrWGTJkCIKCglBQUIArV65Ybdv79+/HtWvXMGrUKKttg6iz0Y29VyqVrV5n5MiRWL16Naqrq5GUlKQf4tmUNX+v2sN3sqW4urpi4MCBePfddzFp0iQsW7YMX3/9tcm61dXViI2NxX333YfNmzfD2dn5jm27uLg02z9E1DyLJPuRkZEAgGPHjrV6nbq6Omi1Wri7u5ucCszf3x8AUFxcbLSs6c0+rq6uAKAfu95S27fTarVYtmwZhgwZgi5duujHWermBr5x44ZZ+9PY2AiNRmP0YJbvv/8eAHD27Fmz96e9xGkpd9P3luTj42OyvHv37gCAq1evWnX7RGRZ7u7uAID6+nqz1ktLS0NycjKOHz9ucrpOW/xe2fM72VomTpwIANi1a5fRsoaGBiQlJSE4OBgfffRRi4m+bh173GxM1NFZJNlPTU2Fi4sLtm3bdsd6zz//PJycnHDq1Cm4ublBo9GgtrYWVVVVRnV1D/4ICAgwO56W2r7dxIkT8eqrr+Kpp57CmTNn0NjYCBHBm2++CQBGU4CZmiVAt00fHx+4uLigvr4eImLyNW7cOLP3pyPF2Rpt6XsnJyfcvHnTqG5FRYXJbTS3/7crLy83Om7A/5J8XdJvre0TkWUFBgYC+O3iiLkyMzMxYMAAbNiwARs3bjRYZu3fK3t/J1uLm5sbAODatWtGy1JTU1FXV4fs7GyDCQz69euHw4cPG9WvrKyEiOj7mIhazyLJfv/+/fHSSy/hyJEj2LBhg8k6p0+fRkZGBqZOnYqBAwcC+G0qLQBGU2nV1dUhJycHKpUKsbGxbYpJ1/aePXuMloWFheHZZ5/FrVu3cPDgQQQEBCAtLQ3dunXTJ2nN/avQw8PDIOkbMGAA3nvvPQBAQkICGhoaDGZz0Vm5ciV69uzZpjmCO0qc5jC37wMDA3H58mWDusXFxfjll19Mtn+n/depra3VP1FT58cff0RRURFCQ0MNflSssX0isqzBgwcDQJuGvHh6euKzzz6DWq3GO++8Y7Tcmr9X7eE7ua0WLFiAGTNmmFy2d+9eAMZDmf72t7/hp59+wueff67/g6Aluu9fXR8TkRnMGODfosWLF4tSqZRFixbJ6dOnpa6uTi5duiSZmZkSGBgoY8aMkevXr+vrN53doLKy0mB2g/fee8+gfd0NTzU1NQblixYtMrrZUtd2YGCg7Nq1SyorK+XixYsya9Ys8ff3lwsXLoiISFRUlACQVatWSWlpqdy4cUO++eYb6dmzpwCQffv2GWxr/PjxotFo5JdffpFDhw6Ji4uLnDhxQkRESkpKpG/fvtKnTx/Zs2ePVFRUSHl5uaxbt048PDyMbmA1Z3/sGWdr4C5n42mp72fPni0A5J///KdUVVXJf//7X5k6daoEBwebvEH2Tvsv8tsNuhqNRqKjo1s1G4+lt8/ZeIgsr7GxUbp3797szfGmbtBtatOmTQKgxdl4LPl7Ze538vTp0wWAnDt3rsVj0lRrbtA1p/3nnntOFAqFvPzyy3L+/Hmpra2V8+fPy/PPPy8AJDw8XG7cuKGv/8EHH+hn7GnuZep7ccuWLQJAtm/fbvY+E3UGVp+N53b/+c9/ZObMmRISEiJKpVK8vLxk5MiRsmbNGqmrqzOqX1ZWJvPmzZPevXuLUqkUjUYjsbGxkpOTo6+Tm5tr9GWwZMkSERGj8ri4uGbbDgwMlGnTpsmZM2f0dUpLSyU1NVUfr7+/vzzxxBOyePFifZu3z4Rw6tQpiYiIELVaLSEhIUazPpSXl8v8+fOlT58+olQqpVu3bhITE2OQjLdlf+wRpznMTfZFWtf3OhUVFZKSkiKBgYGiUqlkzJgxkpeXJ+Hh4fr9X7RoUav3PzQ0VIKDg+XEiRMSGxsrXl5eolKpJDIyUg4cOGD17UdERHA2HiIreOGFF8TFxUUuX76sLystLTX6br3TDDezZs0y+Ue8NX+vzPlOjoqKEk9PzxZnr9HRTd1s6tV0ylBz29dqtZKZmSmxsbHSq1cvcXV1FU9PTwkPD5fXX3/dINEXEYmLi2tTsp+UlCTBwcFy8+bNVu0zUWdzp2RfIWI4aDk7OxvJyckmxzITNUehUCArKwtTp061dyitMmzYMJSVlXWYGS50+PkkujOtVotBgwYhPj4e69ats3c4FldRUYGgoCBMnz4d69ev73Dtt0VBQQHCwsKwZcsWTJs2zd7hELVLd8gPtlpkzD4REVF7oNFosHPnTmzbtg1r1661dzgWJSJIS0uDt7c3Xn311Q7XflucO3cOCQkJSE9PZ6JP1EZM9omIyKGEhYXhyJEj2Lt3LyorK+0djsWUlJTg3LlzyMnJadPMP/Zuvy0yMjKwYsUKrFixwt6hEHVYLi1XIXIcq1ev1j+bAPht+NGSJUuwfPlyO0ZFRJbWq1cvk/O7d2QBAQE4cOBAh22/LVauXGnvEIg6PCb71KksWLAACxYssHcYRERERDbBYTxERERERA6KyT4RERERkYNisk9ERERE5KCY7BMREREROahmb9BNSkqyZRzkAN58801s3brV3mE4NN1DwPj5JCIiIp07PSTU6Am6ubm5eOONN6weFBER2VZJSQmOHz+O6Ohoe4dCRERWYOKi61ajZJ+IiBzTHR6nTkREjmkrx+wTERERETkoJvtERERERA6KyT4RERERkYNisk9ERERE5KCY7BMREREROSgm+0REREREDorJPhERERGRg2KyT0RERETkoJjsExERERE5KCb7REREREQOisk+EREREZGDYrJPREREROSgmOwTERERETkoJvtERERERA6KyT4RERERkYNisk9ERERE5KCY7BMREREROSgm+0REREREDorJPhERERGRg2KyT0RERETkoJjsExERERE5KCb7REREREQOisk+EREREZGDYrJPREREROSgmOwTERERETkoJvtERERERA6KyT4RERERkYNisk9ERERE5KCY7BMREREROSgm+0REREREDorJPhERERGRg2KyT0RERETkoJjsExERERE5KBd7B0BERJZXVFSE+Ph41NfX68tu3LgBjUaDIUOGGNQNCwvDxx9/bOsQiYjIBpjsExE5oKCgINy8eRM//fST0TKtVmvwftq0abYKi4iIbIzDeIiIHNQf/vAHuLjc+ZqOQqHA448/bqOIiIjI1pjsExE5qMceewy3bt1qdrlCoUB4eDh69+5tw6iIiMiWmOwTETmokJAQjBw5Ek5Opr/qnZ2d8Yc//MHGURERkS0x2ScicmAzZ86EQqEwuayxsRFTp061cURERGRLTPaJiBxYUlKSyXJnZ2eMHTsW/v7+No6IiIhsick+EZED8/PzQ3R0NJydnY2WzZw50w4RERGRLTHZJyJycDNmzICIGJQ5OTlhypQpdoqIiIhshck+EZGD+/3vfw+lUql/7+Ligri4OGg0GjtGRUREtsBkn4jIwXl5eWHixIn6hP/WrVuYMWOGnaMiIiJbYLJPRNQJTJ8+HQ0NDQAAlUqFRx55xM4RERGRLTDZJyLqBCZMmAC1Wg0ASExMhEqlsnNERERkC3d+jjoRWVxubi4uXrxo7zCoExoxYgS+/fZbhISEIDs7297hUCc0evRo9OjRw95hEHUqCmk6RQMRWVVSUhK2bdtm7zCIiGwuKyuLD3Ijsq2tvLJPZAeJiYnYunWrvcPosLKzs5GcnGw0nSTdWWNjI1auXIn09PRWr6N7KBfPV7pbzT3JmYisi2P2iYg6CScnJyxcuNDeYRARkQ0x2Sci6kRcXPgPXSKizoTJPhERERGRg2KyT0REOLLQdQAAIABJREFURETkoJjsExERERE5KCb7RB3Yp59+CoVCAYVCAXd3d3uHQ2TkwoULmDRpEiorK1FWVqY/XxUKBcLCwlBbW2u0TtN6CoUCw4cPt0P01rFnzx7079/fovdPiAgOHjyIZ555Bv3794ebmxu6d++OMWPGYNOmTUYzV/36669Yt24doqKi0LVrV6hUKtx7772YPn06CgoKjNpfvHgxsrKyLBYvEdkOk32iDmzatGkQEURHR9s7lA7r+vXruPfeexEfH2/vUBxOfn4+hg8fjpiYGHh7e8PPzw8igry8PP3yefPmGa2nq5ebmwtfX1+ICI4cOWLr8C2usLAQkyZNQnp6OkpKSiza9unTpzFmzBicOXMG27Ztg1arxeHDh9GzZ0/MnDnTaBamhQsXYs6cOZg8eTJOnDiB8vJybNiwAfn5+QgPD8eOHTsM6j/11FNIT0/H0qVLLRo3EVkfk30i6tREBI2NjWhsbLR3KC3y9PTEmDFj7B1Gq1RWVmLixIl49NFHMXv2bKPlbm5u8PX1RUZGBj755BM7RGh7S5cuxejRo3H06FF4eXlZvH0XFxdkZ2dj6NChcHd3R58+ffDhhx/C19cXb7/9Nurq6gzqP/nkk5g7dy4CAgLg4eGBiIgIbNmyBbdu3cLzzz9vULdv377Yvn07VqxYwacvE3UwnIONiDo1Ly8vFBYW2jsMh7Nq1SoUFxdj2bJlJpe7u7tj8+bNeOSRR5Camorw8HD079/fxlHa1vvvvw+VSmWVtgcOHIj6+nqjcldXV4SEhCA/Px+1tbVwc3MDAGRmZppsJzQ0FCqVCoWFhRARgwdhhYaGIjExEc899xwSEhI4jStRB8Er+0REZFEigszMTDzwwAMICgpqtl5sbCxefPFFVFVVISkpyeT4fUdirUT/TioqKnD27FmEhYVBo9G0WL+6uho1NTUYPHiwySfeTpkyBZcuXcLu3butES4RWQGTfaIO5NSpU/j9738PjUYDtVqNiIgIHDhwoNn6paWlSEtLQ69eveDq6opu3bohISEB+fn5+jo7duwwuBHy559/RnJyMnx8fODr64v4+HijK991dXVYtmwZBg4cCA8PD3Tt2hUTJ07Ev/71L9y6dcvsGOyl6b7rkk1zj8nq1av1dXv06IG8vDxER0fDy8sLHh4eGDduHA4ePKivv3z5cn3924flfPHFF/pyPz8/o/arq6tx8OBBfZ32emW1oKAAJSUlCA0NbbHuSy+9hJiYGBw7dgxz5sxpVfvl5eWYP38++vbtC1dXV3Tp0gUTJkzAt99+q6/TlvMaaN/nqzkqKytx8OBBTJo0CQEBAfj4449btd7WrVsBAEuWLDG5fNiwYQCAL7/80jKBEpH1CRHZVGJioiQmJpq93tmzZ8XHx0eCg4Plq6++kqqqKjl27JjExMRIr169xM3NzaB+UVGR3HPPPeLv7y+7d++WqqoqOX78uERGRoq7u7scOnTIoP7kyZMFgEyePFkOHTok169fl3379olKpZIRI0YY1E1JSRGNRiNfffWV3LhxQ4qLi2XBggUCQL799ts2x9BaWVlZYsmvL92+19TUmCxvzTEREQkNDRW1Wi2jRo3S18/Ly5OhQ4eKq6ur7N+/36C+Wq2WBx980Kid8PBw8fX1NSpvrr7OuHHjpGvXrpKbm9vaXW9RW87XjRs3CgB57bXXTC7Py8sTjUajf19aWiohISECQDZt2qQvz83NNToOV65ckd69e4u/v7/s3LlTtFqtnD59WhISEkShUMj69esN6pvTh9Y6X00JDg4WZ2dni7V3u1dffVUACAAZO3asHDt2rFXrFRcXi7+/v6SkpDRbR6vVCgCJiIgwOy4AkpWVZfZ6RHRXspnsE9lYW5P9pKQkASDbtm0zKL98+bK4ubkZJft//OMfBYBs3rzZoPzKlSvi5uYm4eHhBuW6pGjnzp1G8QKQ0tJSfVnv3r1l9OjRRjH279/fINk3N4bWsnWy35pjIvJbsg9AfvjhB4PyY8eOCQAJDQ01KLd0sh8ZGSldunSxaFLalvN11apVAkDWrl1rcnnTZF/kt8ReqVSKWq2WkydP6suaHocnnnhCAMgnn3xiUF5bWytBQUGiUqmkuLhYX25OH1rrfDXFmsm+iEhdXZ2cPHlSnn76aXF2dpZXXnnljvXLyspk2LBhkpycLA0NDXesq1AopF+/fmbHxGSfyC6yOYyHqIP44osvAPw2zvl2QUFBJm9s3LFjB5ycnIymlAwICMCgQYNw9OhRXLp0yWi9ESNGGLwPCQkBABQVFenLxo8fj0OHDuEvf/kLDh8+rB+6c/r0aYwdO/auY2hvWnNMdNRqtX6og86QIUMQFBSEgoICXLlyxWpx7t+/H9euXcOoUaOsto3W0A2HUiqVrV5n5MiRWL16Naqrq5GUlISamhqT9bZv3w4AiIuLMyh3c3NDdHQ0ampqTA4xaU0fOsr5Cvx2Y+7AgQPx7rvvYtKkSVi2bBm+/vprk3Wrq6sRGxuL++67D5s3b4azs/Md23ZxcWm2f4io/WGyT9QB1NXVoaqqCu7u7vD09DRa3r17d6P6Wq0WjY2N0Gg0Rg8o+v777wEAZ8+eNWqr6U18rq6uAGAwNeXatWvx8ccf49y5c4iOjoa3tzfGjx+vT8TuNob2pjXHRMfHx8dkG7o+unr1qoWja390D3gzNTvMnaSlpSE5ORnHjx83OV2n7pxyd3c3OXWlv78/AKC4uNhoWUt96Ejna1MTJ04EAOzatctoWUNDA5KSkhAcHIyPPvqoxURft449bjYmorZhsk/UAbi5ucHLywu1tbW4fv260fJr164Z1ffx8YGLiwvq6+shIiZf48aNa1M8CoUCM2fOxNdff42Kigrs2LEDIoKEhAS88cYbNomhvSovLzd6WinwvyT/9j/MnJyccPPmTaO6FRUVJts2NTtKexQYGAgA0Gq1Zq+bmZmJAQMGYMOGDdi4caPBMjc3N2g0GtTW1qKqqspoXd2DqgICAszeriOfr7rpNpt+TwBAamoq6urqkJ2dbXDDd79+/XD48GGj+pWVlRARfR8TUfvHZJ+og5gwYQKA/w3n0SkrK8Pp06eN6ickJKChocFgFhidlStXomfPnmhoaGhTLD4+Pjh16hSA34ZqPPzww/rZT26fks+aMbRXtbW1+ifE6vz4448oKipCaGioQZIUGBiIy5cvG9QtLi7GL7/8YrJtDw8Pgz8OBgwYgPfee8+C0VvG4MGDAaBNQ148PT3x2WefQa1W45133jFaPmXKFAAwmvqxrq4OOTk5UKlURkPdWqsjn68LFizAjBkzTC7bu3cvAOOhTH/729/w008/4fPPP9f/QdAS3fmq62Miav+Y7BN1EK+99hq6du2KefPmYd++fbh+/TpOnDiBGTNmmBza8/rrr6Nv37548sknsXfvXmi1Wly7dg0ZGRl45ZVXsHr16ruauvHpp5/GsWPHUFdXh6tXr2LVqlUQEURFRdkshvZIo9HghRdeQG5uLqqrq3HkyBHMmDEDrq6uWLNmjUHdmJgYFBUV4e2338b169dRWFiIuXPnGg3L0rn//vtx5swZXLx4Ebm5uTh37hwiIiL0y6OiouDr62vyiqwthYaGonv37igoKGjT+oMGDUJGRobJZa+//jp69+6NefPmYdeuXaiqqsKZM2fw+OOP48qVK1izZo1+OI+5zD1fZ8yYAYVCgfPnz7dpey0xt/0tW7bglVdewc8//4y6ujr8/PPPWLRoETZt2oTw8HCkpKTo63744Yd4+eWX8d1338HLy8to2FJzD5rTTUEaExNz9ztIRLZhy9uBiajts/GIiJw+fVp+//vfi7e3t37qwF27dkl0dLR+qr0///nP+vrl5eUyf/586dOnjyiVSunWrZvExMTIvn379HVyc3P16+peS5YsERExKo+LixMRkfz8fElNTZXf/e534uHhIV27dpWRI0fK+vXrpbGx0SDm1sRgLkvNxrN9+3ajfZw+fXqbjonIb7PxBAcHy4kTJyQ2Nla8vLxEpVJJZGSkHDhwwGj7FRUVkpKSIoGBgaJSqWTMmDGSl5cn4eHh+vYXLVqkr3/q1CmJiIgQtVotISEhRrPdREREtIvZeEREXnjhBXFxcZHLly/ry0pLS42O351muJk1a5bJWYnKyspk3rx50rt3b1EqlaLRaCQ2NlZycnL0ddrah+acr1FRUeLp6dni7DU6O3fuNNq27tV0ylBz29dqtZKZmSmxsbHSq1cvcXV1FU9PTwkPD5fXX39dbty4YVA/Li6u2Vh0L1NTuCYlJUlwcLDcvHmzVft8O3A2HiJ7yFaImBhcSkRWk5SUBOB/D68h82VnZyM5Odnk2Hh7GjZsGMrKyjrMjC2t0dbzVavVYtCgQYiPj8e6deusEZpdVVRUICgoCNOnT8f69es7XPttUVBQgLCwMGzZsgXTpk0ze32FQoGsrCxMnTrVCtERUTO2chgPERFZnEajwc6dO7Ft2zasXbvW3uFYlIggLS0N3t7eePXVVztc+21x7tw5JCQkID09vU2JPhHZD5N9IiKyirCwMBw5cgR79+5FZWWlvcOxmJKSEpw7dw45OTltmvnH3u23RUZGBlasWIEVK1bYOxQiMpNj3RlHRGQHq1evxsKFC/XvFQoFlixZguXLl9sxqvahV69eJud378gCAgJw4MCBDtt+W6xcudLeIRBRGzHZJyK6SwsWLMCCBQvsHQYREZERDuMhIiIiInJQTPaJiIiIiBwUk30iIiIiIgfFZJ+IiIiIyEHxBl0iOzh8+LD+YUVkPt1Dq3gMre/w4cMAeKyJiDoqXtknIiIiInJQvLJPZAcjR47E1q1b7R1Gh5WdnY3k5GQeQxvQXdHnsaa7pVAo7B0CUafEK/tERERERA6KyT4RERERkYNisk9ERERE5KCY7BMREREROSgm+0QdgKenJxQKhcHLyckJXbp0QWhoKP7617/i6NGj9g6TyMiFCxcwadIkVFZWoqyszOAcDgsLQ21trdE6TespFAoMHz7cDtFbx549e9C/f3+4uFhujoxff/0V69atQ1RUFLp27QqVSoV7770X06dPR0FBQbPr5efnIy4uDj4+PvDy8sJDDz2EgwcPGtVbvHgxsrKyLBYvEdkOk32iDuD69ev44YcfAACTJ0+GiKC+vh6nTp3CK6+8glOnTmH48OH405/+hBs3btg5WqLf5OfnY/jw4YiJiYG3tzf8/PwgIsjLy9MvnzdvntF6unq5ubnw9fWFiODIkSO2Dt/iCgsLMWnSJKSnp6OkpMSibS9cuBBz5szB5MmTceLECZSXl2PDhg3Iz89HeHg4duzYYbTOd999h9GjR8PLywsnT57E+fPn0adPH4wdOxZfffWVQd2nnnoK6enpWLp0qUXjJiLrY7JP1EE5OzvD398fkydPxjfffIPnn38eH374IR577DGIiL3D63Q8PT0xZsyYTrv9piorKzFx4kQ8+uijmD17ttFyNzc3+Pr6IiMjA5988okdIrS9pUuXYvTo0Th69Ci8vLws3v6TTz6JuXPnIiAgAB4eHoiIiMCWLVtw69YtPP/88wZ1Gxsb8ec//xk+Pj744IMPEBgYCD8/P7z77rvo27cvUlJSUFdXp6/ft29fbN++HStWrEB2drbFYyci62GyT+Qg/v73v+OBBx7Av/71L3z66af2Doc6uVWrVqG4uBjLli0zudzd3R2bN2+Gk5MTUlNTcebMGRtHaHvvv/8+Fi9ebNHhOzqZmZnIyMgwKg8NDYVKpUJhYaHBRYB///vf+Omnn5CYmAiVSqUvd3Z2xmOPPYaLFy9i165dRm0lJibiueeeQ0NDg8X3gYisg8k+kYNQKBT6K6jvvPOOnaOhzkxEkJmZiQceeABBQUHN1ouNjcWLL76IqqoqJCUlmRy/70huT6ptpbq6GjU1NRg8eLDBQ62++eYbADB5L4SuLCcnx2jZlClTcOnSJezevdtKERORpTHZJ3IgumEchw8fRn19vb68tLQUaWlp6NWrF1xdXdGtWzckJCQgPz9fX2fHjh0GN0T+/PPPSE5Oho+PD3x9fREfH4/CwkKD7dXV1WHZsmUYOHAgPDw80LVrV0ycOBH/+te/cOvWLYO6rYnB2srLyzF//nz07dsXrq6u6NKlCyZMmIBvv/1WX2f58uX6Y3D7sJgvvvhCX+7n56cvX716NRQKBaqrq3Hw4EF9Hd3VW91yhUKBHj16IC8vD9HR0fDy8oKHhwfGjRtncEOkpbdvDwUFBSgpKUFoaGiLdV966SXExMTg2LFjmDNnTqvab00/tuV8BtrHeWpJuicfL1myxKD81KlTAIAePXoYrRMcHAwAJv/bMmzYMADAl19+adE4iciKhIhsKjExURITE81e74cffhAAMnny5Gbr1NTUCAABIEVFRSIiUlRUJPfcc4/4+/vL7t27paqqSo4fPy6RkZHi7u4uhw4dMmhj8uTJ+u0cOnRIrl+/Lvv27ROVSiUjRowwqJuSkiIajUa++uoruXHjhhQXF8uCBQsEgHz77bf6eubG0JKsrCwx9+vrypUr0rt3b/H395edO3eKVquV06dPS0JCgigUClm/fr1BfbVaLQ8++KBRO+Hh4eLr62tU3lx9ndDQUFGr1TJq1Cj9cc3Ly5OhQ4eKq6ur7N+/36rbHzdunHTt2lVyc3ObrWNKW87XjRs3CgB57bXXTC7Py8sTjUajf19aWiohISECQDZt2qQvz83NNdpXc/vRnPPZ0ufpnQQHB4uzs7PF2jOluLhY/P39JSUlxWjZww8/LADk8OHDRsvOnj0rAOT+++83WqbVagWAREREmB0PAMnKyjJ7PSK6K9m8sk/kQMTEjbnp6em4cOEC3njjDTzyyCPw9PTEoEGD8Omnn0JEmr2ampKSglGjRkGtVuOhhx5CXFwc8vLyUFZWpq+Tk5ODQYMG4eGHH4ZKpYK/vz/+8Y9/oH///haJwZLS09Nx/vx5vPXWW4iPj4e3tzf69++PLVu2IDAwEGlpaRafIaWp6upqvPPOO/rjOnz4cGzatAk3b97E3LlzrbrtxsZGiIhNbt6+cuUKAECj0bSqvp+fH7Kzs6FUKpGamqq/6mxKW/uxNedzezhPLaW8vBzjx4/H2LFjsW7dOrPW1Z0jtw/70fH29oZCodD3MRG1f0z2iRyI7gdYqVTqh3rs2LEDTk5OiI+PN6gbEBCAQYMG4ejRo7h06ZJRWyNGjDB4HxISAgAoKirSl40fPx6HDh3CX/7yFxw+fFg/dOf06dMYO3asvl5bY7Ck7du3AwDi4uIMyt3c3BAdHY2amhqrD01Qq9X6YRA6Q4YMQVBQEAoKCqyaQO3fvx/Xrl3DqFGjrLYNHd3Ye6VS2ep1Ro4cidWrV6O6uhpJSUmoqakxWa+t/dia87k9nKeWUF1djdjYWNx3333YvHkznJ2djer4+Pjo65pa//Y6Tbm4uDTbP0TU/jDZJ3IgBw4cAACMGjUKSqUSdXV10Gq1aGxshEajMXpQ0ffffw8AOHv2rFFbTa/Kurq6AvjtCrHO2rVr8fHHH+PcuXOIjo6Gt7c3xo8fr0/IANxVDJaii8Hd3d3klIf+/v4AgOLiYqvFADSfPHXv3h0AcPXqVatu31bc3d0BwOC+kdZIS0tDcnIyjh8/bnK6zrvpx5bO5/ZwnlpCQ0MDkpKSEBwcjI8++shkog8AAwcOBACTf7xcvnwZAIz+Q3f7NuxxszERtQ2TfSIH0djYiLVr1wIAnnnmGQC/Xe308fGBi4sL6uvr9cM4mr7GjRvXpm0qFArMnDkTX3/9NSoqKrBjxw6ICBISEvDGG2/YJIbWcHNzg0ajQW1tLaqqqoyW64Z9BAQE6MucnJxw8+ZNo7oVFRUmt2FqyENT5eXlJofR6JJ8XdJvre3bSmBgIABAq9WavW5mZiYGDBiADRs2YOPGjQbL2tKPrdUezlNLSE1NRV1dHbKzsw1u0u7Xrx8OHz6sf6/bD1NP3taVRUdHGy2rrKyEiOj7mIjaPyb7RA4iPT0d//nPfzBlyhQkJSXpyxMSEtDQ0GAw44vOypUr0bNnzzbPme3j46MfX61UKvHwww/rZ0G5fWo+a8bQWlOmTAEAoykD6+rqkJOTA5VKhdjYWH15YGCg/gqnTnFxMX755ReT7Xt4eBgk5wMGDMB7771nUKe2tlb/9FidH3/8EUVFRQgNDTVIoKyxfVsZPHgwANNXjVvi6emJzz77DGq12uQUsub2oznaw3l6N/72t7/hp59+wueffw43N7c71o2MjMR9992Hbdu2GUx5euvWLXz66acICQkxGioF/O+qv66Piaj9Y7JP1EE1Njbi6tWr+PzzzxEdHY1Vq1bhySefxObNmw2u8r7++uvo27cvnnzySezduxdarRbXrl1DRkYGXnnlFaxevfqupml8+umncezYMdTV1eHq1atYtWoVRARRUVE2i6E1Xn/9dfTu3Rvz5s3Drl27UFVVhTNnzuDxxx/HlStXsGbNGv0wEACIiYlBUVER3n77bVy/fh2FhYWYO3euwdX3291///04c+YMLl68iNzcXJw7dw4REREGdTQaDV544QXk5uaiuroaR44cwYwZM+Dq6oo1a9YY1LX09qOiouDr62twdddaQkND0b17dxQUFLRp/UGDBpl8QBRgfj+aw9zzdMaMGVAoFDh//nybttcSc9r/8MMP8fLLL+O7776Dl5eX0TCkptOMOjk54f3338e1a9fwpz/9CcXFxSgvL8czzzyDs2fPYv369frhWLfTTUEaExNjmZ0kIuuzyaQ/RKTXlqkM1Wq1fkpN3UuhUIhGo5EhQ4bIrFmz5OjRo82uX15eLvPnz5c+ffqIUqmUbt26SUxMjOzbt09fJzc312gbS5YsERExKo+LixMRkfz8fElNTZXf/e534uHhIV27dpWRI0fK+vXrpbGx0ewYWqstU2+KiJSVlcm8efOkd+/eolQqRaPRSGxsrOTk5BjVraiokJSUFAkMDBSVSiVjxoyRvLw8CQ8P1x+HRYsW6eufOnVKIiIiRK1WS0hIiKxdu9agvdDQUAkODpYTJ05IbGyseHl5iUqlksjISDlw4IDVtx8RESFdunQxe/rItk4V+8ILL4iLi4tcvnxZX1ZaWmp0LoWHhzfbxqxZs0xOM9qafmzL+Sxi3nkaFRUlnp6e0tDQ0KpjsnPnTqNt615Npww1t/24uLhm29a9TE27+v3338uECRPE29tbPD09JSoqyuT5qJOUlCTBwcFy8+bNVu3z7cCpN4nsIVshYoN52IhITzfERvewGzJfdnY2kpOTbTKNpKUMGzYMZWVlHWI2l9u19XzVarUYNGgQ4uPjzZ76sSOoqKhAUFAQpk+fjvXr13e49tuioKAAYWFh2LJlC6ZNm2b2+gqFAllZWZg6daoVoiOiZmzlMB4iIrI4jUaDnTt3Ytu2bfobxx2FiCAtLQ3e3t549dVXO1z7bXHu3DkkJCQgPT29TYk+EdkPk30iIrKKsLAwHDlyBHv37kVlZaW9w7GYkpISnDt3Djk5OW2a+cfe7bdFRkYGVqxYgRUrVtg7FCIyk3XviCMi6uRWr16NhQsX6t8rFAosWbIEy5cvt2NUttOrVy/s2rXL3mFYVEBAgP6ZFh2x/bZYuXKlvUMgojZisk9EZEULFizAggUL7B0GERF1UhzGQ0RERETkoJjsExERERE5KCb7REREREQOisk+EREREZGDYrJPREREROSgOBsPkR1s27YNCoXC3mF0eDyGtsNjTUTUMSmkIz1vnsgB5Obm4uLFi/YOgzqh3NxcvPXWW8jKyrJ3KNRJjR49Gj169LB3GESdyVYm+0REnUR2djaSk5PBr30iok5jK8fsExERERE5KCb7REREREQOisk+EREREZGDYrJPREREROSgmOwTERERETkoJvtERERERA6KyT4RERERkYNisk9ERERE5KCY7BMREREROSgm+0REREREDorJPhERERGRg2KyT0RERETkoJjsExERERE5KCb7REREREQOisk+EREREZGDYrJPREREROSgmOwTERERETkoJvtERERERA6KyT4RERERkYNisk9ERERE5KCY7BMREREROSgm+0REREREDorJPhERERGRg2KyT0RERETkoJjsExERERE5KCb7REREREQOisk+EREREZGDYrJPREREROSgmOwTERERETkoJvtERERERA6KyT4RERERkYNisk9ERERE5KBc7B0AERFZXm1tLYqKigzKSkpKAADnzp0zKHd2dsY999xjs9iIiMh2FCIi9g6CiIgs69dff4W/vz/q6+tbrPvII49g9+7dNoiKiIhsbCuH8RAROaAuXbogJiYGTk4tf81PmzbNBhEREZE9MNknInJQM2bMQEv/vHVzc8OUKVNsFBEREdkak30iIgc1adIkuLu7N7vcxcUFkyZNgqenpw2jIiIiW2KyT0TkoDw8PDBlyhQolUqTy2/duoXp06fbOCoiIrIlJvtERA7s8ccfb/YmXbVajfHjx9s4IiIisiUm+0REDiwmJgYajcaoXKlUIjk5GW5ubnaIioiIbIXJPhGRA1MqlZg2bRpcXV0Nyuvr6/H444/bKSoiIrIVJvtERA7usccew82bNw3K/Pz8EBkZaaeIiIjIVpjsExE5uIiICPj7++vfK5VKzJw5E87OznaMioiIbIHJPhGRg3NycsLMmTP1Q3nq6+vx2GOP2TkqIiKyBSb7RESdwLRp0/RDeUJCQjB8+HA7R0RERLbAZJ+IqBMIDw9Hv379AABPPPEEFAqFnSMiIiJbcLF3AESdxRtvvIHc3Fx7h0GdmG4Yz3fffYekpCQ7R0Od2fz58zFq1Ch7h0HUKfDKPpGN5Obm4vDhw/YOw6FcunQJ27Zts3cYHUbPnj3h4+MDb29vs9c9fPgwz1+yiG1/UaMiAAAZrklEQVTbtuHixYv2DoOo0+CVfSIbGjlyJLZu3WrvMBxGdnY2kpOTeUzN8PXXX+Ohhx4yez3dfwJ4rOlucQgZkW3xyj4RUSfSlkSfiIg6Lib7REREREQOisk+EREREZGDYrJPREREROSgmOwTEZHVXbhwAZMmTUJlZSXKysqgUCj0r7CwMNTW1hqt07SeQqFwqIeB7dmzB/3794eLi+Xmyvj111+xbt06REVFoWvXrlCpVLj33nsxffp0FBQUNLtefn4+4uLi4OPjAy8vLzz00EM4ePCgUb3FixcjKyvLYvESkfUx2SciAnD9+nXce++9iI+Pt3coDic/Px/Dhw9HTEwMvL294efnBxFBXl6efvm8efOM1tPVy83Nha+vL0QER44csXX4FldYWIhJkyYhPT0dJSUlFm174cKFmDNnDiZPnowTJ06gvLwcGzZsQH5+PsLDw7Fjxw6jdb777juMHj0aXl5eOHnyJM6fP48+ffpg7Nix+OqrrwzqPvXUU0hPT8fSpUstGjcRWQ+TfaJOzNPTE2PGjOm027+diKCxsRGNjY32DqVF7em4taSyshITJ07Eo48+itmzZxstd3Nzg6+vLzIyMvDJJ5/YIULbW7p0KUaPHo2jR4/Cy8vL4u0/+eSTmDt3LgICAuDh4YGIiAhs2bIFt27dwvPPP29Qt7GxEX/+85/h4+ODDz74AIGBgfDz88O7776Lvn37IiUlBXV1dfr6ffv2xfbt27FixQpkZ2dbPHYisjwm+0REALy8vFBYWIg9e/bYOxSHsmrVKhQXF2PZsmUml7u7u2Pz5s1wcnJCamoqzpw5Y+MIbe/999/H4sWLLTp8RyczMxMZGRlG5aGhoVCpVCgsLISI6Mv//e9/46effkJiYiJUKpW+3NnZGY899hguXryIXbt2GbWVmJiI5557Dg0NDRbfByKyLCb7RERkFSKCzMxMPPDAAwgKCmq2XmxsLF588UVUVVUhKSnJ5Ph9R3J7Um0r1dXVqKmpweDBgw0eavXNN98AgMl7IXRlOTk5RsumTJmCS5cuYffu3VaKmIgshck+UTtXXl6O+fPno2/fvnB1dUWXLl0wYcIEfPvtt/o6y5cv19/AePvwji+++EJf7ufnpy9fvXo1FAoFqqurcfDgQX0d3ZVG3XKFQoEePXogLy8P0dHR8PLygoeHB8aNG2dw856lt29rO3bsMLgJVJdsNi3/+eefkZycDB8fH/j6+iI+Ph6FhYVG+9VZjltLCgoKUFJSgtDQ0BbrvvTSS4iJicGxY8cwZ86cVrXfms+GuX2oU1pairS0NPTq1Quurq7o1q0bEhISkJ+f3/oD0I7onny8ZMkSg/JTp04BAHr06GG0TnBwMACY/G/LsGHDAABffvmlReMkIisQIrKJxMRESUxMNGudK1euSO/evcXf31927twpWq1WTp8+LQkJCaJQKGT9+vUG9dVqtTz44ING7YSHh4uvr69ReXP1dUJDQ0WtVsuoUaPk0KFDcv36dcnLy5OhQ4eKq6ur7N+/36rbb0lWVpZY8mts8uTJAkBqampMlk+ePFl/HPbt2ycqlUpGjBhh1I69j9u4ceOka9eukpub29pdb1Fbzt+NGzcKAHnttddMLs/LyxONRqN/X1paKiEhIQJANm3apC/Pzc01Og7mfjbM6cOioiK55557xN/fX3bv3i1VVVVy/PhxiYyMFHd3dzl06JBZx+FOgoODxdnZ2WLtmVJcXCz+/v6SkpJitOzhhx8WAHL48GGjZWfPnhUAcv/99xst02q1AkAiIiLMjgeAZGVlmb0eEbVJNq/sE7Vj6enpOH/+PN566y3Ex8fD29sb/fv3x5YtWxAYGIi0tDSLz+bRVHV1Nd555x2MGjUKarUaw4cPx6ZNm3Dz5k3MnTvXqttub1JSUvTH4aGHHkJcXBzy8vJQVlZmVNeex62xsREiYjA22x6uXLkCANBoNK2q7+fnh+zsbCiVSqSmpuqvOpvS1s9Ga/owPT0dFy5cwBtvvIFHHnkEnp6eGDRoED799FOISKv/89AelJeXY/z48Rg7dizWrVtn1rq68+f2YT863t7eUCgU+j4movaLyT5RO7Z9+3YAQFxcnEG5m5sboqOjUVNTY/V/o6vVav2/7HWGDBmCoKAgFBQUdKof+xEjRhi8DwkJAQAUFRUZ1bXncdu/fz+uXbuGUaNGWW0braEbDqVUKlu9zsiRI7F69WpUV1cjKSkJNTU1Juu19bPRmj7csWMHnJycjKZhDQgIwKBBg3D06FFcunSp1ftkL9XV1YiNjcV9992HzZs3w9nZ2aiOj4+Pvq6p9W+v05SLi0uz/UNE7QeTfaJ2qq6uDlqtFu7u7ian5/P39wcAFBcXWzWO5n7ou3fvDgC4evWqVbffnjS9Qu3q6goAJqfr5HH7baYdAKivrzdrvbS0NCQnJ+P48eMmp+u8m89GS32oa7uxsREajcbooV7ff/89AODs2bNm7ZOtNTQ0ICkpCcHBwfjoo49MJvoAMHDgQAAw+cfL5cuXAQD9+/dvdhv2uNmYiMzDZJ+onXJzc4NGo0FtbS2qqqqMluuGKAQEBOjLnJyccPPmTaO6FRUVJrdh6t/zTZWXl5scDqJLVnXJq7W231HxuAGBgYEAAK1Wa/a6mZmZGDBgADZs2ICNGzcaLGvLZ6O13Nzc4OPjAxcXF9TX1+uHQzV9jRs3zuy2bSk1NRV1dXXIzs42uIG7X79+OHz4sP69bj+OHj1q1IauLDr6/7d370FRVm8cwL8vcnFZYFVUbmGiTVZoK6HjJRkSJtDBciQRU5vSsYtdlIxS1KxUMh2mZEackGqaygto4wXNykj/UNcCVLQMaaDyAijgcPECijy/P5p9f667Jruyu7B+PzP7B2fPnvNw3oM+887Z5401e6+xsREiol5jIuq8mOwTdWKTJk0CALPydi0tLSgoKIBGo0F8fLzaHhQUpN6NM6qursbp06ctju/t7W2SZA4aNAjr16836dPc3Kw+6dToxIkTqKyshF6vN/nP3h7zd1VcN2Dw4MEALN81vhMfHx98++230Gq1WLdundn71v5tWCMxMRGtra0mlZOMVq1ahX79+nXq+vLvv/8+fv/9d+zYsQNeXl7/2Tc6OhqPPPIItm7dalLy9MaNG9i8eTNCQ0PNjkoB/7/rb7zGRNR5Mdkn6sRWrlyJsLAwpKSkYNeuXWhqakJZWRmmTZuGqqoqZGZmqkcWACAuLg6VlZVYu3YtLl26hPLycsybN8/kLvLNHnvsMZSVleHMmTMwGAyoqKhAVFSUSR+dTodFixbBYDDg8uXLKCoqwowZM+Dp6YnMzEyTvvaYv6ty5rrFxMTA39/f5A6uM+j1evTt2xclJSU2fT48PNziA6IA6/82rLFy5UoMHDgQs2bNwp49e9DQ0ICLFy8iOzsby5YtQ0ZGhsnd8hkzZkBRFPz11182zXcn1oz/5Zdf4oMPPsAvv/wCX19fs2NIt5YZdXNzw+eff46LFy9i5syZqK6uRl1dHV577TX8+eefyMnJUY9j3cxYgjQuLq5jfkkish+nFAEiugfZUrpQRKS2tlZSUlIkLCxMPDw8RKfTSXx8vBQUFJj1ra+vl9mzZ0tQUJBoNBoZM2aMFBYWSmRkpAAQALJgwQK1f2lpqURFRYlWq5XQ0FDJysoyGU+v10tISIicPHlS4uPjxdfXVzQajURHR8uBAwfsPv+ddFTpzW3btqnxGV/Tp08Xg8Fg1r548WIREbP2hIQEdTxnr1tUVJT07NmzQ0tE2rp/Fy1aJO7u7nLu3Dm1raamxmz9IiMjbzvGnDlzLJYgbc/fhq3XsK6uTubPny8DBgwQDw8P6dOnj8TFxcnevXvN4oiJiREfHx9pbW1t15rk5+ebzW183Voy1NrxExISbju28WWpJOuRI0dk/Pjx4ufnJz4+PhITE2NxrxolJSVJSEiIXLt2rV2/883A0ptEjpSniDi5NhvRPSIpKQnA/x9u0xUMHToUtbW1nbbySF5eHpKTk51eYvJWnX3dbGHr/m1oaEB4eDgmTJhgdenHrqC+vh7BwcGYPn06cnJyutz4tigpKUFERAQ2btyIqVOnWv15RVGQm5uLKVOm2CE6IrrFFh7jISIiu9HpdMjPz8fWrVuRlZXl7HA6lIhg7ty58PPzw/Lly7vc+LaoqKhAYmIi0tLSbEr0icjxmOwTEZFdRUREoKioCHv27EFjY6Ozw+kw58+fR0VFBQoKCmyq/OPs8W2RnZ2N9PR0pKenOzsUImonJvtEZCYjIwOKoqCkpATnzp2DoihYsmSJs8Pq9Lhut9e/f3/s2rULfn5+zg6lwwQGBuLAgQMIDw/vkuPbYtWqVbyjT9TFuN+5CxHda1JTU5GamursMLocrhsREXU2vLNPREREROSimOwTEREREbkoJvtERERERC6KyT4RERERkYtisk9ERERE5KJYjYfIgbZu3QpFUZwdhsvhmjoO15qIqGthsk/kQCNHjsSbb77p7DBchsFgwJo1a5Cbm+vsUFzeJ598AgDcv3TXkpOTnR0C0T2FyT6RA913332YMmWKs8NwKWvWrOGaOsCWLVsAgGtNd43JPpFj8cw+EREREZGLYrJPREREROSimOwTEREREbkoJvtERERERC6KyT5RF+Dj4wNFUUxebm5u6NmzJ/R6PV599VUUFxc7O0wiq/3zzz94+umn0djYiNraWpM9HhERgebmZrPP3NpPURQMGzbMCdHbx3fffYcHH3wQ7u72qaHRnvEXLlzIKldELoLJPlEXcOnSJRw9ehQAMHHiRIgIrl+/jtLSUixbtgylpaUYNmwYZs6ciStXrjg5WqL2OXbsGIYNG4a4uDj4+fmhd+/eEBEUFhaq76ekpJh9ztjPYDDA398fIoKioiJHh9/hysvL8fTTTyMtLQ3nz5936vgvvvgi0tLS8O6773Z4HETkWEz2ibqobt26ISAgABMnTsTPP/+Md955B19++SWeffZZiIizw7tn+fj4YMyYMffs/O3V2NiIp556Cs888wxef/11s/e9vLzg7++P7OxsbNq0yQkROt67776L0aNHo7i4GL6+vk4df+DAgdi2bRvS09ORl5fX4bEQkeMw2SdyER999BFGjBiBnTt3YvPmzc4Oh+g/rV69GtXV1Vi6dKnF97t3744NGzbAzc0NL7/8MsrKyhwcoeN9/vnnWLhwod2O71g7vl6vx+TJk/HWW2+htbXVLjERkf0x2SdyEYqiqHdI161b5+RoiG5PRPDZZ59hxIgRCA4Ovm2/+Ph4LFmyBE1NTUhKSrJ4ft+VaDSaTjf+pEmTcPbsWezevdsOERGRIzDZJ3IhxuMbhw8fxvXr19X2mpoazJ07F/3794enpyf69OmDxMREHDt2TO2zfft2ky88/v3330hOTkaPHj3g7++PCRMmoLy83GS+lpYWLF26FA899BC8vb3Rq1cvPPXUU9i5cydu3Lhh0rc9MThKXV0d5s+fj4EDB8LT0xM9e/bE+PHjsW/fPrXPihUr1LW4+VjM999/r7b37t1bbc/IyICiKLh8+TIOHjyo9jHeRTW+rygK7rvvPhQWFiI2Nha+vr7w9vbG2LFjcfDgQbvN35mUlJTg/Pnz0Ov1d+z73nvvIS4uDsePH8cbb7zRrvHbc31t2e9A59rHjjB06FAAwA8//ODkSIjIZkJEDjF58mSZPHmyzZ8/evSoAJCJEyfets/Vq1cFgACQyspKERGprKyU+++/XwICAmT37t3S1NQkv/32m0RHR0v37t3l0KFDJmNMnDhRnefQoUNy6dIl2bt3r2g0Ghk+fLhJ39mzZ4tOp5Mff/xRrly5ItXV1ZKamioAZN++fWo/a2Nor9zcXLH2n7GqqioJCwuTgIAAyc/Pl4aGBjl16pQkJiaKoiiSk5Nj0l+r1crjjz9uNk5kZKT4+/ubtd+uv5FerxetViujRo1S17ewsFAeffRR8fT0lP3799t1/rFjx0qvXr3EYDDcto8ld7t/b/b1118LAPnwww8tvl9YWCg6nU79uaamRkJDQwWAfPPNN2q7wWAwWwNrr681+91e+9iSkJAQ6datW4eNZ+v4DQ0NAkCioqI6bG4Akpub22HjEdF/ymOyT+Qgjkj2r1y5YpbsP//88wJANmzYYNK3qqpKvLy8JDIy0qTdmPzk5+ebxQ9Aampq1LawsDAZPXq0WRwPPvigSbJvbQztZUuy/8ILLwgA2bRpk0l7c3OzBAcHi0ajkerqarXdHsk+ADl69KhJ+/HjxwWA6PX6do1n6/zR0dHSs2dPqxPTjkz2V69eLQAkKyvL4vu3Jvsi/yb2Hh4eotVq5Y8//lDbbl0Da6+vNfvdXvvYks6S7IuIKIoiDzzwQIfNzWSfyKHyeIyHyIVUVVUBADw8PNQjHtu3b4ebmxsmTJhg0jcwMBDh4eEoLi7G2bNnzcYaPny4yc+hoaEAgMrKSrVt3LhxOHToEF566SUcPnxYPbpz6tQpPPHEE2o/W2Owh23btgEAEhISTNq9vLwQGxuLq1ev2v3IglarVY9HGA0ZMgTBwcEoKSlRr6M97N+/HxcvXsSoUaPsNsedGM/ee3h4tPszI0eOREZGBi5fvoykpCRcvXrVYj9br2979ntn2seO5O7uftv1JqLOj8k+kQs5cOAAAGDUqFHw8PBAS0sLGhoa0NbWBp1OZ/YgoiNHjgAA/vzzT7OxdDqdyc+enp4AgLa2NrUtKysLX331FSoqKhAbGws/Pz+MGzdOTbgA3FUMHc0YS/fu3S2WHgwICAAAVFdX2zWOHj16WGzv27cvAODChQt2nd/ZunfvDgAm3ytpj7lz5yI5ORm//fabxXKdd3N977TfO9M+drTW1la7f3mYiOyHyT6Ri2hra0NWVhYA4LXXXgPw793MHj16wN3dHdevX4eIWHyNHTvWpjkVRcFzzz2Hn376CfX19di+fTtEBImJifj4448dEoM1vLy8oNPp0NzcjKamJrP3jQ8aCgwMVNvc3Nxw7do1s7719fUW51AU5Y5x1NXVWXwWgjHJNyb99prf2YKCggAADQ0NVn/2s88+w6BBg/DFF1/g66+/NnnPluvbXp1pHztSY2MjRES9ZkTU9TDZJ3IRaWlp+PXXXzFp0iQkJSWp7YmJiWhtbTWp9GK0atUq9OvXz+Ya2j169EBpaSmAf49kPPnkk2qVk5tL9dkzBmtNmjQJAMxKCba0tKCgoAAajQbx8fFqe1BQEM6dO2fSt7q6GqdPn7Y4vre3t0lyPmjQIKxfv96kT3Nzs/qUWKMTJ06gsrISer3eJLGyx/zONnjwYACw6ciLj48Pvv32W2i1WoslZq29vtboTPvYUYx7z3jNiKjrYbJP1EW1tbXhwoUL2LFjB2JjY7F69WrMmjULGzZsMLm7u3LlSgwcOBCzZs3Cnj170NDQgIsXLyI7OxvLli1DRkbGXZVnfOWVV3D8+HG0tLTgwoULWL16NUQEMTExDovBGitXrkRYWBhSUlKwa9cuNDU1oaysDNOmTUNVVRUyMzPV4x4AEBcXh8rKSqxduxaXLl1CeXk55s2bZ3L3/WaPPfYYysrKcObMGRgMBlRUVCAqKsqkj06nw6JFi2AwGHD58mUUFRVhxowZ8PT0RGZmpknfjp4/JiYG/v7+OHz4sK1LeNf0ej369u2LkpISmz4fHh6O7Oxsi+9Ze32tYe0+njFjBhRFwV9//WXTfHdi7/EBqCVF4+Li7DYHEdmZI78OTHQvu5tqJlqtVq2yY3wpiiI6nU6GDBkic+bMkeLi4tt+vq6uTubPny8DBgwQDw8P6dOnj8TFxcnevXvVPgaDwWyOxYsXi4iYtSckJIiIyLFjx+Tll1+Whx9+WLy9vaVXr14ycuRIycnJkba2NqtjsJYt1XhERGprayUlJUXCwsLEw8NDdDqdxMfHS0FBgVnf+vp6mT17tgQFBYlGo5ExY8ZIYWGhREZGquuxYMECtX9paalERUWJVquV0NBQs4ozer1eQkJC5OTJkxIfHy++vr6i0WgkOjpaDhw4YPf5o6KinF6NR0Rk0aJF4u7uLufOnVPbampqzPbaf1W4mTNnjsWKRO25vrbsdxHr9nFMTIz4+PhIa2tru9YkPz/fbG7j69aSoY4YX0QkKSlJQkJC5Nq1a+2aoz3AajxEjpSniFg4OEpEHc54tGbLli1OjsR15OXlITk52eL5985q6NChqK2t7XJVWzp6/zY0NCA8PBwTJkzAp59+2iFjdib19fUIDg7G9OnTkZOT0+XGB/59+FlERAQ2btyIqVOndti4iqIgNzcXU6ZM6bAxiei2tvAYDxEROZxOp0N+fj62bt2qfrHcVYgI5s6dCz8/PyxfvrzLjQ8AFRUVSExMRFpaWocm+kTkeEz2iYjIKSIiIlBUVIQ9e/agsbHR2eF0mPPnz6OiogIFBQU2Vf5x9vgAkJ2djfT0dKSnp9tlfCJyHMd8I46I6B6XkZGBt99+W/1ZURQsXrwYK1ascGJUzte/f3/s2rXL2WF0qMDAQPWZF11xfODf6kJE5BqY7BMROUBqaipSU1OdHQYREd1jeIyHiIiIiMhFMdknIiIiInJRTPaJiIiIiFwUk30iIiIiIhfFL+gSOdDZs2eRl5fn7DBchsFgAACuqQMYHwLGtSYi6lqY7BM50OHDh5GcnOzsMFwO19RxuNZERF2LIl3pOfNERERERNReW3hmn4iIiIjIRTHZJyIiIiJyUUz2iYiIiIhcFJN9IiIiIiIX9T/wRM+wYxOk3QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from keras.utils import plot_model\n", + "\n", + "plot_model(shortcut5, to_file='assets/shortcut5.png', show_shapes=True, show_layer_names=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Shades", "language": "python", - "name": "python3" + "name": "shades" }, "language_info": { "codemirror_mode": { "name": "ipython", - "version": 2 + "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" + "pygments_lexer": "ipython3", + "version": "3.9.12" } }, "nbformat": 4, - "nbformat_minor": 0 -} \ No newline at end of file + "nbformat_minor": 4 +} diff --git a/05_network_parameter_optimization.ipynb b/05_network_parameter_optimization.ipynb index b562106..b6cd5d5 100644 --- a/05_network_parameter_optimization.ipynb +++ b/05_network_parameter_optimization.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "collapsed": true, "pycharm": { "name": "#%% md\n" } @@ -15,6 +14,15 @@ { "cell_type": "code", "execution_count": 2, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [ { "name": "stdout", @@ -49,17 +57,20 @@ " f\"x_train: {x_train.shape}, y_train: {y_train.shape},\\n\"\n", " f\"x_val: {x_val.shape}, y_val: {y_val.shape}\\n\"\n", " f\"x_test: {x_test.shape}, y_test: {y_test.shape}\")" - ], - "metadata": { - "collapsed": false, - "pycharm": { - "name": "#%%\n" - } - } + ] }, { "cell_type": "code", "execution_count": 4, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [ { "name": "stderr", @@ -363,20 +374,20 @@ "evalue": "", "output_type": "error", "traceback": [ - "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", - "\u001B[0;31mKeyboardInterrupt\u001B[0m Traceback (most recent call last)", - "\u001B[0;32m/var/folders/wh/kr5c3dr12834pfk3j7yqnrq40000gn/T/ipykernel_68464/326725923.py\u001B[0m in \u001B[0;36m\u001B[0;34m\u001B[0m\n\u001B[1;32m 4\u001B[0m \u001B[0;32mfor\u001B[0m \u001B[0mi\u001B[0m \u001B[0;32min\u001B[0m \u001B[0mrange\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;36m2\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0;36m1000\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 5\u001B[0m \u001B[0mmodel\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0mShortCut11\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mnetwork_parameter\u001B[0m\u001B[0;34m=\u001B[0m\u001B[0mi\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0minput_shape\u001B[0m\u001B[0;34m=\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;36m1\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0;36m102\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m----> 6\u001B[0;31m \u001B[0mhistory_shortcut_11\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0mmodel\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mfit\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mx_train\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0my_train\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mx_val\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0my_val\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mepoch\u001B[0m\u001B[0;34m=\u001B[0m\u001B[0mepoch\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mbatch_size\u001B[0m\u001B[0;34m=\u001B[0m\u001B[0mbatch_size\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0msave\u001B[0m\u001B[0;34m=\u001B[0m\u001B[0;34m\"/tmp/temp.hdf5\"\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m 7\u001B[0m \u001B[0mmodel\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0mload_model\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m\"/tmp/temp.hdf5\"\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 8\u001B[0m \u001B[0my_pred\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0mmodel\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mpredict\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mx_test\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mreshape\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m-\u001B[0m\u001B[0;36m1\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0;34m)\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n", - "\u001B[0;32m~/PycharmProjects/sccnn/models.py\u001B[0m in \u001B[0;36mfit\u001B[0;34m(self, x, y, x_val, y_val, epoch, batch_size, save)\u001B[0m\n\u001B[1;32m 197\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 198\u001B[0m history = self.model.fit(x, y, validation_data=(x_val, y_val), epochs=epoch, verbose=1,\n\u001B[0;32m--> 199\u001B[0;31m callbacks=callbacks, batch_size=batch_size)\n\u001B[0m\u001B[1;32m 200\u001B[0m \u001B[0;32mreturn\u001B[0m \u001B[0mhistory\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 201\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n", - "\u001B[0;32m~/miniforge3/lib/python3.9/site-packages/keras/utils/traceback_utils.py\u001B[0m in \u001B[0;36merror_handler\u001B[0;34m(*args, **kwargs)\u001B[0m\n\u001B[1;32m 62\u001B[0m \u001B[0mfiltered_tb\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mNone\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 63\u001B[0m \u001B[0;32mtry\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m---> 64\u001B[0;31m \u001B[0;32mreturn\u001B[0m \u001B[0mfn\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m*\u001B[0m\u001B[0margs\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0;34m**\u001B[0m\u001B[0mkwargs\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m 65\u001B[0m \u001B[0;32mexcept\u001B[0m \u001B[0mException\u001B[0m \u001B[0;32mas\u001B[0m \u001B[0me\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0;31m# pylint: disable=broad-except\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 66\u001B[0m \u001B[0mfiltered_tb\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0m_process_traceback_frames\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0me\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0m__traceback__\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n", - "\u001B[0;32m~/miniforge3/lib/python3.9/site-packages/keras/engine/training.py\u001B[0m in \u001B[0;36mfit\u001B[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001B[0m\n\u001B[1;32m 1214\u001B[0m _r=1):\n\u001B[1;32m 1215\u001B[0m \u001B[0mcallbacks\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mon_train_batch_begin\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mstep\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m-> 1216\u001B[0;31m \u001B[0mtmp_logs\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mtrain_function\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0miterator\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m 1217\u001B[0m \u001B[0;32mif\u001B[0m \u001B[0mdata_handler\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mshould_sync\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 1218\u001B[0m \u001B[0mcontext\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0masync_wait\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n", - "\u001B[0;32m~/miniforge3/lib/python3.9/site-packages/tensorflow/python/util/traceback_utils.py\u001B[0m in \u001B[0;36merror_handler\u001B[0;34m(*args, **kwargs)\u001B[0m\n\u001B[1;32m 148\u001B[0m \u001B[0mfiltered_tb\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mNone\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 149\u001B[0m \u001B[0;32mtry\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m--> 150\u001B[0;31m \u001B[0;32mreturn\u001B[0m \u001B[0mfn\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m*\u001B[0m\u001B[0margs\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0;34m**\u001B[0m\u001B[0mkwargs\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m 151\u001B[0m \u001B[0;32mexcept\u001B[0m \u001B[0mException\u001B[0m \u001B[0;32mas\u001B[0m \u001B[0me\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 152\u001B[0m \u001B[0mfiltered_tb\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0m_process_traceback_frames\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0me\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0m__traceback__\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n", - "\u001B[0;32m~/miniforge3/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py\u001B[0m in \u001B[0;36m__call__\u001B[0;34m(self, *args, **kwds)\u001B[0m\n\u001B[1;32m 908\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 909\u001B[0m \u001B[0;32mwith\u001B[0m \u001B[0mOptionalXlaContext\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0m_jit_compile\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m--> 910\u001B[0;31m \u001B[0mresult\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0m_call\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m*\u001B[0m\u001B[0margs\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0;34m**\u001B[0m\u001B[0mkwds\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m 911\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 912\u001B[0m \u001B[0mnew_tracing_count\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mexperimental_get_tracing_count\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n", - "\u001B[0;32m~/miniforge3/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py\u001B[0m in \u001B[0;36m_call\u001B[0;34m(self, *args, **kwds)\u001B[0m\n\u001B[1;32m 940\u001B[0m \u001B[0;31m# In this case we have created variables on the first call, so we run the\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 941\u001B[0m \u001B[0;31m# defunned version which is guaranteed to never create variables.\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m--> 942\u001B[0;31m \u001B[0;32mreturn\u001B[0m \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0m_stateless_fn\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m*\u001B[0m\u001B[0margs\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0;34m**\u001B[0m\u001B[0mkwds\u001B[0m\u001B[0;34m)\u001B[0m \u001B[0;31m# pylint: disable=not-callable\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m 943\u001B[0m \u001B[0;32melif\u001B[0m \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0m_stateful_fn\u001B[0m \u001B[0;32mis\u001B[0m \u001B[0;32mnot\u001B[0m \u001B[0;32mNone\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 944\u001B[0m \u001B[0;31m# Release the lock early so that multiple threads can perform the call\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n", - "\u001B[0;32m~/miniforge3/lib/python3.9/site-packages/tensorflow/python/eager/function.py\u001B[0m in \u001B[0;36m__call__\u001B[0;34m(self, *args, **kwargs)\u001B[0m\n\u001B[1;32m 3128\u001B[0m (graph_function,\n\u001B[1;32m 3129\u001B[0m filtered_flat_args) = self._maybe_define_function(args, kwargs)\n\u001B[0;32m-> 3130\u001B[0;31m return graph_function._call_flat(\n\u001B[0m\u001B[1;32m 3131\u001B[0m filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access\n\u001B[1;32m 3132\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n", - "\u001B[0;32m~/miniforge3/lib/python3.9/site-packages/tensorflow/python/eager/function.py\u001B[0m in \u001B[0;36m_call_flat\u001B[0;34m(self, args, captured_inputs, cancellation_manager)\u001B[0m\n\u001B[1;32m 1957\u001B[0m and executing_eagerly):\n\u001B[1;32m 1958\u001B[0m \u001B[0;31m# No tape is watching; skip to running the function.\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m-> 1959\u001B[0;31m return self._build_call_outputs(self._inference_function.call(\n\u001B[0m\u001B[1;32m 1960\u001B[0m ctx, args, cancellation_manager=cancellation_manager))\n\u001B[1;32m 1961\u001B[0m forward_backward = self._select_forward_and_backward_functions(\n", - "\u001B[0;32m~/miniforge3/lib/python3.9/site-packages/tensorflow/python/eager/function.py\u001B[0m in \u001B[0;36mcall\u001B[0;34m(self, ctx, args, cancellation_manager)\u001B[0m\n\u001B[1;32m 596\u001B[0m \u001B[0;32mwith\u001B[0m \u001B[0m_InterpolateFunctionError\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mself\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 597\u001B[0m \u001B[0;32mif\u001B[0m \u001B[0mcancellation_manager\u001B[0m \u001B[0;32mis\u001B[0m \u001B[0;32mNone\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m--> 598\u001B[0;31m outputs = execute.execute(\n\u001B[0m\u001B[1;32m 599\u001B[0m \u001B[0mstr\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0msignature\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mname\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 600\u001B[0m \u001B[0mnum_outputs\u001B[0m\u001B[0;34m=\u001B[0m\u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0m_num_outputs\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n", - "\u001B[0;32m~/miniforge3/lib/python3.9/site-packages/tensorflow/python/eager/execute.py\u001B[0m in \u001B[0;36mquick_execute\u001B[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001B[0m\n\u001B[1;32m 56\u001B[0m \u001B[0;32mtry\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 57\u001B[0m \u001B[0mctx\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mensure_initialized\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m---> 58\u001B[0;31m tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,\n\u001B[0m\u001B[1;32m 59\u001B[0m inputs, attrs, num_outputs)\n\u001B[1;32m 60\u001B[0m \u001B[0;32mexcept\u001B[0m \u001B[0mcore\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0m_NotOkStatusException\u001B[0m \u001B[0;32mas\u001B[0m \u001B[0me\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n", - "\u001B[0;31mKeyboardInterrupt\u001B[0m: " + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/var/folders/wh/kr5c3dr12834pfk3j7yqnrq40000gn/T/ipykernel_68464/326725923.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1000\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mShortCut11\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnetwork_parameter\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput_shape\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m102\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mhistory_shortcut_11\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx_val\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_val\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mepoch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbatch_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msave\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"/tmp/temp.hdf5\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_model\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"/tmp/temp.hdf5\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0my_pred\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx_test\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/PycharmProjects/sccnn/models.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, x_val, y_val, epoch, batch_size, save)\u001b[0m\n\u001b[1;32m 197\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 198\u001b[0m history = self.model.fit(x, y, validation_data=(x_val, y_val), epochs=epoch, verbose=1,\n\u001b[0;32m--> 199\u001b[0;31m callbacks=callbacks, batch_size=batch_size)\n\u001b[0m\u001b[1;32m 200\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mhistory\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 201\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/miniforge3/lib/python3.9/site-packages/keras/utils/traceback_utils.py\u001b[0m in \u001b[0;36merror_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 64\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 65\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# pylint: disable=broad-except\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_process_traceback_frames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__traceback__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/miniforge3/lib/python3.9/site-packages/keras/engine/training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[1;32m 1214\u001b[0m _r=1):\n\u001b[1;32m 1215\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_train_batch_begin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1216\u001b[0;31m \u001b[0mtmp_logs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1217\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata_handler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshould_sync\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1218\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masync_wait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/miniforge3/lib/python3.9/site-packages/tensorflow/python/util/traceback_utils.py\u001b[0m in \u001b[0;36merror_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 149\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 150\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 151\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 152\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_process_traceback_frames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__traceback__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/miniforge3/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 908\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 909\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mOptionalXlaContext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_jit_compile\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 910\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 911\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 912\u001b[0m \u001b[0mnew_tracing_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental_get_tracing_count\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/miniforge3/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m_call\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 940\u001b[0m \u001b[0;31m# In this case we have created variables on the first call, so we run the\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 941\u001b[0m \u001b[0;31m# defunned version which is guaranteed to never create variables.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 942\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_stateless_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# pylint: disable=not-callable\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 943\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_stateful_fn\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 944\u001b[0m \u001b[0;31m# Release the lock early so that multiple threads can perform the call\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/miniforge3/lib/python3.9/site-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 3128\u001b[0m (graph_function,\n\u001b[1;32m 3129\u001b[0m filtered_flat_args) = self._maybe_define_function(args, kwargs)\n\u001b[0;32m-> 3130\u001b[0;31m return graph_function._call_flat(\n\u001b[0m\u001b[1;32m 3131\u001b[0m filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access\n\u001b[1;32m 3132\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/miniforge3/lib/python3.9/site-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m_call_flat\u001b[0;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[1;32m 1957\u001b[0m and executing_eagerly):\n\u001b[1;32m 1958\u001b[0m \u001b[0;31m# No tape is watching; skip to running the function.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1959\u001b[0;31m return self._build_call_outputs(self._inference_function.call(\n\u001b[0m\u001b[1;32m 1960\u001b[0m ctx, args, cancellation_manager=cancellation_manager))\n\u001b[1;32m 1961\u001b[0m forward_backward = self._select_forward_and_backward_functions(\n", + "\u001b[0;32m~/miniforge3/lib/python3.9/site-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36mcall\u001b[0;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[1;32m 596\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0m_InterpolateFunctionError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 597\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcancellation_manager\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 598\u001b[0;31m outputs = execute.execute(\n\u001b[0m\u001b[1;32m 599\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msignature\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 600\u001b[0m \u001b[0mnum_outputs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_num_outputs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/miniforge3/lib/python3.9/site-packages/tensorflow/python/eager/execute.py\u001b[0m in \u001b[0;36mquick_execute\u001b[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[1;32m 56\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mensure_initialized\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 58\u001b[0;31m tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,\n\u001b[0m\u001b[1;32m 59\u001b[0m inputs, attrs, num_outputs)\n\u001b[1;32m 60\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_NotOkStatusException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " ] } ], @@ -386,53 +397,51 @@ "\n", "for i in range(2, 500):\n", " model = ShortCut11(network_parameter=i, input_shape=(1, 102))\n", - " history_shortcut_11 = model.fit(x_train, y_train, x_val, y_val, epoch=epoch, batch_size=batch_size, save=\"/tmp/temp.hdf5\")\n", + " history_shortcut_11 = model.fit(x_train, y_train, x_val, y_val, epoch=epoch, batch_size=batch_size, save=\"/tmp/temp.hdf5\", is_show=False)\n", " model = load_model(\"/tmp/temp.hdf5\")\n", " y_pred = model.predict(x_test).reshape((-1, ))\n", " model_parameter_optimization['neuron num'].append(i)\n", " model_parameter_optimization['r2'].append(r2_score(y_test, y_pred))\n", " model_parameter_optimization['rmse'].append(mean_squared_error(y_test, y_pred))\n", + " print(f\"model with parameter {i}: r2: {model_parameter_optimization['r2'][-1]}, rmse: {model_parameter_optimization['rmse'][-1]}\")\n", "pd.DataFrame(model_parameter_optimization).to_csv(\"./dataset/test_result.csv\")" - ], - "metadata": { - "collapsed": false, - "pycharm": { - "name": "#%%\n" - } - } + ] }, { "cell_type": "code", "execution_count": null, - "outputs": [], - "source": [], "metadata": { "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } - } + }, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Shades", "language": "python", - "name": "python3" + "name": "shades" }, "language_info": { "codemirror_mode": { "name": "ipython", - "version": 2 + "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" + "pygments_lexer": "ipython3", + "version": "3.9.12" } }, "nbformat": 4, - "nbformat_minor": 0 -} \ No newline at end of file + "nbformat_minor": 4 +} diff --git a/05_network_parameter_optimization.py b/05_network_parameter_optimization.py new file mode 100644 index 0000000..be52773 --- /dev/null +++ b/05_network_parameter_optimization.py @@ -0,0 +1,54 @@ +#!/usr/bin/env python +# coding: utf-8 + +# # Network Parameter Optimization + +# In[2]: + + +import numpy as np +import pandas as pd +from keras.models import load_model +from sklearn.metrics import r2_score, mean_squared_error +from sklearn.model_selection import train_test_split +from scipy.io import loadmat +from models import ShortCut11 +from numpy.random import seed +import tensorflow +import time +seed(4750) +tensorflow.random.set_seed(4750) +time1 = time.time() +data = loadmat('./dataset/mango/mango_dm_split.mat') +x_train, y_train, x_test, y_test = data['x_train'], data['y_train'], data['x_test'], data['y_test'] +x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.3, random_state=12, shuffle=True) +x_train, x_val, x_test = x_train[:, np.newaxis, :], x_val[:, np.newaxis, :], x_test[:, np.newaxis, :] +print(f"shape of data:\n" + f"x_train: {x_train.shape}, y_train: {y_train.shape},\n" + f"x_val: {x_val.shape}, y_val: {y_val.shape}\n" + f"x_test: {x_test.shape}, y_test: {y_test.shape}") + + +# In[4]: + + +model_parameter_optimization = {"neuron num":[], "r2":[], "rmse":[]} +epoch, batch_size = 1024, 64 + +for i in range(2, 500): + model = ShortCut11(network_parameter=i, input_shape=(1, 102)) + history_shortcut_11 = model.fit(x_train, y_train, x_val, y_val, epoch=epoch, batch_size=batch_size, save="/tmp/temp.hdf5", is_show=False) + model = load_model("/tmp/temp.hdf5") + y_pred = model.predict(x_test).reshape((-1, )) + model_parameter_optimization['neuron num'].append(i) + model_parameter_optimization['r2'].append(r2_score(y_test, y_pred)) + model_parameter_optimization['rmse'].append(mean_squared_error(y_test, y_pred)) + print(f"model with parameter {i}: r2: {model_parameter_optimization['r2'][-1]}, rmse: {model_parameter_optimization['rmse'][-1]}") +pd.DataFrame(model_parameter_optimization).to_csv("./dataset/test_result.csv") + + +# In[ ]: + + + + diff --git a/assets/shortcut5.png b/assets/shortcut5.png new file mode 100644 index 0000000000000000000000000000000000000000..80c95fa7710d53f5fb3311564a0fc8d7aacdf162 GIT binary patch literal 129709 zcmdqJ2{hO5zCZfWL>iEil(8a3Qb@`yRHl$jQK*cm3>iXYo{}_ZkU2wyOi_jsQVN-h z%*mW&%=mvjoxOj1pYz}Qocmw*uDkBK&RS>h9lk!p^Ss}$>HYX?s41EU3DtD*Mk7t-@p z=Q-3CUt7czui3wP-SW$8!-VMR`M3CUJ#u-pnpH30%>DN0*!wKEe+(^Guh%(LopY!B zV%U!yzh$i9Y?hX6Janu|ObS2RIOopfbgg{HwP%G-)y(*PY2C@}9}cM{#ijRMTQ)Px z(J?aND>UQFDISMq3gjz}Q((g14_`rR1KoJY*XB}_Nb(PFmG2#jphCG7l$4G{EMj8H z=ANIQ50`Y!sk310V;>&W@=dqvQCquqt#ZV&4Z5$*M@;k7xzaHr-zc4#>A*q(j z@=jNI$mTtJwE9K-R$jX_kyPR|`eCoI`>Yebx%lvrBl0RLD;)+it(p&yy{eZYFx3%uugerhWW)R|Q|Bf|Jwpx+D!|r|V;9hnlh(<)ZTQ^Ore^)5>Y}F%HF>6-$sSeug&v|w|CS^ez z@B)j!WS%{$qvP}8!QRdItA&Myp9@@b^=Ipnv_iwf{SF4QSXf{B^6WIDoD3a}mR7A& zvjxxQa+Ao!Rk+rS45r}VV9kVI8aX*RtP=K#br!6fszN)C>F9Lk^*kzhexYlZ+q8YK z(WcZt)~;+w4gBw(Z+r z?;m~{o89v69es0-O-XM}EYte+w8qB9WBv8-i}lzV9;-g!y8FIaVL^IsjQQikeV!Zk zoJmYIwX_WIXXfiHm~1U+EpQb+_f?!KE(_k6J<&BZv?|Z=I{uIx9nC$J#|DYoT)U|SvYb68MZGfL2Bc)(tliJXY zlGXV+!!!o_XOo1z^4so_eRa^~QOn>znu~Ka@|atP{`A%TkQ$ zSgMP2k7{dgF*Gz(u(q}i6JED&-J&aWbad5C=PWI^FI&YnRy_1IZENF>qx)}{?VnK? z!jB2e&dr@NHT7iLtjHxGuu@M?52dl*FEuIY)qPPb?GeTk8 z^nRbEwYByKvrjrFirm?$D2;9R*9~LGW@U+lKX|Zt=T0?;M!g4b-Y6IrUf!@nCq>4| zNqlf}>rm$DyXB6y1syS_bDVEd1NsPu4XwShDZ_^l*Trc@NjdLntoIx>Q)g?GoLsZM&qUh27X~{8;Aq3R`pY z>Y0)Xg|YzD5~l4tcGOBJ$m_{$UvZe)B`hrK=2oC+?d+V_P{=u!aX^%_s>U-fFOP=W zzJ0sB(WS1k;NF%Od&O*9g9Ht760`O6_2r^9+9!sZQP@7|9^ZGlyuSWe&yc>p{%aKZ zGiS~`x9hoXnOHZM)=}a+@b!{G+}DtY4>tvibw9&%4$gW0T)eKno?B2*b*N*6?~&7@ z@(|8OzqFJTFGe{BRmRYBx`WIcqMLJVpA??b?rSvmIC$z5H+Fmdym@|JUeb@({CGee z{q;}uXV9H=b{ue>{1H4p(3op7!M+&RK0egE{>sFQG6qvCt3cbr-^;|r#B?*y1S`&< zjL^uKZZFTzmxxP9kl%TCvxrF6QoY5fVVS=ZXy+WRSf#jjt#^s@@F zt!{>eW#_n!)hMCg(VqEm-@Cwd5|xG?CAU28P}upoX$SJBMIS01=X4umLNOot^q}>5p@OkB z0RaITKo@&koffa(X;_R>r(KdkwZ9iCdNVUz6at(=+P`VImX@)8!oz1GTeig2PhL%w zzhSn9i)XR?#z!u8jZaT3y3%Cz>stk?u$JlXYfD#P1(-VP>V_vv+uGW8{P?l+<0Hu( za`N)t5fKqL-goot+NH5c(nZ^Jrn|eFM@&rTd0yV~Jj0zntJ$|>LwTj8r6n&okA6?; z9334!C?j(v9YBVIgTrLJzkXU;S+GuD%a*NqA3Yr%U(V8fd`+S<-GW_Wl%qhPy`kP=>ru=6i7>(A-Y zE#tOy0J}d&Mr02krsq`&j}k4btXzqXA>pQ3e{Ugo#(fw%mU;6O| zyE0xa;n;F+KmrDo@yk;kzC%wvM|c8OZaqS+u$W1AwNV-xg7uCJ_|+&rMC1 zS-+>Ixc2YgNV|HI%<0qdOTP3eUAQ2;^F+QEAQH=m+070MJ~yyJw;s835-^a>1{gd! zV;(#5HrM``2~QNZQ02piuc`3L8yRstJ@H~0RO5 z+mB4G%CFjPWjPM%({XE@IFVX& z=fQ&&;CI+|#jULzA3uI%l;hg5<4C=fRf9nA_^k_gsOK+UyvDfb%a<=MZR_1$IF0at zC3ynHtX;qUNb3S{KOrrjzkKP)ZF4W_et)+n^Q`*HjbbaMXMcL?528^Eo0hG_t8K?h z-?n2%$@dQrLh)C@Dh68%3ynfKcffu`a$Z<}*-gjI<#i<~sV{a&BsA1CL)~l% z>VU9)uSQaB)R`O8hKCB=PH6vshfR@narD6$P-<*qBHi%I(d!M4z^2yCIjeYidHn(d zOMZ{`ta=#TVbhd_owwX&V`1!(zxY#P;x@qY`imekDi6h(Nbj2X(egyU5O`+`AD`9O zKQpN4n!nShRjXEoq@Pt_Ur)3LOFJ*d&(AMx29Wi__7&T(o{cR48<_O4nwlE@^5KnP zu7Q?GGYhy#8kvDi#&@Ut`uZ4#5*|NZ21wW2oGWCu``(`>e^f)`irdVD=>EMt)6!T* z_UXWM*}kvmr@9zW8VMIg8>M4lCnrS)c^x%78?LQ-hTLC z^NTfd|E1M{{JvpfVU~Ip78Ze%Y5U&2d$-GV!rIBjXmC+2DS?huz1Fr^A=xzZ>?HaY;*aQq`#jdxOO; zUAjb>HzWwYv&}s5-w?5SiwI-)-v=oo8?o8o|0U;`mS6Yp@3*|rTg}aV_kAhQgJ>t3 z*Z(0Ad+3(e_DIro36%kgbz$_o>QPNip82`9g%beYe*5gcCzks7_|P*mGmijFVELdp z0%Jd(&Pz|%IDohKhj2CLs%sxR<`3K)2$**2^y#hF+4n!rDg4DsyKGrNi7!Lo{rhZ0 zi#i2<1eVH?&nZV2djI}*`#I4|fI~I0N(>#HojhpXn*nv-Ks!+|GmE=XVP;a|v&wQL z)$M6qp$?Y8P6>zpEdXN=f@*j{5)}>}?92LiN6-M*4;sPSd}rs0WQUfN6oF`sZQ9az zZ{5PmVxW;Br8N5hpiP%}ugi4@=b{0Z2x)pedt6VGFW0_e(8id8Q@W zgh=;xF<>jNz`#Ji;9#5Gk7HuwC`K9@8vSNfRn^icSx=7V5i{A}T((*!e1h!I%k-wK z>~&ikCqOQdudqyR+`b(@{?SfVbrnEMY{2B`Xh}n=!BJ!55TMn=H{5Cg)_hR<#3dwN zfB6FKqp}zPkt|viq~y*sRgZ$p$`mhyky#F$H8X2RPxrfiT}SZ9e?#ZOE}8Xwc;I`g z#OGC06PxFzMT(p|f*tYgVz$HgVMSXp?$`2o)-X!D?q^KULx?tBjELiX{IQZ9ejhKK^ zQcB9oDybO(az73O4Wb*)+S)QepULO-Q{Ibh&+!WDv)+B;=TC}S%fe#$rs?zNM5*gK z{f%jy`Hn*YFJHbC8}$`9aKO-Jo9E5k+`T`(=6UWp`!Vs3x0hFxagqBJ5Hd8h$NKY7 z^iHBs}QV6-Ew@rwwUOp6tNK+z1QvymoC-@X&l0=Yn}~i)9YvDjEte zqwbD@zCMq*I4eq&3#S@aclJdH6a+;>PjzWlwA)tR+UB}Svae9LY&eR3w& zuxIFKq?8*aGaxMl=((7JLU$xKH9DFG761IDOXc|c^(oH3HnOpe&7a>LngKXv#s$Ew z@2j|N#op80v=q8iVp>|GpP-OXW7DLk)b_@DyDCXv2I*Nw$UCLzTE|Kxq!woFsOrzY zfZHXdrAwdaq{^K*!7ep7rZqcYyl@RqVtd)APit1MUcGD2o)Sn{+9e7d-IX2J&L#v*HnujBLl{Ny`*U544@CZT9jvvXAmPl@&i;m~yS`-jiZP6z56 z9Qk;`F8l7l%j|8FoB8;ZVpa15#Km=E1$XXT?cm@5B~!~)X4aqYQ86@g(N45mZZC}! z%nETE0V9`P#NVsWb>BWWJ&?9dK)@?EH@As%_ujpG>m!8YV`6v=3tWy_wKYJsSZX}n zT9DyB=MwR24=x{@9MT@m@#Dwel$Xasj!N!KPYS6P6cil6M}f_6oEocD&#-A0OYM5M zdGqF)>gp)5*q~3py5Em{HVw)4cg`xm&c1?TtDUU}O_!8pznHfvIyySJds_Us&78il zSE1X?qH6cXsZ)S7BOms*6{B2?`_~rOOP1%G3pF}h(XCwhMoV4N8&5J>)!Ak8#|i7U zLUs@_Hu?Bg*I~(r`|Osrxz7mV$v((t?;cNm`L`XrQXyL70-g?XS z^2Rjd@^`m)9Fv!%<{s|gPrDrz#RY-fqM*c5`M)ssyA49;7uidf=U0zQMD9LKZ?=2G zPUFI_F+-9;QZsvng`dK+4ux>gxJKToq!%vxhr`JyX8#%qR) z7Npc3iqq`hzd!htTGM0UrBV0)LAQ5(`zo!VdG)%MEovVfWtpZf^;^O0%o$4oV>Eut zjgy6_QQC9PuC6Q4m@Z5V>Je%?I5_BKxO4s0t5-XrCa^U_1X~ZO{`H3ssziPTiVeMe zd+TL4w_|fv5B93Bi;RpETC`}97m;Is{$zY|Jk7nmP-J`>%80_DL;iq|%y{{P9Y25m z+;6?{<)d4+Y)S0I2Z&yLB;k-uan1L5%qLWI>Fen5qW=iGObqg)@*nK^7;#Wp*-zZQ z_r`X`X5n*vX~}m~2xI@Zlw8!rVAOCq_fR&E7wMX>Yif@6@behB_N#Jxg-d%BVuLfI z)MyFr;ODP-E|zs7Io(E;7ubL`|nfifzrrC$mN7L;3xxB>D_ z!OC@?nfWUk$jM!^Oj&4oacS$@>xpwP#p0BJumP(e)RsV5=L)MxKi?sjRBI{v;?l5B zZ0zQSrzZl3nsamgX|0=gm=@_|-P?USpy}2vT$X+ppz?KSS+B8uiZ}F!py6KUkc2Lq z=J=(ETfn&RWySvK_jd%fUO2|NM?Fjw>@q&XBYFQXvhKpPabw`;&$>yqyV%Mur!q2y z+W&EDh{gHGMf}%BBdvW>398U7iKV-Db?;L@awJTgx$C%w26d(Uev>bHz5PIgDls@});7>mV6GLC_Oe>ndmY3%ob^$Gx@YZ~XftBIx5NF=5Ufspbvs(^AU%2=M z9u-y9qsNaoep^BDs@~snAqQr-5cZc}P~97U<_jo1v}O1>liup+W$z$9tPF;v6B_z! za#9Is>ArPtdV28+p_ddh^E^Kn&u*RBRq7Ceuwfwce)<+ZH$CkFDqK^n2Nj5$th3!F z3~cXep(;#GO|gn^#YrS$(1BNx1qlK821_;*B1e6xXEa5^rypDGLC3_)v$YIR_=au4v> zU5Tx@Zi-wE`xR`&MT-}6d$lui@WiZE_>XN+#{t376i-hxK~}+R3^LZfv7p4$j^T$Q zXpXvy!6|?F`}+gUgql;Q&zvy6>|ivBE>24s4V#_Ej?qkz zseAed*uviIYT@-y)y=rpBSX7c>AC_6xr31{&HhyNz4$ofv=o=VHNE?J$$kg)6v6|{yXP-zJKR|?FL*) z40}JO&BSwMnuMis3O7SXPcH|i4l8=(TbQ~DbZ`{NT0eDV<#ua5g*6b3>U;pYO~6W6 zcbn1W+xJ~V1&(_8a#PXV#72T?iGVcTXk5;$e&8yWe^PDz`TrakkYJDaPk98^2=w5o z-@myb5eCLGoP4|zRKGUZ zL?d`osvaS+4j~5JEc2sJer#qE=M0rw=luFOa0`*;?czu(< zCoO|XUE)#AgfDRjE1W{=;cZ35RTu$veZ2~FSFteha1KYjlmF7xM7Ajwl>o9IPCxQ` zcEP(>iIh4K+X7S%rH8;bJaj=>AD@IjFJ`ZpSm*8IMpr#O7Z*--t^gN(1tttH(K{i5 z&&1Rel_4SLBg~8-py}83_3MDMVYSLY3IEYr5D1OXK(GP%g%^%PuWxQWa^udOhW?qu zkhQBm`#1T)^cFD4S&7I+IKWK76{*|zEkGi8jjP%PJu=$?+gbQR zr^3t0R#$>V0q$ujsA#bb#2yEXAl4G3$gqmKrkI$RpA81K+`D(*ESd3J8FXm^mkQe~ z79I)c7DLeJojkvK3~Q~AdPQ`;2>V)VQ#*SWv8KEa`JYtQ!Dl&Ta~dn zshao&WD%ICEU6XIhIbx4ny+@Zw6xSPFbD)gNM1L67;4c$M1!z98VA4nB|4z2SZ;Qo z?&G6mu&W%5azWrT&sO>1p$iBIwDHeSGiwV%WoYOvf`YhV!-nMWoT(5_>RWer^z-MefEx_KZj&vS znAWVh1}b?9^#4PDQFhvl>+M^&xTK^waEZR&-b*De{Ro2L|LyyCu>~q?@$cWisrh-a zpEG$cUM!|QMoKSKyWeU{e|hrNqST?q%T`j<<%PLP!FTY9uX4q(04%IQ_#m|*^1*`# z6c>z-0+Gp}FE zjbP=kSigRKhHabF(PPK9szpi(qN{jgBa1r@hO3o#$YP;6>n@<&uch7)qTIC8@HrRd zhix!@wHd@{4W1Ibz?_P3h!iw3a7#s`e=l%SQ2LTbT@G4ceHwa#k8c~x53#DoVd zD`?#g9j*fhHlYTR+ODao+5Y{z4>XF@Js1C#p631Oljbp4w06~>Kl?#)Qn6_X3R-E1 z?H?_FJxCQ#PxD{PZT+HEC{)A@s2*_S_>Q~?MS08Bq&Ojk17Gpg*RPu{T)2?@;$u_q zXukS?Be4A~FHz;`&WC5yfk;JZ`l*t12sXT3h+iOXqTRTJX~Sw#SLOCS)-&js;=<)E zqL6M&63orYQaFEp7r1Y>yS)_RGue@n2M*v;yuFi8L-K~p_v)^(yZ^IiyX${}A}+~1 z^T9H+L}@I3U%5&J?m*ODHVJ}QZ&UUTIL>4GW1IF}T(Z};)vKtes5Pf%)4L9h@87?F zFgp9Q{S`{O9G*r@Z0u32Em5_|#yNnCQzj-c!mFPAvtD-X%&?Zh_x5(Geb_^7IKl97 zP)!2|RR4rWE+o0-3HxMmE^tD_x8GZM=13Am5t*4qlv;#D{h$NV8HnxBKsHI$8q9nC zoT8wciZuNwYPLj5iDJ`IFC1?$cgmx?XtuGnE{L%B`TM`>t4+vOYfP#dF#0Qdk-39U{m~K%EL=9h&GO0gSl?nw zf5AD=afppFk6=&wPukUZwVZL@YR*o+-3Nd~Y!nO)H&s?vA~^Yxwya=oqM3v*+})-A zv%vIbyRR^iXO4IpLS9H5ovcqjhLBtd7JLA3Z_W$nu~n%lDJlcI*iMJ02~5)zzj?D{ ze0-cO1E#qCOoKz>U2URCQAkNhq`d&c8~f3+@xfl(GDy~SO=He2P$d63sUiMwG)Nzwf`2-{%fD(bK^kkjnxpU`|UnCwrc<|tJ zm+|C=Lh$qY`F$jq(vW7{7Vsta`oC1Al0FsShLsc*W1^#FZN6`bhqc$0QO;o%)^@UG z4FnFS{-gwwWXu`ZDwBU9G5WVB$PiN-DzAU``*A_E_Xr!#H zTx^wA;DZn-No?R1JjW^!vuW}|?j;sb{&SW^m}LY}lu*ozVe+P58a9H4*a4*~T*P7x z#O~|JMSuk9G4d z#_L-vE7Q@hSdn2_znvgFxK!c$>>f9@EVxR}jn#^K%paJa9aV?Y)A=d>2%w8bHto`- zuPQ1I4Y2FT{{l(4yYs}2yLTI7#tR@{KYW;yt%`jLVQY!Hy86r6U+=}wx03)6QJ}!? zyF3}BWHdEzHnj}$Ydx0X4eNkhDA?3m(wpf4o5mWhAgaNeBSHmU&?ax8LIv+_EymrT zNG+>BFF+9~ePn)SxC`tGV7Qj`dtKf7TK)uqRm+!KjJt8g_})0f!WA=-mYvZ0vaw2f zLBPnVV=1x;+|YqY{Dbv?Q#!eGY=v4sAwj`)C{b%jlSJKtF6{?NJoM3{rvVj}m20Uw zqZKRyjB<3r-AF95HHYuN^pxU4;ksYxN+K9;{Kk{&-k;g@t@=MesJHmG-}%=!7S28Y zkB3ey=aw#6LZ_rut`ouYEWU9DFWwtwG}g&|OFeYOvXRm8ahqo$7PXHpBCcsiHoEEQ z-6JXM-Y=O6FdNnbS+hX(?5vKKXLDY%bm?*f0|N-Q)hVVi12YP3|1LvP|5t|OH``ws z61U8W4x{$E2MQrPs=Qur>@u0Mwcc6q-8SZx_qluLjt|OBMMC(?w!g9@Ih0^g>yGW) z+q=8H(Z6ZcK72O1efMrGaB}zo=iR^|)jy{9dcAyk0GyTtcA0rqs-4{sya31`IugSd zrVRz`o66)B6kK98wxyq~;((RT41Ms9M1;;(FBv$YXkH^=5jijBS9M^i`UM3kn3$LZ z(!24v*b_dkoc0g(DeBoX&3=1*)qf;Il z=uYI__n*ZzEnUHKa-_3#&6#>J`{7o0gvJmw)#>i<4~SI?$!Y$N=m%k&9fYo1ZbjDM z6*@j-96vv0?-D0~t$&%5|4T%=EOWOPfuFTpNVfHhNTgI&s!;9wc2V8yy+(AInX-wz z!0`$Y25CQ}NZ2{5u6F$V>l?D#+H3!W;n~=A;Cta2aCzO3SQopVoqZMcvbCZe=5`%F zW46`*p?Gv?3tVlX!YLk?v0fUan9)3=5iMrjdu|hv-TtJfI~NcAJr=K58|DH+^(Pks z1PM$|hh6a!${^U6@X3ZcBg4FlOHIpyWZ}0W!(acDo0F6CYoVKgX~awy^pDxu*)4C4 zr03V(NIy$UJ07U2tSke*@Z?;i-&i2>J6A>jZ;@U1 zlhzInqVB)D*HbbI3QN2g5kp-4Yjkwv6)h+6zL8vV>Wja7exN~6K2Ci|=G?iRxK_qB zYZf7=B))&YJl$1TxW{Htr$rjH%78mwBVH{>XLk1NMu|C{g!isbw;H+hZ3R9wdE>`4 z1#$Z)-097rC&WU9YEWkaIv)UM6>KlDew2%ch@WOB16c&+G&R=%g?PeKV|AMzyBZ(A z6*=Br7r!ZQI^e_@s~CJ!;sdWBIHJ7IN?A3v)ezwAjoRw!)&kpN)fE#j4y1DKVLu=t1QysaqSfq6;tpyw!W?Y$uTZD$%T^t z8VJ0jtIHGkJO&ajNY!gJxZu#uN+xK3$sW(B;(yTEDVui+LrWkrEq+&3RsQVs`*zTI zKoHAdVNp?=+Djiuufvzl#>44|ysTssp=)!SWJkcab-SD9%=rJDCdr;~{b5AnB2;_Z z{7{=n(;qxVI(*YbEIT;u9jUpkmSK@nYeFRep_XOA<^t_cE)34%hk?o{*V`R36MOT0 zcWP6l3a?hns}q@LRG&n@7=IXBt1QQ|bur`!MFv=XUZ z-@o%xe#nCMX0<|TI2ghqNrDZZGtY(~bjk>skQvvCTI0WJqgY}oLUnW$27lx>?RQiG zstH7flEgcgt=^Q#G6PckS0co^v8~M*W}L{qyDwh6*d;3JcJfEj?61J>cON6iO;0Vl z0-x~mNsr0Hs;cYq=hV;coqgo27|V&w7KUu%GF~P*ZN(x(K7KO-o9{1$@&Nhhc#%~s%7T2HwR7}H^{MOqTZlUW#?e%;NMOLC`JxP|Bv+c zb1Vnj?e8yp^m))Rh@UVnW$)<7@<7bSa(Ch1b04XX-p^5fXs89YzHgP|M?Ol0E`tabP_vIA z>|ZI1+m@Oc+>`CFXZP;&7*XnjZ3bH;RY9wUcEum_%`ac-%HN1&zT~HmQNxAv> z0J)cbXyub{dUkpR(9)GgBiB_3r1PTolOZUQt`JR_hn=1E)QZsD5#E>_l4PY>`Y&m2 z?T>$^x$=bOwhzB}G3hdpnoHVR{o-dN?TuLxFTC?JJ-@dRr>uRLHq3#4%zk`Z`7==r zFqofcjX$!UDu%Z*mOqz+gc&_$?|u&Kivx1IxZ8AAL!ZR>Zw}3g7Ffm@eHqzQiQohc zg`9V_MdZqEBvq&@m?$yNT1rd1m|DF_Jj$U3t-e6&fQmxupXZIy>BbtACx-S93spXTZ zzEoALHk~x1Rg_a#FfKRs&ZZ;ys9;;BrStB^dJn#@tobv|5TvO0ZAYNHn@v$FROiJM zZ2R7qKhO_rUR<)ZZhg4{+xDncZIA0)T){uZJmlm4#5@dp3RmHUevcN0BlSv+S+l#lh1FG36%@2xbzg` zA|t`?&`&LmwUY%*QKLs%c);^uS%y95;j8|;y zUyL_%w1xp4nz{j&R5OA0v}no|LmIal<9sKr)1944>v-O_z7|Up*N-m6nXH5zI%5#`Hx4sz7cPyi!sf^gcGP-G4v&>;7msMUi>%iu3g9F77B z>XADszlEug1;%5?j&)A9d8~(;Kx}gTvn9?*reRq!qTH>+!)GSReWY@e9Z}2?)Pc}- zKJ!eM#n4c0_ZKI&jT;XF_uPM|+B^TnDeFtV!xQRf^%p1oQAurF1jZl^f)SQtcWyyHu;Cf>L}UZ48h1ua${ugGJ^;oA`|#)rNz0K@cw2$%jhtl3EEx(WCiVC* zo+P02)Q}&FmPjWiDoatM6iBbc6b>FAkBEpi##Nq}KnXae)x&T6KXKcp$Eh!+6?wzZ zow%Vm@*zmVd-38$eHS_d?ZFi_FHMuQjf{3e3G;^LjIj#hp75ag0h}jKSm3oMPr<@q zVr1mPpqZDiudi-_OSZlT6!F(BEhpgc=s?1uhZzKe;o!-WQQ|IRiLJSu`1wuj><*7s ze_|{xWR%17i*Y!zIADuOcOaRY8!ExeP@ND)=s$IVt`9HZ-={qkIWPCT-yNUq2s7#je{8wk-MbpX}`NwFa5*p^~*fF5`;WQ!`V z!p4Ul!HMh|tM`4$F!g8Bq#UnJ=3=XV47L4;V7i4Uxsev*bo$VlLnj?MAOA1xVBp5Qng zd;0Wg^6)M5kh#SkRXY_FhE@;*dGS9+8*tsP&a*PWTZY;F*YLvs9x!0&T_br7Tk=Vv zwckqh-=*3%Bb&bFJFLLQfe&YSol|;slnuuKEt6bST-=fq`Szg_>oBlQ^g?bxk|eF( zpD^Zq5FAgc)gTpt4B6p6L4`1yePQ-KJLH}^{;ap8d=k7#hO%~@ET#a?lq1&kLHDOe zqzEo^-MI<{*Xc*jn5q~=QkC#pGBtvPDHiGBh&41*P@PBy1kLCqTvsQIRK%Zb;%_3@gK9!5s*8CGnC$+IBeTL;fHGFNxmhEM%@&!01O+BSjA;-G@z zNu8{Yl7+6e)oCHnFK88(L(CaVb8{IvxkboDc%kucMgkDaMl<1HNEE8H_~ofx93yH34c0@2X~cyg+-Xnw21;ktM5w62oDYTWHq)xxYgXb4^* zQ%!8=E+hwhE8f1vCR}`ey#Lrk@e9|y3q#pN%x_rgHXwRN6hruvNBgt<{5Y1Ai=)*o za+gHgXa|Xn^qAj(Bx{(&)=#mJHBKQ8KxStU$42;p4j6zuwWEPVp!w8^ChF9E`}j|c zK6N0o_y&qKEd+_ATAs!Cq}(KssSm=CA|_24&whLuil9Rb3mgXp`$(u&oeOhC3%(>^ zMgByN^#&D{sexy)8{o<#qSyf__sWyD>w#?{`8}S9k+k(pHIl124$wgw0dVeuwIZva z;8n*T>P2$LpcST_Z~PIeR>Wg2A7MWF;x(2B9R^$wl~%$)tzs~nH_X#$%#`7|+gyQO zfF>J)n$&^*QBD%Bzkb0&#@GZ4CWsW+jgB2#XLNbw;AI$=x-XrCky+%!vsYxtI)uGQ z2r3H7Pvkofkw@=22tupCt`GA8D*-=n6+cK07Qm{pF@$BS7{U<@Gl-m)@b|T}_9IeD z?2UMi9X&m?e0+R=mQuo*zJ}C|Scg8C#yy2bg6(vrj-QE1)F0){K^!w4L?=hUd>4>D z+E@ufgd|^(o;!CPypxc1+|tlP72Xme=)*2M z)s$uNCnoyv;mSRG=AF03!JActpPINiVFz{2b(zR6w;zhBs8%p6sV2U02k82J_U^$D$8c)IM7 z8Aog*8pFY`pD;nUY!6@oJ?gMe~}+L_^Ht;8*>C(3ouf zBp$l#m>@cn`s)oLIs?b~p9kybUWm}wmzHo;Om=*zKXk<*%hRA-f2e#Zd-_s?y=yJk zEnTVcg`V!${M;*{4RUL^g)3Cw&ir=zN!#=2;b>t`tJmJWJ&z3Z{4oZM^xh_t`hj%= zeQ=AtZsp;EU+;E^yU&V~V;LYwt4(b%z1F^OCMd(P18^Q~`zmH^EG@UAMtiUJ7p97l z@D{eL+XkES6iMn-M|)Ot3zwzPR(&}eq*s_$I8Bdfglj<9*s1$!&Yn4qRsL?@EKbi5 zn_}B&T6s&H{9p=ZkV%4(v=5Ny5i--;+-%UB&Z;$v(<|Cx&%8#qJHxDEO?1hrAU!7c zH=L%GJb*Rr#OQz&lmQcoWKMc-u)4;eH4HXouP9oW8?MQ=Ixe7_E`xtJ)wvSpRu*3R z8&!=Qg90I|6M-kzT_>;Lnj3h-_|$z2ca~!gwi+XfL_jCMG_*;*3xDwzA<_^;O3CJj z8KgFLuk;X@#KMfn0s|qHIJm@XwXbl)#|zJ@STpGme{-4{$|YzEVcT|uAI{s^F-r)P zjXiT7Jrl$#ya-Y768K%-C`QdMAnz9MP-HZVl(4q;`>~h48@0OxwbvyWh-$HZ0|v z2@-yV#n?`aj9exr9J4^UGFj}9ry*WG^xte&`TUXd_YJccp(rkz9~T0}TEV{BG=;s> z;y{qF>;acCIv94Cfi4Cg2$6D|-j<8=NK7CZA|K3%?&2#w+rh9%@m=@`nS&-}aDHys z!xY+woNo!MmGp!io(%IF#EsI=d|;zw0I|Or1D=zjt=Y z^;^QV{J@VI8jQF|PiRWTWj<${c9%V3BhRB22Q9q8^FWq5US)ztX3LsaB_)e-86-Rf z1$ar&P2p3sJ<8$coKgeED>w@R{9k{E2Cb$hye6+>DH?nVEY?3+w4Q+u6&yhXDz0=tL#R zUXdq*BSz@h*O*pb9J!5k+xK$x<9=elEZ&Zs9nZqc$&;w_JmUgrh15r++z8whCMfucKQ5co51! zHqD*0(jFIgl?9zc#0;cP>&TdmjSY-53gD9*OhMHakoX~0e4QJyvaM3x#GXk;KP z6;n7{?3IIrSG+ksvB6Z);d|uMgjna;;1_1H-%xeQxW|f3TTQ=P!P6jb z?Ws{g0D8=Fa`(^7jn5WEMUgX4_BzO*fW;LSa)7$Yz`df1aX15N({@n5N`^|4mBlx> z<@HtDab`;mL@20`oFFN@0YSnIYUb(_wVys=p4ztm3ae?5@Dl`E0+0aB(jP`J2c6_K zX`^IPW=W`US(AT5&)}#4XIT?xsq|>sWe;X1OvV%B?5DsJJ8t@;v$K<;W+sQ%i?2Cz z&feLWKv;;d5G53#4q96~2}_pgHvddmYFfEXfrkm&t9iY@l&Mb^s>UqRI#bYLy;ge* zpOGb-LAXqym=q*Tk&#ARJH6JjjMd5?WscRfQVu+J8TdO%1yo1xDic^jmVH^cH#xX~ zML_ooIc|V~;{cQSCLG?v7W-{@4JXshq+##zgwpYZzP09@ zCbNg9gYZA0lF0d*g$i`&8W0OF2D9Ml+4Y6H8c1*eg^g_d-miIkwyarBA_@e`^6`~> z)$Hbmy)8uc3YM6Lre@5q4J>Qd#*NseoR$n#_QIhwbc_WTvbx=3L%<109VZ7K#A)&) zRlx|c(WW`41I>E7!(9QrYY=8VC)#u{b4+ld)clkwBon0@tXP62CoASLB_*qX=(~^Q zr*`+r7j0Ml7~#j-Z(|ucRGyE?Rvbkor>%X93cY75Ac*|NDRgJueEXzdSGAf*W)Rp% z-rin>tSdy2h%yFls0d*baWAu&MA1Dx7jom;y1X1 zvYh``TC?;$Q2d;LOFR1dmIHAE{-1^~Y`0BfhFrv|50SG7*`el(ib@ySYnS8h}ijlDu z7}t;woA^K;vcu`fjEUEb%a6d*gh~4I^$MY%o==)K@Vv(537c1QAr@nmx_-k3e(b_X^#wi_rr@CnJWU2FW8pc9iJw|BRw z(pAxrKE*Hnc=*dF^Um?31i5?6U!IzoDZwy4mW@0J4aB}+SPI#!fdK*Jv?$Ou+3mN< zkxM;0ZVB2>7oY$?XtL&b5)r|UZMF-D4kY-nRWr#4p%Zi6K79K$9-?;AC{np3eF;b<-Ufaq+y znCu4`;~N%oI1IGD6nRKfqu>UYMu7Kzhy-)k>I z*LW%biRrjiQFaxhT`0yrQBTEM7H1=e1HGUfshIG+wnh({_J02@boYJejT=|s43vEQ zxEdOWEY7<_vu&2579ma{bMfMCsB*+PMJNi9nNt`>0HfclAe_X7zt zilm3QLY31owI@4`S4Dl|5f#1tC|z&IJrzZ;^R;Yjhd~zOA;`X~tc(K}3&oR+kaE-4 z+bbyp}Zvq1k>Ew6+0F$gFpG{)5n;2*6>};uDtW^lR9`=(J>axgf$-PQpHb*jz4Zx&!?rde!FHp+a;`_H@S-d5 zu|aNnR+v-8z%x`XEiN7&rISVTU~ZwVYsbG9rq*P?BrC9t&{ld*-esuX2WrP zFk-4fT^!ha`D%LHYFW_k>)_=slA+$Vv_xR6JU-jq*?AvL6mWOM%pw__^`g$alZh$S zsNg;l$0`W-skgA0rnDT|bNCs9%uq-->cDaeQsikp7Z(Z4t{SEWBdT>nSKu*T#O+^v zbJ35)Z0r?^8)WbVlf$QeAqfS;w!c9XfzKq2jZ=y+rx`p}j& zSO%I_GbjnE6CPlpw|`x^LM@U3@Q*m07a7S316?UzrLk*7qypjZ?fwcp7#wTTDveTq zmNq<<+x@v;zA-L7F3xLua#$U)$~sJ&9*=yiHqk8M7*G|$={_YJZ&=$y8`=>zhj{{s zQV(RqG~I5_sXh>6qDU}a^qlRzL1xjd6DAqqILQqWRI7K-?sT239QDAV8%wT`lO{AV zj&lP^B7Sl4=fRt+CFJ>LfMi9`$<_pxf(vj$;$W)izIgc1A#Q&KIb4Ufv2of+HczM@ z1{sp87eXVFw4Lt=1lA$CeKUjEPEK~~sykTxyk{X=-uEON(VUe}5X{G1C+Xzf zw#TCJK8&uC8bWUBM)=d zv*%1}MK-BtdYybPHZ(Y>-DE9D3Jj$>$(#kzxXy9`l|}n^OIg`6b_x3{nB_j~j7Ly6 zQL9njb%;##qiDg|=!{&LO}KbjWnD>akcSl>8(JD8&V__THw%`S8?L}vZ8M0I9^x{B z??iGA-NS4M6@@v@gvPB~wvdj4_(xb-w?we>{Ent`Fh-DNZYtPE1Q?3U2ulowC2f*+ z-$apv0dfQ}_ajs5y;&81Cdg&J51qqLu-ZCqC`O?rduQMd8Gh_m( z3^H{@GO@6I%&o1LFr5PWqwed(nX5GiY$oG64h{!#Bw~|l!uQA7y6YGMM#jcO9Lyy+ z8BTx*qnXkpgG%&Syn)#|;of}u;C&$;R^%`+a^hKhe9~9lCQP7_@N)6nl~1y=w7c>e zevK|RpFW$@9j1EqvF%Nfj9bS7VS!NQ3j%I8A$i7ND(BC@I9~p38x*x69QK!_#fQU# zFy+dj5I4dHf2t=(H99{(zg_~Z!SXcjlZ&TYm^lEZuKU7F8ySgLpVRxmYGoXBbMQDa zIDC9c@q-xdcmtUL^_=ub1-dJvw^EBJ1UqAY&z ziRu&X7lgIW&Cg%KHFJh8K-XYry$IIHgYe;J!}v%dtz)<2 z>?1``GIDMlyfz|x%G8S7B-vsd(ZhN9Ck+~+29m*KI0f!9TeBNbGEwy*-9XhPlPEZ7 zmWHza`kV>jH!^93CInN-AIT=@PPEVh&fFf{VM5Mn#K#`RcQ77C#@O*4g6@6|*lX4F zIQ8=I^DoCSm!)_C*YJZI1$+SYo5H)Mq$_}KM#`n_9F&y32 zG`EW$s}1;%j&Sx!DRy|h@@R?hVs6~Lc@4)@aP8Zt*KLqQ0?Av}bfEqyx^fUO5HUb&K^=qX%MUx@U20~x?p z{5H8i`t$Y6G4LN{m|R(2?h935K?6`=-~Rn!3Ov#1Q#B}X$BZ`LeQ$wS-?xE*BWO;j zhvpEMv!D^4Hu!MdmMlCRB!aU+n191rP1VLJH*!Ea@NbmxU$=!1c_cEg54z}9$guw0}rDhDn4R5~<@A1Id3m+n- zBN0QD{a>8Dd0dZcyZ3)(9x`N1=8&aWrUoptuaF^9X)qR+A{jDEk)aSmnWso9NvV)2 zQjxJJDhi26hL9oE?|p=O-S>X>et!G)Jb&!xep&VHdtKLgo#%0Urh}{J{T>L(=<@7p z^{5_z)dT3DohDkCNP}9i!`BzwX2UUbs#BevP4RC%fA`K*dP3_%$I!s^D5S1qK}H2_ zelhuA>f+tSnc1br{1}w}th)=F*f-J}sXDS`-Xw&ypt(!lwzMzUa`xgSV2{mPx7Ir~ zA$)L4`X!~bxNc;$%c#1$#R~9&)zEoUcwW6O zO>A4QwShrH#Liu;MgW6RWQuO-m zxXymGiuSjX%bSN9V2V*^iqu4zN+&2i|3t5g;q;uM^6${0gN|*7ja{c_m4htZ8}j$5 zkA+oaZ{>5kps+!-m`D}w9Z~2To>|qMHW|4{3-EL!lVa1HeT%X#Q;i-!AHK8e^v6BY z-B$S-4Rri&4V8a)O1JKpUv4Oct887*OR{UI8wRwkC)sxc*G+3Aj(a$&kUoRrwk}z^ zRKyiH2u@xrT6r{e&COTqSAh6@X$Dtv#prdn1VxDs9Tz_Fg(1t*sPCjtr;%BD>+S23 z@Toh{fxNhU*XdC)079R>CiMluO1mvBJ_nj`MFI>}O1S>>-?@BAS2|y#f&KB4r{#dq z%ykGAKDd>AaYNGAK(4u1#jLM-rAtCao%lf^UrU^p zBU!>4d~3uVehgHoSJAud&AhpSqK;@KfGA*9pnU%0McGfOjRvl}qFH}v$he|!FIpsI z9FQc%#Ke!qnUxxh`?Tb^^>7fVJXb-?X#WLt&RS9Ibofi6X7_%-KMVzgq$_^tw`Zeu z*HHk70Dm2k2n$jU`@06@Oh@_s?>Nxl$9nJP7B?0_i2~uMIw-v$OqQZk0ym>e=Ys=2LUa$Y%?t%?7TY+e3ss0&5nsntD6Ni zz;siscI^b*sPFTV+xW&Hu^)hOa6qxq(UT{;a22P_rtgyTTx`IKg8st8v%gC6M3J+q zDPVlDyvD25>t8B<{I0(Wym&SZ;emK=_EfCEw(5%Dy4I64@mD)OASVNm9 z_C9v}IASjaa3FVM3IYw?1+cqbsGr4qUS)HfCL)qK-wLPEfgc()W#g`$);h%*5CTt9 z$4!!`S2cxKQ38g}^}(^H-n`fS(NAAp1=ryF@?XBvELHNl{HU%5I-}%=4`*yG-S6^a zWb>N!i%MqHE;(%uvr2H_Wd5@F5Hc3d{Go0QMa{dj3IV`n-i(7zFJHdQfz=h7KtzHk zCM^7rmiAiB}dE03lt9Zw25>i$hXNW*1d80M$ zb*7KGesQ2AD=A_XCnB!$CgXm;AS-(RF61KOSFO=}>k|MIY(VS4Pir(^ZykT-I3UEH z(Rh*RX&fKT_CC=1m&aMXuWMBWbibw|4(t2TlCrDJL9*=oZ!k=e6a^4uB@(IFrE>&~6uc@;Ii;sS~?h>#cM&KC8q_yJK%EG@{c2bpw>U*T5O2bxFX=Bz^)Q-ly7i)!JDWh zDYtGTMow887yS>6m6M&}{own?G60eVeT{C8u`O~1aZ4(h-M7;V0z#7tUz8m=y|A}U z*8P1*v3O}&+pyFc|44`W7r(t|Dm@)REtbnBK*Xvku;x)ggVNH8JrHr~ zqf2g+WHB67*&vomsc+cyF(F<375!2&!PZHEUbGv3V1@pK8{zZmhNeFf-El;C_#yU# z;M7I)=J}7CxMZ+>8O5oTP^2_%-@ktp`xr_O6~}2iML3FSkLmX+^hcZPLMD?SN^}Kg z)Q%3|uZ~WCPoKV(#;tJC+3};0qg8U39EE91jE$=d3o!GZ3sN(h6C0P)J)YMeIy!6N zKnfm)4+^-b9W8YqXzj6>nB91g`_pc=Iy?S^S$lp8js-o=dJ$At=nn?q&zJblt|*WX zeuz;D;^tRD2@`d;`E1_2+2*XaA86>bUASTC+=B1h5>Fk`&((f$%7+JyHeAff{_&^> znG3)#-Y?e%<$WwoTaX>)?L24B$&4i>N50qSwu?uwcLrwLq;MRi|AzNv94jG}+>G_y z0iVFk<|8@XI*^nc_<&Pp-<{sRm}ij` z0dt0nB+w$n(g!pUYM(;TXWlYyb~#oR`kz?U+ymuU)wBN-t1{P%{4r?c{ZB)zJ2oOI zvp%r>Nb9u1I#Jpua5)VOI3FGDNBuTT+Xr{BkIgK~#MCnfZsj-YIZqYPyHzW9yZNyYG32#S`HPKnq&7g)Re5CYXcg zs|{ZZZOQ$!reoWqE98G3NevmdC(<-w=fRYYj#`^xMMb2)^s}S1Ze=jW;k-DxMTqOX z^=gS}1PKzkB~EYi%ca|tO+ik7;jT}}eJj?A!gHH9*HI#0>D{9RYC^Rjjpz9BdlMW6 z-pbMHvozA=EKyP%lr)=%Kjc5BI0#DBv^fzMx>N5_#3P_srvvIei#qjL{MtL$FywCXtfD$aa8P&L z<&tsM^MQGIi!x5Hw4>4axXdR`tc{IlpWh4QixRKo@qaa@s43p zXLywq{l|aZrK}zsQnKjH!!eyofg3~=6mTB8%&~atv2eGouoyChfX(MC+eZdAC0~`yTkBheQ#ZCYKD3+0kpWWzZH9xnOq1 zAN>!IlWy1;PFStX=+mdyu|W|UkUCps5dB}UpncEGdQVNbckf=?aKpg-hxuYc17#IB z6o>#J;>*BI12R86NZ6a0{qR%zB7!BN0yk9{nSFmoieCEI9J&Dwrje3dVQ%j3xjpgbqYG4E zXO?|AF{Xt{f@XKqMtj~I;N*{WyJWKhevxCgDujldW>i~A{jxGHPF&#PVm_>j=rJVc zp#Qyjj*9+?Q!Qw)FgwK+jOfl17D*`k>-!y-ehhXxr+vcj#(5~Nr(ifR88}q+O=e}} zbuWsECKyLGo-r9jyNtHhXk%#Dh~2W=SFXBQVz#-<<3)7NkIpSJ4VcYdlwp%w!>MNr zXlva%h85f;I)z;r%h}jrXEr8Z3OWzTryP8+y>aV)gRp<%@;w;QYwHz>)5o}!FzdnL zmija5Dl^9KHVZc_0l7UMJ#y}*4x4tJUB()JJ*mA-Ejd9q0L_-MyMP+FRuRyzY6-;3Jr1(AS``U+X z;P#T;-{8RV!s?W(vrlSLDMxip{9x2@!k0eU+7-ALiF6vH(Hh|>K2Mgh?zrqdGjDtV z_Ke4TNOsanqKDDwPD$F{K?0Tdbo19*F=am?q-SvL-)m3V0|g=`o}N8>F1;}E*qtq$ zu*uW2%izG5p2EVQs1vpYU=2FJ%P?A`d9!c$x zwd7@U?~t{T8*ikh`ho|(V)-WZ+HE&;N$;rm{{}+RDn^dc-~NE);^-Z~-%V-fFkzL& z2QeXfv~Y6@?_Kb<->XMm3|zCbozfSrVFFMJ(oOKZ4M;3%HSe{Zt_}vq>g>B;=+Lr$ zx|VZdmVVa7jf;J9~wD-4~IPRY5jdp`RJ6wX@Y}Cm{ z#e#1KmTCGCxPG5j zifY{L_1QE5=e^#&!xM7&$dRkF#?4RGA&5yiiLQI!#BnSjC@^aOCeNF8oB#3s(?J|y z_M~?)U1VK+R2}_3KRPm}14K5CFT7yI1^9QEF(xQXUY!?di!Ps`7UH|!9XTmsXR9LH z`}!@=y)=Tw9cpTt$QkT~-PbB_j{17fE%3)^Yei1o=s{nFvRCZJ>}9EX$&I%{zd_lq zsqN8qy7t~T-4k~1g4`YmWGr%A7+e7Do%mDutsI`cvGs+dhXoZS!%DQo_%WLXxZ1yF zS_q3PBeiF|=DkfKPqZFBYSdc3GkpPVPgN8#FpD*t`&}2;yi9#sR(ox`kDoqW<+Q~k zGTEn~;>eJi))@_5*N};-D3c!lebZ!)D8FXPOJW-$9m&9T@jK)BvL3W9h=8oCmqQ?3 z_3V&%VA~NWp`Kg<8p)$nZ2ZsZ?S8^M$HCEidjM(IXkNwsW~E>MxbfV%zYrRfUwegL zzi6!M>(7v;ye>4rlQV59`wX4BzK5oLg(qK5zj|-gef|~nT&G&tY%6I!Xl*M4gVgQe zT@vj!(6yt@NL%yaaRLHav{&hiwKtTgRS zpR)f}QdVSlOR&j>1f!6X=8dwWv51*8KI|=5Kqb-bDNllWZ?snXb-{69JZT<3^-)P^ zB`Yc`iVKWZwwbcANzX)=g|P zkH&xHzaKBj`Kg`ihAIjOR_{|KZs=t0XC^)!+f?4`Mu6x9=Vbw(~H{r=pP5XqOIN|hZ zz}t!fI`to)Jl4{(3Lwq?Q+IYY{3Ryq#;%?B=QcLKO@L_~PtUH?I}n{Bm$jbPdS~T% zoX1FR0GtXY-Ink@W_xi)8%&wHvFm(e6|i*qqL6#o$dRK}fXcK2`1qZqx>j#vw{h1w zC^aZ&|H ze$4*+=BhR8)=50JV=k!5K!y$}8eJ1^rXzWI|7iXlRAKfvSIb4O;u4=B@*ce_sZFB| zbcWo|tE<_) zI`4-Pi&Cc2rqx~VJ-p<0>27PQ?KoTtm-9VGpSu)MCT{722m9xBvHEM?(<_yQE6(e3 zzc=>#ysQi7?oQEcaLH|#4(zKW`mCuP_Y4xAJfQOXbv2{J*Hsas5y=+&M^ydw&KqtP z1l!?tP!6)CRTyH|1ILSEYi`%tGI9|7W^RW8s3x-zhR;?63nY!hl@^h1nn!ls-q!%67 zfIEyT+BLY>Z?xOC;PgJ(2OeH@{Y$J8bP9TxuI#7k;j>3*cB+2`1M4d4MQEW4OoXC5 zOgcc8H|YYw7mohF>O}9@$k&|5<@r9FnypSN^Bdjn)j)aC*mOS5bJ3-Wg9%i$eVQmE zIH1;nCXx5vkljqEc%)t4kZ?>xyrvp6^Y7dCPS+`Sx}xz#f_CudW>8h5HIpaK_UYPn z3`FNrm{`Zf$3TV_Q1x*jhZe7KVAL0r+WLli z>Mg3?dqX)S`gmE(+{=+ye`-Ke&v<)EC>{r3h<9M9D9%~vPpE^D&N)O0xc33?w5SG| zUIHI|8MDWGPS%bS&p)iB(QjAJ%?pN`_WJwgFszp{lLzL&9@U0pCOU)Gz9s+&s|43^ zuQt;3!58m8sUbe_vb3SX0x0Yc!p{$dL%nTm*0Y{eC#BmelfPKXxRzE@=0M?iBwW!y zM^b_U>N{GFk%3PFjBdG8kFu?;u081bqh}7Y`5>ni_lsEv|DpYCRnJSkiT|jZOOAI+ z{dZve?UN_&V4daZt4Q+%?M4f}r-#YC6mD$@(li)9<{f>3VSSvYP) z2%>!k0rN1`vkNATP#s2Erav~XVLw8FNV0A)sBK3YP6o$aMsd(;hW{P)&7P7{CJ`(6 zv25}wsO@0uq#+Ze=38-rS9m?wgB=dBJ;FQ3WJJRQf}T5^_wW7hD7m-6({JB5S{scj zvL)V}_#IuMR;$w^!@Plh*b$_y6=)-DIoeP}v=SmNMolraWL;QQ%g^JT8Mnfi}$29MThj ztTp~a33@jqeSQ0EX=PT$D>GWooRDZbcLc4I{C%>NWK1u^8)OyLsud5uu>JFcP}{)c z*~@KivuJ#CZ-pt*3vch-CK|2AjY&I>vRQ;KU-EOPV7oeJoi~hfzWH$yWB*#WR-@fm zheQ${dKHfXm&a*WrP7n9Pgf#`VoRIMXk4t(f<^J%-{TmR5d>P7dcMlOgjkgG&v3yt zOF*o3vcortny>s}U=VfdGk{2S#p&V6m6Rw*8}Fe%AU|;};i<>UMQZHI*Y4fh#_+fx zfB#jK3p1$gE4edW@%Zul=g(DP=L^@Tt$?g(~lTeEgh1NiY0DE^I8l%?S*UxP~@V9hLZGDE$0R6Tpo~_4HdyPkG zR9FXHU2Sw!ySv)2%>su^Fazt%3UeNI&&sH?bN*MlXm&z>I8nWPFmp3faZsLbBA+wV zY*J=V7W@daAoI}kQS){5^|y;6kuApQ@n_3d-%B5p?^5V`aM<+eIw-hw-FDo_6^VqB z2g^0ikC8IRyjOO;QwAGmm+w-*0LFGO za*622Pzu`j?lbIy^NSb#8)$5+Q>+^4b-}8m4r_~Je0Rk0Tusf7KMo-MQyV?}8u<^` zv$FOx<2SQMh0yLU5!nwP4kc%zZMfA4nd?X;T)icg(WZmalkYXydLcc(5({~C|8+~kcydx! z#7KS&6s0J+Y0sy96AX#0D_@5OF;_!7$Cr{dViWKPY82TtJ6G~o-{l{hepF%~JZKEc zHs`1rBRkNsh~E+AeAwVVgUxn)m_Kix*{IE2ep zYou}4h9(^wo&ILPncNL@mG}v7L?ED7Gmig#^JCd>Sa?zmb^E3)^2!RpQ*3PVuExO6N`Iz6jtU!2Xc|jQWW?S# z7HEC^G43BEc)@=l!98(NDzMq$E$lQM zZX5*|zQk3YC*jhRks+?i$Z;RhSQF*Cfi2B4Gj&nw4yXwfm3AQO*umo9{yh=g2e)hH z=jp{!M$hylKim+QTrkhXqy@%SIM99M(_4Ja(+l;|2!JODb?(MuivGZjI;CGmt(d4N*XLHdNU?{`pu8otT9UVUv97gDlIqo-37BV8z6+W z4IOJ?5nyRaFs!y&i|*5#0RuY4Oxf2pZN=P(?3)-|<`Uil39QW#02@6O%)%6l5WwE#FPu@;iqX0~Em+Fo{04lbJaW5;(N zd5@(uhj``zjNO{()HD;#vZ7!WHqR`=%35K@Zr#+a&mN6!#vPG@Seo|4>nplbEyv;v zmF#ixVo~Ty%>lu%#BM*ol!TX*;l4Bte26hoR9>F#8W}P5A0V` zombiF%$!3R`3;7zH&&@Md#^}4a`I$dgn82K&uo9w`|{C>&BuMDw$Mj~QTX|DJ9ci4 zKz)q5Hq1|%H|*>SJ$qb_5}<{I(}$w~7GXCdD{^1F2##Eauct=!>L_U2^UD?|8qH&? zo_22i0i<9d@li99wJY>z(O2=3SMjaPC*$Fy@E?5_;9|I+vH0DEFWVCjf4hUEKXdsk z&(d>Oj~zYWH@v0n-!mt~Z|-|TrR8YQ!pT1Lom2rLwPPupG1Of!?0@8sso&j@%H7)8 z)q^!WRNLn++i-{O-M4Wx`4*Htt>ZR2?ZLv^e?TKtyQo!1BN+()T3VVPm||eZZ8vfq z?Y|spIJ+FA)~na#;}0TT129C4#gq%gJr>!)AKKchBoDn&A`*gY>FH;0g_yi5yqFwV z!qH$uXM_Z02crM$)Fnt_9OxQ!^%@u;oEXAW0F*dv_&K>*Si(I+*#GX=l5i_-@YB&w z>2mpWa}6&QlPBWK+tf8t^?!;1=lnT8`I4I(_kL$VaHsEgUzXVZ3+#0$nSNudFr1X% z5`GHZIAt!#=f`UdemhBe`G~ze#=LwG7!V*+?Q%*wyt$O+R#vWg<^5|0hc+iu^s5*isnS?WwkL^#x3I=f|E2$N-d>dMCarKqfQsn{bG=XP zUI8uC$z|tsy`QE^)(SG`7T_tQdi?2PwJJaB!e7GV@J1jBy3Ahr?*hP}cFPB6f93Ss zvS-f?5FT~Je^YLrS)5gH&zg0gkUC1!J}sX_XVKh9Z+@{Htc)_^??9gAk(5%dY5T4C zqtq5L&hNH8mamCLG^5GIo;$i8{UwOIEs>+R1P2 z7qoU!{R)2E*^wnWYubfFCr{p;acB7Cjn*4WEW%NtHOQq%U|H+EGlBW{<%M@t+9s9M2QsysFKJ00r77QFn@ z`JU%C*8)K)B-BZ;=jp3n{``j5py@x5BvB5ojSxhfFW5%D{_dZ6?acPDKwQI5ys3u$ z&EG#%pQNKo3a#@HX;)tWM7BA{SbLt)#1-GBAym5={GS%q3O+-R{HPB2FZO_$HfaDz zk}9AiH%&z7D~9QZ8CnaS7^?Zd^0VG4%?EX0#FfmtDaV;~dZZggTq-GWE@$_jp%XSP z2>HjqI;Pk`Z~lgL)|>xBp4W!i)dN&aQ8J%Rv^{j0|3tQNv`(I~f{)hDenJD@W#Jnu zv75rsRBmwfC(UV?9o1gZfogxkf}@JPJ8dus`0?UjVJ zW#_r4?*mtAkRbbvmO|=O_cEPQ)42Z%QX~YvO*G31w>0flJMFI9e5z$}4a%S!8p>cN zAlP;0x`UxeWGsl9w*CbM1xPN6%&$h(rk=5oH&Y}-l`2<84pd75@wp(3tQ*nRKjSP- zk_=V&Mv&jDXw}F?oPO8JYHUO{iu7_&R%29=cV2c`sgZ=XQC%pC#Dwr<4u3}WzY6XX zn)Ln**Ssr_o=r&;Q=l-m=r;^zFT#yPb34*D_f6Ab!0oiZ5^SW5oNu%8sGFkSffE$TkxZUAe^wXeCf7lEP%zd#Zj(=G+&{!Fq$9h4d)lO|QFN-}W*0cuo`tNs4dh~{LoXP1R!xl0ry zb1|8Gey*TmD}^=zVT`C@sChg{I^kYnNLx+bKoz}lC+;r}I7_09;*OR%<9_SYwiJy5 z0fB5w!#jP{v3(WADX8=A%N@7U?rYYrEpNWze6Dlya!y#hCaqR@LuB1%NUzXQppw!E zop8=ixyvi>yI>yJ|K1HRLPRPA6<3C6!?G*K$G>4;btR36{joK@b#JeMF zZiAW*grXfH51aDp=d;)U6Fy<+2V{iHGWC@~%-d7Zb8FSEtrKJ(Y?+lY7pom-g^E9K zxoHZ>0{kVr&6_-SN#lZk|6mX{`7?+{U&Jj*`Z#VIxDj-PMd_bAZe0ITX8$fL$3OUE z*~&{*H2>7zSS{(Xe#1`peFl#;Ppe!1maVqui*}i9Z&>Je4zP^2&G7RNot9hj_r!_? zhdN~~yftrR|G{H#)*E?C&)>ber_q)#@9OOM*6Zd$_1ia_y#Kts_g9bkeP7O>`0{3x z#od?Rep#tX4MoKEv$@qVm*?6P#@xDn+m9g%19_pKygQkho3{lL_vQ6nPy8JAEQ@c= zdT(T)2Ex-lp_k^N#HvT8o>IvjA?S6=CtasWqer(=+V<}K=(#Jk`gQyF`8TE_Eo-P0 zq7u<-zQ%Lbka?kC9_Ha?6r;mvUV~20B3-LO|9bW7fA-tltY<_D`F%yppWBt;!Ktrw z!*72fn$F6H$SGJ*ui4fnChG<5uToOGso{wGj#2bPd7Z*W?JvxkaC-K>iJ3fSF9tp$ zBn1lGG@vEL#?k_NJG)Bm2tO=i+=d?;74H1HtF8aTs;yANq}Z;YcTj6(6B=z&VzH=< zzP2IDeA@=gvDufvTN){a;JHmFObUP4`0TicA*qf`Zu14ie&uJ;d(`lWrwL!!s%*jT zlNWUXy%z-GFrdqZcVgpqoqO0>PY;pe;xQqq-JG*}bH{w>U#%l&_{i4-8O^%0vpC3H z7njbi>%~*UoyRl7fZKZmKz944fvV^>yW$pi6alfsd8;4YtJgAV>|D$JY+n@=LL;W# zeE>+Xag@f4^*|StvXg?Jq~pJ?_nk2!TGK&H8ra#fN3k9kMOg6Y;V{eNZ|2ZuX%J6Yk4&hQOw0~ zxuIYgm^4w?x+w2DM%Phdp4vG^#Uy2lc?1^`$BJ?-04KU05dik;_PzChxWZ z;;U4(Y7QmK8LSw-o3HPdU{&%Do=8+xQ|I$)Fzzg=r*x*Nw}LJ)ndoq4uO2xG%Fe)k~S7zcl-= zUcD-~-!d)u_DABZQOvXK9&?_9R&i(hvvMg*BR5xF#I#)<&S9h>Zulv6zHwlFB$%vJIc!KghdzI$aS_|=B2-apRtT=ce?mVx6D z7j^9jhHKtBPFA6`ew-nyt4~6HjQw6{`h^|wVDbzhN|_?tC(_N=#3FP&4Fj0fRbU^v z2{-rs)fi84l{Lc&wkXe=he!eU@6Y#9RT9OM`?6E}dYkND*WCGAMK>(LBVIr7vv|1^ z97uhC?-~kEx_iv#;PbU<_^O1peD5}R#gb&_pb}dT(M&FLi`?z_DkWe>vVUcX-a|wC zD)iLz1>nW2S)^o7sIeOuyUq5jhD>I}+e|IC`j#0oZK%o(I_%ckF%LGjXij`yx3%#X zccCwh1z!O|=@wJUUazJc2e1F~E}!HR#XZ@f=b(WD-@{|(T?`u=xM`wBn*ZRMk9(Ka zc?RbJ&@NI^%nW~CEd4$cWnEs>S;8)WU?o8*RD5G0GB(Q0J@}82z z%l+ygxk@MV0Hb#j9ceBR42^kXdM+zEK0A|wbG`9lAIgzoHa5EnNV>*Z9Bk|SX6?gy zC|LcIXQ%?quG6q?oK9h~N7;f(X87#cCmx-dJ4oO;hx^BTlr316^P<>O*Pq(WUwM7Y zF#-nbf~)z$5zg!x$$Lh1y4CE|hu&{?(z)s>&naoQL7Df&5Cj7>lxEjEt5xyI2LnP< z<;z^Vc1`zIg8kbP+nI*@>5UyoSqLzy+4S6i)Bf}zHQm?UPO!h7Uqk_y66r8@N#XVO z)A(}p3Nj3?-?_5`dA$jXLH+h+I{3=&d$}ctULNreesplANtxS^59{=uv&M4}NT4f~ zOh-t{2pUr=s7*)*hA&(geR(0pdP5}wOX9Z8D~LRIjJ-B>osiHj%9d1YM801QC<%FeIt#oR-`Py)4ee2#pr!@la4qh zj(-cm-i`E;51&6b1WDkn+W?+7bjFNhZ+B)BoHL;~Y2vzhHldb0gj~XaeNkD@C0I>< zHX|y8rIh%rnDgy)(yZRv+K3JXyFI)3ga2%6R>5V1j|ZE~me82PZuhMy3Ap`ilu0C$ zcW{idA^5TtBW=2Tt!Vo^t7R^Fd*76l6y1H>3Og+DcD2~sEwWe1B<6l&3D)jp8{Gg5 zXs(OPb_l8@#AlzU{}D3@7Kev2ZsrTkM#XD+T`UUv?e{!pIo#4qv&mK44adxN(Q;0~ zVq-GokPTzg8Yw5q$XT<^d;%Dn&yF2`pXwfCeze!SY&^o8A~KUv@T|)BI^=L?-hccU z$08vHZ>!dWeskVE{hQ%5f*jLV&nhh9{AJ{7_oa1`a$cjxWQSCdZV(VR)GIGMa=$(K zjF!nW^d&hLlIK0gzFzahr5BxmMr?lm` z-1rrw05%xKiJ$QF=}6CGM@=xE^=YGa#;D^9Rzd=H=!PSvHRs$qaq2>(nHTWQxkH!pX6mdkaODp$f#J&&!u zaqCttqfxu9mssC1wHA?Y3YMbV+{1HLT}j>b*E)fZ8xfQIdef@}fbvUv%xmDNP3h`+ ztxBIpMtMgA1NEA(bo42#I<{T=_Ii7te~A6kS*<^!sQZov%EbB!qCN(aD*ud6R=o%8 z@bq*%U{jiZqb)RyM7hyBmsdK|TtmyI9=N2QH&@bwlpmWbrjF`Y`n8P&TRwxjSc3^b z_;>nGYJ(2VZ|O)5u*F)Qn&-6_Xk{ed^fFztWb;T^6#9D^n@+jnyD6{-(Uay)_&+Lh zdx9#TIuiwlN5&m2H-`l?BQv^_Fs%Tu0XZGkaz`xW|7fK4pk$Fxk+6MowFZP*9+ok4 zAYsz>u$Kk2u}P&^V-C$RIi&~4NT6d0z`7tw?Ij-O2mNa`kPotTh=uJ!@(?-1!(Vx- zRO`$0i=zgTo+m60@q3~IM}$;^AC$4ePhhZ35>Nd>^OgAaQWKTAM2PaTEFoq~AcnoY zm(=Tg{(X56E~`TFA*npZ^x8j|*XVZNAu3~umi4y@!cif*3>lxU-lUtX=NVb&dkQE( zr4f*`t0B)jSX~}^a4G^=PZGdklP{bXUU;>>sVsTg?P|M?oMjZ6KWRYHeWxS` zdmH7|8#7Iki<9kN1qJTELejhbgECB}m8 z;4&U_k-xGdF#4y7LGa>*ixv%m&njQ2<#!=*ze&Iq>=mAvI3-;SD!0S_72h359~kp$ zhQ%{Pl4!;Q?Cbi}Dt|7Y`tj&RGft!f7& zo2p9rch#+|coKF`PCd!m7MVjz^2TSFVt%eXm9JR!z~j3j-(LPXb=-`{F$P4jZ{IY{ z{a-6Cxguw__%W{~B@F~*zDwL*x%U0Wjj_FUGd}UxgYwrETen;`kxLlX81!C^dd0F= zBc=c0D$!DvNBSdw$e~;q0&yhCjDx#l{AX-{ZL+#*>K?hH8oP-1X^tA7 zgZ-~LTx#U($68`wwp#*jLPA$9bUqg0|N3!@u|OwtKIM%$|NV7{H52Sg z>W{fqz7Jj-$X45R(cAHo3n>^1U5UJ08{UM_Im=+s!QXZKcQX@&nDR9s0d+)ejRPk6 zqU*9ZkIvqEQ!Kt^R3F4)%q+U-b?im?nwwgg8B6`aJ@&g6Sxb(il#HsYvr0Il5#rL< zoccUWCBuoi96gTpLB!k$g~=P!RQk~Lgb&5U@X`ixQA6we{5duwS;xX-Ehll6exxdS zeU5$?5hhv_u-ihmMO6&}muM^`*cMmN6Es$vAN@^|AH0j>S{IeMZTY=68_M;{oIvIS z90Zkmh{~wVXL%O7^G5elG(8n?)jP48dS*c9r!?rQ`#SxWxeU?J-N+9SipmE1i9UrE@D)V?t5?VzC zChQRHkOV!|)9|`hi6Tr&Z%J`hZ`rpQjS9KWUCtiBE-noS>UqGzEtR*{8#9vq>sS>c zxcjrUwCHsp8o{I7@ch-<{zDLaZx-VXfh0S-OsRkX<~%jtwIk_PiAjn`JPrd{s(;SW$N>e+c$YS zYVj!s_lY5F(WBoNkzY-{R##6)TYEm0qP`eoPdm8QL1{@~%L`|V)jFcQv{D%I546o|1rN?C5_2}`!nN{O4x7RdB~F}2bnrVVG0 zZn}I`8Rt+?Wn zM)dUE`MuffZtFkps;}`lZjxRa!t%8%D^`6*UXhB;gA?||>C%856R$8{c@s}hZ~GR{ z2GRRzt*HwbU8F|oWin*RELR#W<*jSR=N=gsmKmArHoOuS*Xd#y06MenTlMMFT)djr zZ*0?Luomtie~4n-95@d=;Fvlw&)$dN#P?)J*5gZ!Lgb_IN%JX1+(w^{eps z0&L_K^?(s%p6%JQ*2^a`GH@qSHV~5VhvQ;NJdkWq{n?K+IcnVqE~=zp&{FY+mXB@& z>U+9fb;SKM(*@0k%O?cfZLgh~LzgZlD9O6u+&^r~1eQ(Mh8txs|LDEymFLi5EFCIN zwNT3qbSqQjfMCA%>~GQ}V4UK#?yz%{=XNP;JdgQF^6*j91Dk*enlblI5lv)|UcD@P z4Q{WII{W8G`ABHC&?;C{Ws*8d0&Thh&VTb>S{fbP<5$#@qYbvjpJ;VNrUPItl38Br zMEA>lJfbB7TvQclT&v2+a(W=yujL0RoMd_pO`~q}%?(^QP$cu0t{u6Fhe<$+tF#up zT2(U5X9b!C-90hkugWR53H%FV9eJ&)o+`4nv02X%^c1jQCE;jTKI<~Dn9-6_OD=Un z+n8j!Vy2inkK07mU~iBWrmED&cw;QIp(H)K^wy5()~MLz;i2uOKmKxf zDHYChU`Ye36>)`C@l9`3t4TMN=yzyCy=av;T)1!{{d?a9 zueU3>t?GI#kT7y(3%gi;CxnA1kC_KMmUSF%Vp6ZvCcG2k7Y!D|H^$&iBkSqeyLX+r z29rc>?fhXc+7}zbh13)o9_%;bR_91>KK<5;8mGZai1WQR`K)Eg8gMYy=(KzD=bk%z z_9_0$hYTg+ae0e<8R~}(G1`${am*(bl5Q8w^NlYwFlzhn;#-p@NC8guEfs?^e2E!J$7nS5bAyKv{j(xcF2 zJ@)X|WsqSNjqsu2ldD6;o`G(*iE^y$YZBnnETW#qWmwnbLxZZ)+i}{FH23cO$J!j; zb(=Pw>GETR6KZw4@QY}2sz=#4xoljB361T^=Jaf*le6I;0HP}p`ED0JYib|DzC_Ri z&nT~_ltK~?-m8&@wZ;b5rcq$VN`FS+jmR=28j0%`PySQJkOHcRC$ry=_Z}y10eO6y zy|DNE7wY_F26XkIwH6>grm0)lgmcs9%zsWtulDGi+WXR6Tr72NT9&$Ga_DA0&x!C` z|MKYhC;GX2)%r7&{Dc$XPbg#RHfd5Fg))z$D$N$+kklxw#79rK(j>UtU}V_|+ZAOw zZ*LUir7$K0=Y)5s(x*EJ)gZ+Lq_S^hfee_yfgx-HV+6+gemDAJ;C2acO8m!^_6*^W z{Z=Y?Ud(YNmHvp$%xnsj4?}(x8cU+vP}n_Ub{uYBm1Ho04KxQ84wRY%gt@a+6#$v9WY>}vISB5wlDEri=&+|*+0wA*CSG- z@XMvL39ovnrZ&I+BWRY6pKg&}R{t+u01x={!~kE&r6H?_!3qYzhr{`CVd0hb?b;0v za~&~aqq2o>`Z(g<#o|%QHQe=|GTsup0Ve$^cF*dMg@s3eIO;WS{CD`CxZ@Mv$entm zSEP20>gSVROY$icPs@;0+u3jJE`g^$d-`-r+LinF^IcgG75ax6(SH8BhuKf+d7={Ba@5xycxVd~3Jt zz$?VKV}S=SPgKEJsMCB~XmCSO!hFe|%+tRmxWEk!0JTLmW1_;hiRi%X?B&L_%>LAR?* zly&1t%heQ#b`cph2WyjC=2R4r-kd}-HY3FASCXTib7V`^qDq_6$p$+KI1LRl&6Tc=80q zd&*=0UgOgY%#6yr6?a5X{>cQUj}A#?`q!qBcTg+7xNMhg?EN#{3<@ExV&;W!FZM_X z5ZgI<2>;MvO(HwF&A?A>8a1E8qBR08$@;>YAWb_hM$=A_Nt<(64^YHu#m_IHRzdUa z95w&GK8>TXTaaJlZ@Gg3kYDX+cwlyoN9V?5?A+ZY#0R!ZIe743>~kk}-Sw@ix#X{Ai=;*`b3 z2%rq2(n?o1IO8mTRWwK1%y3}mnKG5;qDZ?`h^8Ma+ z2+#d@BFhqH;|x5uS#kDkdlQiH}0dAHd^E|Pq&=_AVWulyXFaS-B6n&=-yS_4<_*eF zZcO|rv&Zj3dXduVc3I*jm~bP9ENH2uwE8e2;Y-U980G;1W>4Xz!qQ4xBy2BD1PSLj z%c1_gikNXd?S~{aa(KiIY3W*tWC5m#q)$Fq*kSOpPkB>{eoXyK$}~2fXWaC~Z&tLZ z-)CWib4F+UR_^*c=WI5`|1`2Upt1gd=ON+#2nvU8fYoPRi=zh=1G?|(GG&#%LyC$` zdWOE1*ZTDmzWX|ZTa|zGnO@makfjBQ^UB7dDyUV23$=k-E3VbJJ8)3u!2|0jz1UmB z?CSDUAHZ9aTZtnp#PxQhO(^@y4H!yYqFJ6XjhPKUg@Hs=nwu||QYq=6g{nujAg3A6 zbSQ;0?ZoTvZj6+5DL54of!Jg`^8a>Sy4;ofaeOJ+XGAAl@JfR(6OR-(rpB%;|ZlBvcDf2@0_hws*{X0M75 zKihsN^;H>=V>d3#Aw42MYIjyVl4x@VafcWUN-m+rjb{=s8sD)2u8%gK`f$Hvx$s5W zhk(O%eRA7|s1`5U)brm7t|ha4`#GKYad|?tKL;;O-l=qJ+u*~!9xOwTz_E}VXevpt zcUQgIJ{K;O+ExabSw&18=AGa2%$N74=m(BZIM)cxk>Qf!pUw1#qj$9A+2Nh-MeoUXZpqYF*g%{*unV+Fgw-z zO*!M$FWIekr%4x^VZ{>MSvaIdv33Wp4b(B+KdVdoV(M$(O@mcO5)ssKgI=5moM|9{ zsDI)k&ewyMAv8c?aAn=PgWITpRXCB)BU=@vja*qkPFBB?RW|bA0v-`Ad z)B%%#XP-w^L3OCnxN)G1`cf5j$0}Sw05`t!#kc|330+>?Ij~teDRS;ihP2l1F2tlt zb)-8oN||v*`DEU!hQ=^O~a3at53}0Q)MB zLAhU+Azo|@;P~zaRtek%cO9cd=qho*@%N8xM|b59&n5^EddDmSj2o+XEt||58@|sZ zU?5lBV5oBwizRg|hLDFS5HblwRVa^TZUsTeVqk?!&x=AgpbH3fGsZ3WEDc}Q;+$Gi z(NPzgByvfyc9RAWBO{!fkOl$|P=(0U85oMS0>Og5$QKjnvz#l_;$j-m5v&tf0f3{< zEHOM_b*`oe^x;{JN4EvWh^<=W0W%()XfB#)n1nd355v@O02}k|?;ajfhj%UxnTz%+ z8j#1|8JMIwYh2c!pl)17T@8-^*o+UiZg2lGdV#D;O#{aUl6%XmEjds0KXITfa)&QO zBkkE~=%gjql2b1a?iP84L^~4EEsJ8ad;G;!^51yVaKv1UMFW7@VK|%EW%@gb$|V7C z)5Hr)J2XFKMsM(^+zMV9qQ-7L$K_lgg9SJsa?tQ4$|S*Gn&YS!hk8>7%lP6JnI+j_ zKtci?!+m#!H1zmPbwgPCRrZ0CG$xhn*<>HSxUR)>I!WgB8Vp3lLja*aN1ObVeD2Hr z%WBI2>k^;J3gB}*1NFMHgY;dqTaf}*Uh|VE#;7#^VEYL6ioZCJT*LQ_PiU>L-+;Sd zoQZZW^Hbm~IR_~oZW(?Ox@jOXzxQEoB{e1T(fWJaOqm%Z9$Fwn;|E}2_VgtZ*aQ$I z^@d*i$iDM0t$VwOfJP;DtZAQVCr<#XDee?juR1+&jAG2+WhO?>D!k-1)fE`*viPXj zHgr)qmVd3^u*KL(dcRT$=thNayY~Am24D=;u2(3@Xr1Xa^|wi8|!En9<~Mix1s_RWM3FfX}c4f4g)Y`c8(A@Vie*bxHwT$9a+>p z2b&x-2iA#b3#%gWgUOG-F5~F&*wd0-uKJU#S}VSE-t6VoH7BlZq0a?T0f zdxzhAefx4roE>ZFgzekh+yGm~J4tm1@&Z5kI%9iTvgO5zZ1todU}YetY&8xBa`=Sk z<0oupm8JRp|KJtNo~^)`1+mi~r468qCq=P@)$v-L_+EXqG)o9cefShWyf%2hxWIVU zyW}TN;c2t|bbEM$!&Y&Z>Mw262*cMb3_ZydW?HK?+n;&!fz#Fcvu6Z9%6jl%oN^7$ zWJJat0BWAN&a;AoP6$fP(77@XU$Te0{*aLa?Jn;E9#pl`ZIos}_wLL&pwQ zwlmT@=;giCR0~YZv+kOr^Z`rK>KJz1wP&cMo@kF6H9ES?6^Q5vFU_;Oyg%4rBJxU! zj+flct^4;+bZBb-zd+5pOr>Cc{^Uct=-}D1nc`}$Q=7Bh}WzUgm8_>wM zF4=7Qbu~5|_yYQ*rs!*p^vzhdWJzlrM~+ciz%+)v8U*ZZmt9|gW@=Hq`Mt##e9ZRr zpVVa^pwI`Yf`1&S+Rn3@%sUYhP>?_(sVFvO&yoadDa(5OnGK)LLHA|120C9_PkXKn z^zx{b3mlyd&HB#%R(i!>CbU;mxVY0<^N>xcjE$cOTvb+*bI7}FGQm?622Pg!d#{@>9*Wv z5DI%h+V*9n_iK%^7FPu2dJobh2*IAQZkJb8Ha@*z&Ya0(hAfrz5*|d>vEk+wVS0uF zfT_uhub@IhKucpPUDDFLN8NiV$b@lAce4-mE!druFMZQ5Wb?|+L38l9R)nNfV9jHc z>M`Ay%f)M}Hs@W!)Uh?mYZ(>GJzx}Z)5v8 zlWv&yE2*SN#W$jt&dl`xl;SFs0^MVr92|lMJGVHxJCVbZF6FCR*}Jk1Z1f|p+D&TB zS|R_aBDvV_V;ACr(BYnO{8#1?QfkY@arW{mPB+%+lE!5I*SPWHo1t}(4)PJIQ_hpY z%a@-|f2kN9J$`(IQBK^XvhU+IybJ5~@*XeRlk10LFYMXt9hB516ol$<+>E3RKMMV` z&5BP~p(j%MgA!iPq%CTIY#^3mB%GY*3k$eJ&h|qb=v2!{vAkxV85xz%v@z`bUhy@dkzhfWMtNZoO zIu~*7D6x}m&V%4c#V_0y8OKrc85$+5<(YZ8HD27_w}HM+i&i1^?VSelB2hv}229AK zmdef*eO+B$=ORJ55KS%STUr<*Qr@{)NO?U1$7G?9diT^=d5`X+&0l{tMa~$O7jd;T z^bpcwWprrk&eR?8M%l|NB27O$Ho~T`j|QkU1=@vOK1r^OGTVZ0>NN;Vyf_{p<^WMJ}jRHcxdinBz6(yg?JzmO5z+Xb16r$gB z^Vu)Xq3Mfp!yloz^1ZEYKG(2?y|^ls7QLEo?wMU*zJQ1_g{z{h_608-wqnIadd<;X zz5SfpYil>xRisj@)2Dqyi`+g_{})2rru#lPvbR;}&rUX@ucX82HuSFcqowfO_|8UZs8 z`1-bE1SM`*U1UUJ0?GdznCd89zT9&Vkb3Yj0!%;~B#Ex$Vj1|uhxhNhEU9t*_4s%H zhq!iu29UQyOJ0kZq>w2mlne0K#8Zn+4!e#(CyC?!J?38u?!?mG;(sUY2z8Zj50eY;$XEfO(m6lATM2U_u~73@tNX zCaw%t8!Dx7w80kA23P(cV2BV@A6>x~)hSE@4)62^uNODulP6EK()-PEUf6ntzp2Hc zRL2kZ$C@(kX_yp{mHA=~M2F<@ErY5#2=w#0wW1 zO0>N6(bdXfh^h5LEkl}a9ioc%7WJ6Mt~V^aA$XopGUl}|m+1LiCj?{z6y1X}FIU&? zGyCi4P68r`D3xJo+cysD0YMnmV+Tly&VNTAid!%ezOmf;HJVhe#3a`+~x zjo6neC>R3u_OAA90d?@9vW%GKsN%Jj4?QGu4K6jc9`oNoXAxD5mOBJV!M~b!615xb zro7v-J}Z^u5y8=brr<6Spy6mYj%Bc`$w*=L$UiuCH~zePsf|E_Y4K%Lt9+q0<+o-` zROKpFw1N9yy?XV}zb3b-UbCisxarix5qsEp-c z*ZuhyHbaY6;uLO{H0Y<=R3o_!BCpk!A@NiVN8}5OY*Ry{PXxHFSZh&S`q%jNC+;~$ z^K2c7YjaZ{HP6hBMukY`FcDPrCVGQzT?0@~T%;jORN~ndrE3W1L z?1ODAdDZ-a`sqmLxqVX`F<};}X0@!0pC5LuBif(afM5v%(`jp;51&R<-gw-mNBlVGq(f04?N=DETQI>{gTRjVM_}oD+F!pZb-5;cK%fV2}-_ z*ZuinhWzWSnm<3MDgP9`=I6TgzI3VIpA*lED*E@|HLRtjAB#3?r64JX>uUVGtS0z1 z2B_vBKmX5vQ&V^*4Mz=B{ZwyuJ6vej4==`3n-fT0L%4Ojj8qc)*ynM6~r zyXP01ZLi&5b=3CkymlPT>u^%M_VX>fah~EKW*VfPG{cmqQ$BB0efo+Gb1=!r+{|iR zk>e4LB<=3q@8!h^9TKflr2&6kTZra-Of5WRl|n7KI~ER2eN8H(Euvo1(`ln!fzy*U zbZ72 z!0(NBgrNM69i&(*t~LicscOY4>h3%to6rO*NHIyVH7?!g zyM4Q4(EqyPsB)1u;oo9b1ST=>Ra>La3p%&*8{5M?T5`094j+DMdL!-NqdZf8#42?) zz@fDnxAtl%`!As1KnV4et~U`K`V<_Cd}um+_#oVt2B&~@Y1YhNRa5%Okv z`js)JwUp&OWiDsBV(u_8mqo}T$v+dB*3mrQ3A24`IP-1JpLh>Kv>8q_=c{AhqwtZdIWv|pZU!ASl?+8uN>xeZ6`3t?O4jc=81A`h0`I4%G zu-_5JE(*7U2M^wzu&qvC^B|u}Kn2drqO10`>{5a!9Gt;W2>RE=ap!hh-?f>mza%ZZ z1*gKYWoJtZRh302SYDhQDco?tILnupJBrAGv9bNwVh6_!%ANCubj*_-j*v1Q7x}>_<$0kh)D&>n_#y^i(A#ZS%*v|< z61@9w?5_4N3z@D-6uSgeLw;oNs^A72!$_zvj%nnOMNJIwy87XVX+ql(YgMQ{bunil z^0N_sG~4O`5;){^#Si)N+|@TgHb6~A>q)I(^FV8;e!5oTH-K&P7iVXP)Lr0S3`*27 zy8>Cd2ZmXY!py-O;7p>ypC0$~M?g~#Hy2966P%@^8@7&y`##s<^YbyERembeH$YPY ziNM7h_ybrz0-LGp3Ml^PuA}y+NB? zS2p|WcAJ_{Ajye;ndm{(yrLTfJe;+yj<}FQ&$=BKcj@^`I&-H_$5u%)6mDH6uI=}n zuIKW`Y}BP$V#>7Wa&L%lFuTw&4>H!G3zc#RI#`f#sP{)|L98T=5CfL&jPfW0Va0)> zwVGEgoX$pJkAQfzAO+7!iJ26*90vOvoG^G1l2GofTkWx3onBR}t1nxwdib2g(cB#O zcG4FA;#`ExE+O0IkWU5p85PZqLJ2AjI{QfvEym>XO;_GciIie-rccpgA|Pa!fx>Ra z%3Zx(d|5Ss|Dww!{KGN9?{KlR zL4oP(c}_3R8^yiZa_4&=0B=71ol^}O-_U5cvj0lQSXaY&b0+m**usIq5ht0m7fi1| z&sKeGxbpav;j3EM6~{h&r~^xb$*^a6=^-JWm6hFFQ3>|0tC-xuuuOG94^f80hv=SG zy#NM-1R#pw2Nd7vba}7UWe~8`aW#XSL+n*2w1jTJr)@^8y_VfoM+pE)ASehmLcoQl zB!04tfuae+5uZAhvbYK0F-nSx@}kJVwy!M8a1^tAe#)H-`|MEzUd@Ddm&0d*6wn@1 z9X+HWllJ*PVbSLyQzlGMR(uEZe#|l01)9-_vY+}~mV434wf>n`#n>Dap79SY4M$|5 zrCq)}9a_@+jg3b%QNWt^$x5NAnx`1gan_|*uPH=-^`;nY&Y^FWaVz4{1Jl_)7+r#; zx7s-3$yMhyYanQPP&YgTNa>=jZ9;F_bM}?{mKn66`+3QuP(&|cbPgKa2ZY<%_N1TR z2Tq|C43}nKUvXNoi`6oL-}ZsYxi~Y>kTq9)7Zr5ggBQsV{5&EfT~B`!&@g-vPylz+ z&yWrSlFeRso!%{-NZ^^1w0$;ysP2)`HxkG z#ufFslzpA@RT^K2;^Bq+%SxLBlom8@*sukM)y5BvZbjoA=M9>mrqvPP z8P%IwUk>ix-I2ec$OTC$s@H!vnpl1LeSy!hW4#cMZ6cR|GiHvwCPXIPc@!;}!2+N6 z|2%Biw!iXQ>(g5ZHSUYc$Nz>IS5r{>c3mz`0TbLUiGxyqui4XUW^VPqzZR|jhrmyDlMg0Hv;T3@6S-l!JYJ^FIaCq!i!(==)W_wHLCzD-< zw>$lE8noQ~6T3jgT6?Mi$iw+H<>$Yr%-R|-rV>{|6#E^MPj^VTH+fYW`3Wge>kQ-O z{*K!Tb@FpBt->F=_e-PJ326{xf(v7;96ieTbL%U9Grjk^c*!_-`|BRLiPj;22LLF5T5-{+{cX2fH=c?$#kcqkXBxfZ)`+KR8 zS6Y0$;_zgDN4r?|fs%sR^K+Xc+K(AcC@HAi5=>e)ZCcIu+uhy0@yOMPSp9O3Fya(q zgYS8$^DCq7`?XUIT~8Uh1~XCE#(6bA{pMt7^^eUbY zZ^nCqN9ujLo>WSNdFkTN-$a;4+wF09RX9&of=^=Hw|K4Bi5Ez>-VbW zcl%AaG7k$ZDj2U&1g>?N_+sP;DdIL`U>R*gI*^1G^q>Y69hZL2nJ%wuWG+C?T~1=f zfCD3|tF`w_KT7k?D9G!IZM3gP$m#$BTuoql>2}|*-m~WgUGskLowA0Cce+%6{4h&{ z5azk}83%i_f+75L*JJ538VqSy%zQtJA0a9^ z{N$o7HG@}HJ-9hCi-u3|4jYrRfq_v%EkI8ra~34Ex8Xu=ZuHC&$53%v@$~d;IdY@{ z{g^l`GE+E#b*b15^tg2Mb*;nv(K_@pjHS zl@>f*QE~unO4A^`(}|~>q8izTvmJkgP>p7Mao{sc1{I3Ah9>jo{8V+N^u@zZG2-|8 zW^nqHAvfzG`xh#Sa9$3LA33lzEiueQM0hVwKZe|# zMe%wHpn1izWgQ?xF;nwr@?vvy?1|~|bd5UHhGG%+^r;ugUb<9fhC363opqVEV&S$M z`qSz)Yitb9;W*@vc626H(m$D1J|m9N-MF6(>bKe2G%*fup;0deFV@Li%zPm)WvT9i zCGF0Wdc|~k;OZ0Fv~u( z^tHqMK6Af&%!qS8u;6-fnd_xb+darl37M}xvk3BW5OEjeLgYBwC69Ra$;JHPFJ8PP#H(TD{_5pR z{8T&A4Vb_?AG`UaKmIt-6t{!MBwTbHuz9Mn*J5hNpIq}|BAGjFg1UNIv!K0u_8=m0 ziTe?(YX0$oX-08tMPylr7;*4%FLR_T~HZRg+(TVD~kL-OnaBy>iGcSwtr*~!Q zP0T({KwzFYLC1%0Dq zNDKMD9yb%53 zV0^K;=zFbL>l+l_WZtvneay!JNdOIIOF-=u@G91SmNt%0{cn}GW+eLD z0%oh za_GnK_MV4Z->UQx4O+7Y5)Q%iU4Mxd~o75c34rH+s zgl!0S@-JN7gIXS1RC$3z3{X-)WChw)KEYLwS!WG}SS&#Pb>B7r9jdx&%JZ>y$;-~q z&aS6En!Z`_1{?z~ocY_!XnFxCs;S?F1?8o7V>)+n1N9B2y^~F5Q5|5TCARBs4`Z}i zCOIA(>DmrDur91g_=V{oM(PTe7pl{IIQHGTckfsHD{e$dPnqYV5qrz9Tj&xZ5<^s= zir6nPYbf*>iCeDphRVF$8D^9ivwnTpX=feY&4rqTu!r3TMcO&MP(}J}g;>P1<{Gq% zLz)ks*Kd}SGZ6K9q=yn&iYB67(~Z|Vs^cE+OOT#!QgX_-{4C=`m-ENj8@t+*C?Un8 z44aU)TK3BK@af1eZz&X1Fc8q>XJ^en5xmZ&39|D*lyCIU63=ldqEM}!Yw2?A3hcLIqBHEVrr_S;6_fgB!)tYC^$48ls0}37S?6<|L8}7YJdBdhjS|^0u*kb8h0V~ zys>Q1s%6V9Fd&*?5sPz!wSDYJ^9wc|)MXHgeM>jQq;qnU6G!Ntni=pYx*exEL4`mV z!3XgF)al&xPF&nHn^z2zmw_C{EpxpZxMR~lmK~U@&p5yCIIw#aYbRVmdQ$3n!L_Z z?Vz6edImc}N)skp+L_-^?{O3M;4-Mi_c{U%r4A_OPinty#}0v)*mqw^<`cQJ&`}`! z*Qw$>{!P7q_UzfdmKkBELXI4x+cdd3KlSnBdgybKdu$2a;W|glto4^=i)$^|u)b9w^2<=BZ z-`47)ACcv28ue&iPc9)!fhvz_8O|-EfGW&aD1qU11a^ijEZ!x}>(vyzePx~r$e2ox zSr=}D0)?1q!M|7B=6xqT>sbE_@M;HjIoMad*nqsudQs3LrY$=ZS*5BN;^v|0%NdBx zY7I9L5_Rv@tIOumqo}t#vt&&u%4WIJFcf3gbJD(y3hG6qtEq;NA?eG#!{mGk@E$y5wPt_`(6rn53a|qRim% z7=L2Ax$i{}N@N@4)tty3qzs1f0i^st>jWp-)8 z`0?@Dkw==o>wjwar)4-Wi}O1zxh2DCgBdeMwd!r^OHUyw4abJ9o_VP(UX2k&HVltv z(fSi6PCUuZIA4(ti1VC7Voojrk98Hina>fu75feya_aN8o;94h0hj}bMRQ2+N4a~; zxB$e*Yl3Ayqd=y-m|MXbe?-NTzbSFo zLRV%xH7YZR?5{WR>6kZUD|Ff^iY(ad@mX`GPuHPgZr-FxeC+V}LFQd0UKqORFg`b+ zVEY-IGJiF%=dp8VSDFj129o{G{0JfD?Mr0Ex`ymH;yn0g<=sh_a#ngZm4X-F~WT#zwwGu*$NBiG?pQc6mAR9V{W7R{S? zz!CtLy~-P7BR9sB;e{{F6>jw8jz?w&+y@1F^XXGq)t3u>wka$%mO%x+k26ECSs5!ouf`WKO{YN&DQ%V`)-w(&EtN@T3{T}Q4s#njqF^r z_b^^K{`?RO~Bcm>5{wA*DAfqW18zwEv>NPLl;ccv+G>ZauC&z>ESIEy5C^_lIjUQ|bh!pJW# zeAj)IW(T4)N-AASM@E|5!b_D~PKos*7aH3zdt`bqmk8^{i_h$CAUGC7HKlmtsSVv? zwR1pgMaPgHJ>czsg>(!}pAuS5JHl_88PJ^GSHnH9%a+_VE)N)pX;Z0OCK}1hLj}IG z#4$bF={hN9dBv*coEZ1+RY$AL&WC?#c;58%@CSbW{$n%mKp5ph=!gz-#dXt8Z~H|R z4}GlLcz6v(ttqROzxVGs#{0W+Tl z#A+sL=5)vM@2YG)1r-qeEBV;r`$E!}}6 zKk;c zX!7Hkp~3QArq{%6hgwAkZ%45wW;aWnRc5$$oaVxeoJ#nqDE|S#ok`Dc7P+!0URSgo zlVQuKW(>Cwljcoe$ELT|s!D8IbYhWziv6&EK}VAB_?D+2MwCF;@WgzdCBMuePpc=@ z(=w*=cxYuz7^nPW&9Iq=ar(+T1xbx}}tj zwE{2oD)t$8&qwD<{V8%rFf|?;7qu zjJVV3lgKHb?e&0wqQ#GK8L+C4EVO=>H0w1>m;0s1Vl+86ovheq>Uwvtj^m)F@180R>w#yWRNbgkQ z2(mP0c57~u7if6K>GSD>4zn6swLADPq{yh~S&KP8GGEOsMdE6b2YPk_7}o53neb9= zGA?0P{7IXb-eBSXO#pFR8dT$acGoUlqRu{uJZ=2Nu_A2cQilP$85w!6R_+J*AO^fQ zM4Vj)-A^OBpFuZQvqp`xVdz!o85P;(l$|~I<|k5L!pBr-H1_ailoJWe5~tiM2U%=% zK3Z2VcP1r z_*vH5+!8%QGo$2bKlYs1;yKU6WFlAL2@v(YgkckjE(tr*W*Ky|rsnbhup7|*UP!B+ z!D`$Hzo%tWylhW&Cs?G*1ie#h`Z?lBM^&G{`r<(Im{Q|+C2Mdb1DhL^YTdgRtl3J& zU`~NH;{{0URQ;_#kW((<$V?Yw2=(OV3Ay%dee_nJ-z6pH%)ZD!3Qxb(ib$NvlkcM# zncU>qXV3N{+i{4}h*VxYbFPe;k~!Zq=;CONy&VS*Y{9@oj8e(2IlHY61}nnxz?*W> z^33Wwq%cu_i>=hgrY@5V4GlL_;7>j8(8D}tZDlH}#baP6!HLnh5~9}IVenX}Ih#O# z!N8B4a^4^Cptc*X?ib7=)S%=Jdi3ifnT5K(6|71t6ph^+dS5+3a2bWPB!pH-1G(Lz^{=lSr%iW9o? zJwLCn0(L@}PP@=LpDh0T-c$3*pD#8cW?>U0+8YMj%_RxwcojBed|o`Xxuh4+waH^n z&_8lo>vxWJw00i=oHpsnF?(FNZB<6D8^(PsK`j1fTJ9~w`|7*jW!0-4D#s~McI%N8 zej%a~soKmkgzd-(uz<@hIkesUf>)9KxsAJTR_C!f-@Dm2_P z0HLut!$wR&mE{d8|M?jT9SR4dxAQOT{R4$5+?Xs2XUuf-)}W~btO(wx^vk~9G!ir` zqjWk~eS`*%j*eokx4K?q^J9__tr@Lyj|TJ}cVdnNPs_hx7OqKk`!g@qNKm`6RnI&r zDhz^2=%`UuIZbAX^9B2OdW@Ek?SWwb~y)Y=TE}aW7Vz$2cqQ}RlBgck(;J}Bs{-;2M^i=bI?F({r;V@bya>N zBctR-+r2a`$|Va*Qr*oL3W_IUsb>wfeSkJA0eC_uM#&g1k zHH%A0QER3#*=@2$&h3ZfH|>yB7s69Iv>CNVOL*R?@4gfG184qxb@I?>Z;;j5encDO zy^<7WTw9iZ{TA)oHNu*><-t?}$T>Q4Z*TkOhZR)*uqz=Uw#&cVGVVDR<`50HVmCK> zBA~E@6^Q@2eBidS27A7wj+#zimS{#-#kj0a6Eez=vZyn6k83yT&(cg9#j=apKp)l! zlgW7NRV!9tp1iFx7u}F`E~k~OnpXFCfh}YBln}LpqYc`T0K_OV#3W#=W>SIRDhxSf z{rBD?zxy>sW1!~#GbAL+*Skr~`ZItwL499CKa!1|Bd3PNTh?k_%9VnABe5#Cr zzh0Fu@cY~d^SN?}%pSaZ{3g+(H+8SUKOkxZ5;xWE8GT6g(Zh$g#Y_>kfSg4aHgew> zcm0YNW+tKyE|5m-RZpwm>^q4o5QMPu8C^)oxbwiUwy_a)v_fGFA?Wt*zDb&Fzs-&A zELcmOu-4EgsQ0;qd9O0CauhleDPqlrpj8K`@8Y0hf@C1|v-RR1B?mtXr-=Co5lcOz zA#HpmD|i7gwtUQHI%guOL4jgXTzJRNzdUtxf$i?=a}8sNx_6suXhmf6w~~WaU>2ht z9D?KL8+&q!g5FdY11dRq6ybV&B%}Dld)7uD`i88R`OZk&YA!9-i zY9|hsxhjUQZU= zQkiASU456v3Yy7X#$}SN&}2sKu`${yLX6|=7Z{!DkGV^Bdl*m>&KlvrdL*w3kyPC# z5mv#BzqWDY;z-;ULfuxd=%dGuDMQ|4uKJeOqb62s9^h?$7kxgj{r3&l@>X|^mF z>aNeeXXjYNmZa?YPh6h!!l;Qd1iQp1fJtWyv<)K}bTCqK+qR7F-q9!{iy&f^cbpPY zOiVP%)Hc28q#RjR*qU0blIaRJUCreaJb3YkMBUcUxy|GR%zCy_zY|7RIYnWWuWACw zC8;Q%`l(YaR##I~3tuuUuOMlT-F#+!s23*RxOE^jG;}O=9=ODO>VtR87VlxZDNwA8 zIS9XM+r;rn%<6es$tgq3r#^o2M05E&J+^!ce3;@*mePyzrF0EqVAH(A-5qE0OUAZm zx`t|}D-xz}!XE?_M_E`YF=f)yhF&OJvdd^bBtMYB8<(%ATK$Bd1SI=1x=L>WAJe{^}~uG-16Tr?xNb@kZ}RgS zAD(Qn>FlBF{{_VVPoV$#5ZB25nuaGE5779zAV>xAq{$PSWhPpnEN4QNpbx`%T$|m# z_{z)hE7a0htL)`~j~@KW?&ALh-G4F=x)u(Qb&&dA4hkB@j7!##7@t6h7>jI`GD(w^1t?7EZ#4%bKEIW;sv=-V09o$*F(T>5 z?FN%RrVxz)E=2eeE*VkhzhpR=#PV7b^U%VZWQIA!9@+~52KRWzdttAN=*h-1+`_m? zwn3Q9TKEq2Hdm9T0QNhLuXAB8Kyw{rF1N~t>L>uM>0`xG42DIc&7(!FA}%`sbkTrW z4(sgu2^jBXN}gQ`5Uyf*vvV z9fLwWsS>Z`1nUZfG7*@TP}lA~d!B-cq^vNBTo)032|_~|qEM^l5irs<6b6h+mbRwE zrUidy7g^??I1&AvM;2R!llkfe!5g> zbnbjMqjva03yVGEidS5m-c9;+MLdUTVjj{&lakx}KDqwi@bW8ZCBD6iZ`%DtW}pWj zZdPO*j!#w$SbG)1=c?gGT*6N?BcNu-^&{sMy%%3*uQo$w$~L<@Df_3-fi0a&aOrqv z?L&1#+fN6Q9g5pu@ZfS32Khr?;iKAD$rt{P&ClUX-wQq`Y?bMxM{2y2L23yzDC?hr z0RbK9r}j)djjH$TKyla{TS4YlHJy5!Pev7lZM`*NlC5p8xi_75o2~se25i4|AQWof zf|W#|rXuA6D`IgL|v_7)}9<4~J=5U?x%PISFSPmzCwawgUD(^mUJu z+O+z)#0 zBz7f?9I5M1gom3f9?9nZ2i2}S>wlx#oQcji!U8&V>D>8mmc0|U5X!Av*JtZ6ba{tl z!6^AfMzGc1*kqGAbHc7g9)8ONWSf{O>f5WDE1Y6)wFK$H_y)B>V-B_K)nVtna}jOS zQoyMg9bj;moc2@GGz5H>%*M5hA{B1X*h}+WEADY4H}puIZfko9#}ftK$*`!X?}6Zk2=qY>=ng%*NuNwjpqu zxVJmrzkRFZ`^{&b3w)`D!b4=zhS9NaP|Uthk*p#F6o1>= zdO@^ovOBiDeZ;dXTtiPsP->aj!UO1_UcjL12edSi@>r~HHr)I|CQ<6*TK``Nk6j0c z-?BcA)stKFxOlBktYKyw1^H+%)!Y-&-(99K8e|THChWNlfRyi;{oQvh|Ir?(`?Y@M zVVnN(^ml6;o81^w2N+n-T9p1@X^y8WX^w8n3dwyz-@TQcKK{b6VZ+47!s`}L@ipgy zbFo1Uhi@JF{2y?7Ik~Ac9ApPvD%S}7i#7a*?s(Sw)b~5J+xy}i4Es^ba*6&LMp{Y= zhOj120H~|^EcMJpGP_CowzH;;GtC zn9daYFT?EG1MLYFfDo$Wy8UP z$-|>;Er*@Un|p0pM+OuEXtU}iV1=K85!FU#?Ty!8hS;={h#O|HzM-Ka6T3sxv4ita zy+a2b8|{6k_dZ%^%=DYKU^-BZ$eQ3Aa*xSR7@GkZKqNIZ^rVU2r>6e)xW^?+(=xkr zf%X;*PNYmk!8AGCD{%Ld4_S%lTXAwUaE|yRg6ZA=!*BVtu(d_%c#jIs*PuIol^z1( znO<)S>srmoYVlL=nzRFqI?{X#LdN)fqd43NS>_Ek33njsEGL>4Zv5X|JYvm=hH5k1 zE1QU^hBNnl+TS{vze~{mVTCWvrHAR?>h5cm*UNnu4{Xf%U7RPODefgLokNF#Xro?p z!wu%nylAz^6NG?N(vAiB89p@c;K1>q@_(UCF@KFz2(^Mb^ZM_Fg|m$6qgkA>^L+7P z1UR!yX%{+54#uK=*BW}A`Ca&UVLu2belmIUp*slF6uYy6Zg{+M#&UQ?`3%fPs{AZe@L*5etceI`{Dc1 zeU+T>YjyfGYZG@PLQCr3*?F5ZlR_AYNo=)-OMEBunD13&zYEQ1E*p#-NU-|mN?bDL z?!W;9IzXnOcCAdPKU{^_U0p`o!%3irG)O?um@0Vk(B`3Q3VU{L>OR5lqJ`&djVj2s z{wi`5u+F>_9X(bc1PlL3q>yPw8-Gf8RI&E+BESntk;eVK5)}Ng=XIBfc0_|UVgAWc zs_o9?wz`7pY0Vv{er(^d<0Fykd*Fh*mS(mey>EDnH?d2`(I+Yi?p0CjErsRSWP22r(v@pM^&R+H zw93`L#S#-3lpI!yK_B3W-Mf^lJ2Nh4v{!x`^rNtewyydj21K~1e^71Qo3qUJ2 zjPHDxA_-hKsP_lS*1=GTiN+32942%HJ0ZCefER3*aMOpcgb-h2TlxT$Z94@`NlCdD zqMDtP6NDl}&_A?KAn{`{Y>>esayQGLxTgF?$Kw@VesPB^LK{$!APMA9xFKp&iY)!U zeL}L~zc`1lPvuzkA&1?uEl2AEew~CF56F;Fk@W4eR&!i<70Xz44 zw=iRq0L1L2^FEe`(EI>U?G22BODQaW1O!t;8@U{sGwgzmq#SbkSJ4e^iEf9acpF-q zTs+L7hYr5GBa9bGl>LjWgjEVj2>U-#5Urob-M`oY2R+IooV{e~aps9#VMVe z*$MB!83qRT-TRnp=;=w|VLO+fGazw?zU)ITo5+xL+r0nn5 zayzmSzmT2~N7Q$ZUtCu7m%jfSE+WbhpGOOF>KXhf7^A+sa%VT^Rn6q0hMOkz7oE(b zvwXj`SIniP6jv8+^xFdZttpD;kdjCrx&Sq8zg%9W0mv@4`r{n&K;+KZr+;Z{*&CbUUgc<=AiC~+!J7kLI zz9g*m6uV_?2O*S*_mz{=V4$WYp7#uOm|s?U*Y)p@ zn`t%3h!BuF4j!z64yo^};-Mx04y^1B2cM+omN2sFgry~hZ%+89rVhOISKJ(s2;@*g z76(^>#gE9fMy$`sjPkY}6qFP&jD&Z{KG{0@gbuE#Nf+meNsP#jwLk4`OzxlJD@d7x z!^2~b0i2v}jWEC9_~Mb0FV$_MdHFKRt=Fj0Ea}q6_iQPO0;nfeKYMlS=F2+Ui~Q`g zzyC}oAf%i;hu%_05r`{oS~6_0^6v*DgRiB-NNc7zck$w^Ft7F_j}su1g?1t#oAYoy zB>tHd$Ke7hve*iK^m2^XgUMs1P&-*!MWyee*UtI)aV&Eq=xU!aFh30{1FJ2Vpq^vq z_*ox@j5vY9-yti$BaQe^V7B0EOZDA7Jx|ezN0|BL4+;yOSG`&_VIQ842+ZVR3Ym=| zQDRBo{{%1gUK}}i@FC})S);%qdKEq!lTl=c{HnM#u?t^FM^(Ivstx5y4L7l;SsM57 zVSLI|{o`Rss$PWI&0|aXF%Fr*Jc-hGJ?7d|=+XdN9<9vZ7z#l|NQ|C?j!y(7E%=gl zgmecSMo!}<7WQ&pfI(9QW!>{NbD3Yis9C-?WV>naGqfMv84RJjI2KQvbYf2#lalAO z;1{0_!gsowj#R061iV;j#xnWOu)pF;22C{`!upc4)|CEQo=rQSn3x!lieBA{3fv?! z)_dS~DoTVFUMqFq&9Kd{bB~tEcJ+Wu zikDvfYmbY<;mhkGUWJGOs_Cq_esgZ7YIwQu7>R>VpK$(Geg?Xzriv7@h+{uI-Rp8P z`o0+}2mA^cWJX%j+M!ccr=wH{@qsXX;#ruluNz1!g{JSZHNLjdQwv+GsgXpvngZ`L zJp7YTPgxet+qa)KGhiRM^}rG4-YftIs_mSJsZ$FpUf`QsOr+fAMjJIPZh=_rtSc;G z4os6SpA7U@dmDYA)cQllGjBV1na*N&9T#%ZZ!^*NaVb>g+<1{kk#-MB;Xr>=*atR~ zCrqblU|M#M`(W*~AcgDFeDa3|q|o{{!FL!o>9KivBfmfFq!vjXUR`Wy@`q^X_jfqr z#p*H}?l?LMP=GPAL^g^gUy{qe3p^FR$9rqE+@4zIO@bLIX^j{J!q^@yw7+%!!|WIX z)Q6ZG*e?X}2W3Uu*Yz97QL8CR(G35BA+4kUpJ(!LnJw-- z;ikVhSc)4VgAz@*=z5JXMy=>ePJ-7ubYL)$-QW{42}um?f5k9n z{R_iz86+6S*TwE*?CnX!P~7HB4?aNXmBR9-<%vlyE)f&#+I`7g`uduZx>QI>-KQ3M zU0`e{&QrolQ-5AOWA16AxoKf&2_|dkg6wkvrL@V2_oxr-{I#$!8j`_u=EMI2E=>O? z@FU(h@4eYOE1NZjjZ2rWT9s^LYH#syP$k`Nb#nzJzr#hp;SY!))XVv$=S{TmfvOc4 z3LM;Ickv<3vVdD{tpmR|H}|BJTgVob7Y}*Bv3EskMtLp8FR<*ydGn?n?pIUcaNxtw zqM~s`D;KX4J!j`7EK8G;|*q67h7>m;WH<*)HAN z<=Ltu!~YG#Fe!L!m}1|C+HpX;r8N{HJYrXLJosebp5FQwB0CNH8LzAOJAR*pOXCqz z8}WFy-EHrFA6B=6Z>+$&Re{`JYp#@n)Qq52hd>Ni}g$hbxd9-`t(d^QhZTtI2 zLV9z^Nt%+`-Z5Gw;rX|sx(+=ZzBUY}_X-9BpH)I-YU)?K_1t5axwV1YXK+K|B;X|i zI60)r5Y{bA;lSJreG5SEIk(iKloW4C(=1pqSL^;crt|!_PLRu_a&?RzgnM;09dHk! z&C?D0^CwM*lvqd6R@-5`Uu4H`11?$5G&8$6BXJ=Wrdp1r)e$oyvyW*V^Y+#}2MYF- z#JvU4!D^}az zrG4binV?9y5N#gwBlPUqZ3rktzvsu?0HUTUj!E&PK1`%GGb#BS#as>U6ubHd-50J?4r3sHaY>7@-yJiuOX!GV7tcvhyDq7$D^Kib^(&Rq+XagYt~oviZnCGv^7PMh@h##>T@E=BER(qq~iJ`UBd{#E>~@s;qyt%Fw4XGZq}w5|5sWa5>^@I$F7+kz6U(C6rJ?o)!$E5R^LYb z;^6r>c86%k3G@Q!vcL2HA`EG zw1@@EYGT~=q;p@xnKSp?-tEw^w0x1=ezk*)8@R>Q-4D0Mc=oq}LlGN<-*4sszsPaK zvC=rBBY@rFl`kn+f>nI%aUDiSezt1^<77?38x*Bp)pL%DEE({j;R?%>pRV$YT`KmXU8RWWb*fV*8z&fVx# zk<04zY$=_(B>D*hj?a2Rcfb(ZWdhL#qC+x)PJX>R$f&c^6_kGX;}o6tIaA&K-+Nl; zredWppO!DYOb;jWU(za-wS!v%UhABg?%?rww5Mi56G52 zgVinOV=}bhfY}he$j%Otm$UKYf)3G#`d0n;lso)E=re?XOXaj4fNTMm|AuIA=8Z6e zN15|}wW=V;;j*lyCX$5an?IjVk^>pmS`GIo$SVLhEf=Q!i+$^VM!dmL;7W!qL&rM& z-KA9EU%n2O-yHG>3e`cX9|bt}l_EYK0N8?sMJ>37^k+=3ED>j21dih8hg-bp%h zSD&>DcK!YaklFxj2NW?%@t3Okl!mP;uNrrvOgaHeVRsRQN@6D!?8t(_>qa$^?3kn4 zj*oTZi|bZ>aoxHb+!&O!;&h6NEHCK8se-A+*MQ<&(h^*+#(^|%7pCvz8Ys2IU_fkn z;O$H2-0+LoXiM*k1-MePe$n35Ugoy0?)%QV9)Z&&IL*Eioy+uz@}#rx@+`fmRFW|YL)@o%m-+f&C|4L)8O<6 z1$<3o0Y>?fzN1G+8+Qts+kIuV=tJcs)N0}p{cvHw@twUZeCIF&QuqSu@gvwFyHu1_ z&7J97qu`Ke{s~%O(ukfW@w}kc?^xqwCq7iMxp3{};tR_4NJc+0$dC7LEVt{ zY&m^;QJ`(lUcEFeVpNO?^60B-o@@0KY!Z8;7Lpi?Z~mop`)`rI-fbt2^fsWvlJ}cD zgQ7R_2GjyTfAidb*uyw!f)w4mZZpm328*~ZU*25ZUq+;KCw}4K;jy-mZk}OGCiR%c zcs@^0CzZzLUIrY$PbkWUiC8>GCNX|o!2E?CW&@%L5w2Sdt7Ox{@5VMPf^3GTYi z%sTjEw^D|A_w5L&mz{0g2|u@*qR6rP$|1iRBe?DRJTxsV<&Kl}+gU?HT|>h^Y5U5W zqi%Ch#IQLhd&#f8&PKP2xz=g#BS||{=J9#X=WwgksQ(Fh2??#=u%VzRyN(^Rz3af4 zFMHeTHCYw@nmfX%`B=%#H6a)q!$1qde@Rk8e(|6kLsk1Ntb>%{viXBX&CXCjbz&>n zyr-%ZmN_h5{t<6T8o?$*Tbjp=7lt2s&~GsYyv=PGoP=YRAh+-hTXk$}9`l;LZ``ae z9c7&j3U|E?nDKbD-KuG^5c-)MGm?EUsgExsIPwDNNZ$g;5qDxI4@RBsd5 z=I#Wl)%g%TMS<2Aags>v&C?js&*!dUuIaIFho(jE8t3v|uDxpZZS6--&B8hrCYr|p zuSDZOjWq^uM`X4a%(VDp#9Wbo*Fv+S`Q(ME*I#Ni8P%jO1tvRkd)w2mOmIwg8<(+i z;5bZ`)_1^ns7~MFTfF4oYZse%q&bsd!p=GME9c!VSghv!bX^Lle5-tqDY9n!CLN zwGK9Nqqx1qvq@$cAZAFZhsywR?bkcC7mQoz>25xB=c~mR+%H2bns6dcrT<9AMZYpC z%H|zK5kvKZl;reG(zeymL#=%`cNK?a>&nB@xEV#0ymfIcqRX$TxcM!*(uJc@`w=~t z4vs!#$3L2tVZ7z)9UL$QA6n>0%L%pZWPDVUAHbBw>x#%IEw9d7cTIOKO;utSi0Z@X3%UxTQ-%fZ^cvPJvFO#P} z7Mm&1tS&1}8*!3@nrLv?NK?|v*`O~-5lHpFN@+sTs~h^Gm~y2`NH{UhWP@n)E4wU-V|cr$=S zAL~1++U(e-T0=2$^5g-QJ}ib#3UDWrV>#!~owLLptcDvGR>Sc8GmeCr{9y+M-8^}6 z14a%)*o2VKAe`aBcn?p{0psUUU;bprvx zYEM!)y#S*Tbzl;OZtD)ejo0T1D20Ym;{*39nxUL+S&@ia1~Bpu73(n;^!+VP%K;w zG7T_L@7J#>Mf`vp6)mr9f#sq>5{U;tQqlm8uUdG$+>JgbI_lP8aaTEa{(PdA$2oDD z-}bOu)CSGhH&!)vE&W!TiWe+0YRA3Fo3>qs`6ov<af7?+_V5Ygz&51V>_1-U# z_^2IRz8!lPK9wR!p`iOnSd$89DcuBM@a5oOsh{LyV8}Ni%>vLwt<_N6Xj*XGStg!q z!9sy&pV+EA{l=B>^9eHgp~ojl|2#v4jEM`Gf5lheTlJJmY)?9|5+Q zX+|Csa6}lZh9Dzm^TSk0p4{W&=WQeJo62-A)f`3DL zk7aDM;`RzNhuR+ zIi_30Xt?2gHZym;r>1_>H63Q?D^=h5YSr@P9TkGqWrfUz8|#?+k|6V=-G&S~43H_q zak07B&>0LUVIn&gmDHCC?}I*{!F3f}yBQUUEi8 zWYY2^I4By58g9@h#zR6#&KZ(;u;YW=W@SY$!GUv3&3w$q>M?(Ol$3M;Awpta!t>{6 zVbL$NvYJ3qpJX{NRb?$Z>ZqCorenp@biyDQ?!;5}vUf&n1p zse(9G`1>zkrYbBsKC(ZAN9VTwaTJ@)LBnxWXH=p`wRD=>FnrnDYJ%Ec2n_s8qhBzh zmZRp+LoWMIo$73zeDPTE@T{z?@wA{Jp?$h{S65(o;ahaeDdyJd)?`D5EP1tu!X=Al za=`<{aATXgc5l5c$fL}=Rea(i>?Ufsam4utm2w`w&(59*`Dq_Rc(aS$*TPX5m;!CT zsREsbejh@cn<)8GhuQ=WUzw{CVwX|w-m0#Vfk8ZT+Rq3_)a%!;U(D59;A~bfKYKys zhzFioGlCksG3h%WRLb_M;kIw$>F5=@txBlpI&kA`Z0TQoJfFAFRS^si?^uovkpesG ztvNh-tPD*#ISa0MKe&D9Qz^G!U4`wdD`Wg@dG#EiTyyh=@6<_aKpwr3kv^yPqlNuU zf)>=o#t0@$J34BSDUTU9F1h%4iyG_6N;p+Cf{MnDrlt$uawRxe@^ajz>QY;~{^IqS zUN*6Damh9}m=Y*CIkbv;z_00uMLuj&?TXkX%PkjJUbEFh=$J zFbt|WG>y0U`F6oBFUAaPK2c+D;+i7>Pcj+=8<)}G>ebg{S4I!}#7Ai8u6J@^&GUF4 z-HeD3^H;(luBOL5+9#Ja)N4`lh&`T|D8VVXNg#UmkOJ_&K>IlX1|~V*EWC_}Vr|mC z{Z8pgp)y*1Prlzby4~9a8IxIU3WfL(Ios(&+=Ljq=%!b9>Z$?)F&4zk%K8J4QqF1ykv9RXC*){PrB$hz#@J4@Sz*_v{?JJ8|LK3RtpS0ccgIe(4ks`jmRXXybpqY15NM^tRh`}pJPX# zA2e&$EQK44$6B8(mw+`nqz^PUe1G0!-J54=eQeUxn(G9Hg}174N9QlE2l$F9fXPl3 zg`#*KN8uyZqM!#8%#Uftt!B6zY@JvSmkWB>4(i8t0)j-84BE{7uAPcb+qxH2yIRTt z^ZF?5Z)A~EI_#pBlvPaaEE%BOaoho0 zKrRag0X*nZzX?h%fH(cTcv1_?m~D5#BxK_7;1egLfk4_I9Op~7io4^`4MRtNJw#d#6%dB!)HiD++=+Ax?RxB6lm3ZRA{04~>LsuH9>6h9=H{{ZX%wqN8)346VY$)=_I6FIU3@s`w z97`ZztRtKMV6Qo~7-^N}*||z|9z?56@FPSsM^~hWwLo-8cT_F3XJd~%F!d>?y7r`g z&g3|{OQ*7f7cZu>To}LDP;Wne+=2!cS7z^-1Bjo0^ZW2`v1a2B5i=BN^koaF?saNa zTdP;!uSVFGphbP9Z;_Ji8CAc@ZP(pXB=};(W_b2D}8GJAK27E|$s476T$MLu& zd?MVn;@0{dv97AtgN}1VTeaN?(xCP05G)p%=R(guMnCfqUJs?4C1}2AkpjyyZminL zaWtMbQ0{*wrDv#!m`dvxRq#RsQWq~=I34aHCHEe1lO#_qq)R8`nE8oU6qP$u=3WI? zfN}%Pi%zL76-%vS{hO-(INApW6q4k4cG0AMhduesy1etB98%UFggOdK3x5H_h#eCM zLruD6xYJvI%b-&gyex0pB`$xQm|Dy>G1Ls&g;iN&{^QGMa_BW&^BsI4;u5CX|_&uQ0iTui3b~;_#=52 zdNq8u>qi9b6=bD403Q&iZ0|d~lirMrM-zpSpXo2l-17C~v_}2_-DmU2+$19GpUGd2 z{-M>-8k-?z+(LHOt@A_7rzEUw2UD_t-Rq`1(0+?I5fGB{&>f?cm7&5)d~{E%jFGV!MBoc zojCEa{?nCRW>qNUih`H60PmKupM4IW;YyTz;+Iz!H>O+YC})B)KkU$Mm~KE>SaD?X zQJU0Hf&kTO=z%O&lDJ0ua@j8!r>R1*+-B&?20Rq6E3R*z<&G}(TKD58s8}@xT>h>r znnoYeto(7P+$Y&gEu`$;)^@vQ^Z>5(jwFb2&P1cOt2~R=SE11Z?Xel$NLx&mQu&hl zRsy9#7Lq6|jl86CfM?Cl9gMF<6*6u93#|kS8t=r0ja6+LRUrl{G7%9C1w9kTRP&*Y zu%$TVs5QS}KU21qn=Ga{CY+<}+r4){`u)0)&6k#YC{KNgqCUP!;po)QDb zTygHG0>RC#(Oi$Fi~WjawnybRQ~~aj?{N|bfd`2bko<<>U8;a(|BkRjnZ}Fm>*Wj; z^J#$7{e@Ca2)d-!i2#+J_Zb(AfL8*na#!Bp@k`KyN?hZ4%B7;vt5-L6sH4`{U9TD? zCfr^af~xQgH0N7u9N>^WgIW>oh3*Va7P=a3nfSZ6pXD^oHOZ_(s=IQ;v zp(4GgHS5%`FN!esf64t&7%PKett)V3ZKEe{O)%r%$N@igY%SP{>%};xC_h7M%vy~N zkQ~Hm9@5ZQt~=td>!^=5G4Xbm6y@Mh{g6phrfeR4LZK{Il>ZL9WyLqQs=f2lO0OIn zI(_|{iJQ=d$5Qgh3=TS)Wv~}f=KL`d=d|(D-(Cq&u4t@m1QD%#Wepe9QW8;XL5c-L zy&7(?O3&N7u)!O){a>WL30#ir+V_8F2+LGv86qj__i$b3b)LuZn-2Z$ ziqX_`Z5=d{fmY=sh4A^=qubT4?b|8Fh_9t`h>4hid8j2OR~ZbPAYRsG2Y#X<$twmr zk`QqOLP76BS-;;`($xeb=}AJPem0fsBHJeMPE`g|hon3;1HVL{s5+ysSxM~rFZ|_D z#cw2-J3q&pQB%Rpui=j00gcSns$H?4xC5L1EBkJicW4)H5xosyCQq#M?)K#~?b{>y ztUMFZ`68(eoU5&^eYb=e>t5BMkP@ew)E`v-%~3#uiqg0WUyiXCZQOeoMiHZgJ8I`WMvE_dtBX}~FOx&PspI%TchoiY=jVT1?!H&HvN|lA(Uh?!6BE9-Jmma7WIgwDc zS06oUKs2rl0F~fpmwnjmoG0CNWqKdGN(e4y!f7~#Z0*0T`1ryw(pPhr_Jk@~N!3>c z^b7z2yL#s2WI#a`gfM#vIJP07y}!GkQifPni7BU5t?n-$hZ)E-wWayKQdY zaHDjayy`;+!xPF*fvy35EQF$z7>=9ZBYrU+*8ek-v1*h-4}3S+-GJ??Qobb}wQPZi zI*a9BWTeo-lx~dA9k+~(`$i=dbn28EJ*xl}r^pOL8sRiIjbm4Fm4ex_)t)_Jc+RA% zTRE~<>i7+Yn?u7q4><0gJZVx*MH!@^TYe|JzWPhwo1+uozJI?3yD{~12gyDiqBfhR zMI)c7E-Bf+kJ{gV2n$|Himf!W?oSjnVcV9u;idNqFB-o#|K& z6;%e)p00B6(9@fKH#Ro$OpMMa3Ml==t!a8Qr-a#TCAon3tO)yq?AYQ)rT}^L^2U0< zixspVPR}pu0idR)n>KZS@D)HtT|o?9z>*UT%467qqC1A+pI)*dtLGw32`W#zjPh8m;%C*RR z-;EnsK1xrS^m1Q-)lNh8Q>{sfJZcAXRWhm;b>M|MMR!* z2TxsAUY;+zP4J;ZgRlI+(-|+>XuYc`^$wn~==iwVP6zF}h6lW-J3B|T)(@g#lxf+N zO)Xsf^Emn;h}DpXm}b;a6g>fo8T)ar{-=BxBZP%{92p*ErywETTDjeR+%iG)O ztjp4+-Y_o0hEV9GmJZnS2t}MLh^;q8(I~`;E^N!Q}tPp1!s;N z>7bZBd4V4JBhTVI?A=%YinIX>>>4=z)PZjw_Xn%;G;7*1&$?OPn~z(LGI2@?-*Nvn zm05KKPk3TzX}{_MLp&_i-$WnGZk3G&JlFS}=B&G4y~2r6ccL|n%(IhtVug$;4N6QPdu*6`c-5uMZvElFfrIuSt z!1;d!A~GAYo&<0P|L5o#qSV*K;^y{s?k}KDE-_uYcTce!J84oKtub*kH-!n1MEbii z0yZhp+~h>~V*sIyMZg~O?$^a^X7r-c!H>LFWEwwWR$u0)R zEcO^z#vLCLoER#Le2c9DUrcFJiE-l|0eO1Nqafo#xWp%>kRi=GS(Be|WoEX{mvT$J z7NcBT^cX@Mlj^(9W%8kkk11tq4Guh0(Co7z#pnpwib`&Z6hh(>SJ;rNZ0}K~7d<=4 zIIkH@>RyHJJFNtY$}c$;z|6@P7SEC$4-n+`y?aOK9OYW@(`za}ST#h*W2?w{{it*R zJDg=Er%x>f$DA}3V~q@21O(}xWlS-M?f-X};Y@mHCCs3ommL6GJJeZ|xUG(g?FSA_ zasEK(8X0R-f3o%1)L+}xtRhBcqAcMw_pyIHK9qgz(PqZiu1d6i&DYiC_*w+>z?LoP zpi+MxJb18VId-KLxy2Mw;O&FKxIpqx=(X@06V@IjbP1wpK`{_($SI}Dp~5-Tr=%Pc zl11+p_0^LuFE5l^LXnkx2X^G_ecw*^78HWC<^2dr;8+1u-mBxNYRDMA_SqC-i^+x@PvwUc=TT%RsD3a_LEtO&N<9*Af!k%tL&h6ZrNGToz} z8@8Y;#RdI)6z^LP5OjbIsr^!dt;^ciQtGSL?sEmP5asbEB2wOWzPHoq-2=|ep(Dq5 zP|E?r#6G?MZp^-)d?bzu$SO-T z(JzsO8jVtyti%*M9)l=C&F{wZ67FU$ZH*G?Z_)L8ze+aL zD7_Xt$Cp*Qon=NSpn}E`kJKelRh3c^F20;U5jE&W8xEo5gEx0`(`VnQjtYXT+9=08 zN-7JHG5|<%kyNu8;Xz}1EhFQSRdIcTy_0?7l4cd@p+I4z`NMZ#+tS<`%FA72wA9%* z&i0JycoNmj@%R)m*I@LUMn5b4RLW{ZEC}0j;t4yWSQm8QrhJ&HKb!Bz8C1IqQNf|S z9Z7Kz)#;BW+l}X26YKExrn$XmzWE6wj9+`1VL<3Alz55c+C*pVb87C>rsg}GVCxrE|SI?v#yIk(Hg@Zc&5OXL?63jX!hjD+@#Z7vjwm=lT=-!yZ-Id>5?+J$F1?-&QL3UF9w5t3veIDHK|5FQ)Fn+De z#}}>GkB9?1CSOcnP$a~^$9ki%h#k8Y*E6dCOya<8d9~NK8&lW#%D(c)bzIRED98)X zqR21=l=#PAtZ5_ORq>k2E9?FF%1v6f+{AX*n7XpE@%8?BqYR^Y3a^2Zu&(~;&-HLt ziGU4y;_rXnT*({=2}agxz{PoA@$=<%)=JPj1FNW)rQv&0@v>4t=%`w7y>`z-?8zcL zkcCic^b6{LUQ#bvw9GmZkL&q`Jk$vJHKbD`-lv4jE$$fqN znZ%!$yiPb61hn?=3z_Am^2b|^=D3%Dw91d``NzkVDRL~1zkX-|8%(0)sSrHPArLiF z6kYPY_Cu0EUwlG+;PdxCe+Iu^pZbASXvz20bN=JnWZ^A+7-ro`p19^eADliLd47TE zcK`Orx3q%6=lcB9zh@!FQwsiQ)yz5O&z}>Oqtc5CEh?l}>aRbMKAjNPH+yEa*)hC; z4U|h7HPiQxkGc-QHNY+U$*x?|z1{!#{<v;o>AmITG4JW_7h~6$TW|L0G zolH2+0u<(E9e?_2ngK#Y$}rq}YSn^L`>ts-m?(#M^H_cdYr2A>qYVJ- zUb#WeH-Um97GG#n)1Yd7kV32cgS$J*BC0QY*dlZjSBcjp;0C}}MvN0}xKS|S zWO)k%`5@I~$Cc;_v^OG;Z(QzF%Q#a`Z{`JL_=IvKrF?76ZFzm>f%Ey!MvLT{s z<>T2H1@UfIev})$+p3`Y#hUhcl30^%`q*}Ezfqh)jx#Vu* zlhN=vm^p3NxZ(VKyhuY?y_<&@U0T^uTe}Wh@vW^LOou1jl?jV#O`3S)WrEdkUg`b4 zq$Kx8%ZR5V)v6&JHu3tBko54Y%>U-z!KA$8=Vg|xt?0GU5Cd92WY-cK>4zmJ5z(9oI-^3*VkX;115EJiV@^v zWWG&4{8!NE&V!Zx-Am4fWw&_t`11T*>`MPV4m*2e<$dvUY8F8K#~hNLOY0O@Q+m;( z@__D}?lDTglSSZAO>BmPSxF)b01Zo9aS7R}jI3`qaOrXN$2p1n0~TBQ<@7ns%7df7 z!BN=@CwXKM4*@Wph;YDJl;*SD>bhqpC!*pzg$GdPfMCWphU?&4h{wu-Cr`?+k^pUm z%o2qtI>jKXSVtE_8Zz1KmDjE3_g+iPzS-EZJD=z%c8}Y+7ooSt7vG*(XjqIgx)PvZ z(`E~gH!JtIIDpcGZiXq$Bkbi?Pf@pRSrJYqiI`x`z?fi>E-cX;zZ>A^xf zdbHZA<2w}87WFwe{Om~P#(B1>NvL*`T|f2%v=*(3V9F=c<)A6i>5kVykSNH{v zn7E?VU~3|*3b6zs2Q}9rDH55%4KgZl5Xb<+gw2YS>Os`AsPNC1tU0qcGZ@9_R17s- zSrI9SR+?wV5gQV&g0$Pa(bTaah=PFB%AlYiHxH8ug~6HZ^QjRJ63^J#*23V!VKdC#QyvTj7-%C2j-H7uT88P+K%i5zt zVzQ5ajEY#Ev<%4;MT-QP6&5=3Z08mS)W0)eL6)c6g^-Ytu@x@v-n)GXsN%s&&C>`4 zzm*6KNrT~x%S(yVc~Aj#Mr3?2Ux*?@#QS0_1S&|WQ22;_nivFTFecJiq3T}`%c^Z3 z+mdqqI&h9l`P;+XAcZH&#=ZKBLU8H&10l#Z@MeS4mfgF}M~$D%n6qIxa7l&8K_z0t zj0B=(lL<=`sSv1X&0m8hYx~W_qo6)FGWVD24rUXA!gebMAjsUDvwsf9LiFa2DzKU-8pGk(qL+|& z)U`{OAfz;V6_O;TR~+&&F9=E7y?c?Vj#e0#r*zzP2lQ4M@_fDKs?ZnqCVdQY_J?*K zVG`isJ|)9@!JiZk+JPX1U=bcK&dzD5atQrbzu5=tx_hLVrY&5xa=CjzAZ;*E%jd6O z$DKQwU${23I4$$Rg8(tke!h5r*WZxluVHCjdiUOnUcM;Zw5ViI`3u)c|6U(QWonmr zZTH&>j<1|OvkqVz>qKOFPcc2C1Qo`A`rNse#HKvV>u)g3{YAgJ5)4XsW;=9!EnBtf z(zb0-YB5k^HBTm{etFSU#Jel^p7%>YtDXY`++?7t<2|dbRvX<(T-APX&}fvxJj^D1 z7jff{`H|=n(RUy-qa=MazWlI#GP3Q^qP2yXb{cVwxhBcBXGxyjDZ}fT;%3{^`PcYWT=d++Y?xJz zJ1*|4)SAaW(F8-KK5BNh^IY?&I7lkY>#4_+F2v4^8ucag)UI38fq+Lyh-lA<EH)XDXf`%?_vBZFrxUIHwEb;?Q%3N3yaN)+%Sg0j)pk2 zrG9!gR;?O>fo(5Je;pZLzW9Nm8CL$)Qo;Cd-PC(iBKtW=LF)K7e?iXTUsMqG6kagj zu`xlK@Pt3!8dZdS9YpA9bp>=%XzE2I8+rQ=d?=_LsknOYUfru9%|~g3&pb#fhMjx( z=~&Eq8gnC$9~Yk=r+Z*UgAY(vfu$!0?22)^JpbNn(lP8FJl=fL%#zE!mV;A~h4)3s z`pW!_L4#gQZ*HUE_9L$_T_c^&R0JtvDg)Fp%?OCfS^OSaKErs0R_FLw zCyV8l;r&YJ-xLZKvIuG6?qH`6wQix$$5vdGixnNmggf+a*O-=YvfwU5kFsZN_&w>R z>)tNaoQv7i!jfi9p1_1dg~7!GhmMvsT7f1z`P&5YjMz4vj~}K8Pc76<&MRoo@Iy0V zjG%l9I4!N+S6b|NImh2)^2tb@_MJL~pe_LjPi|%uxz}wmljw41z$5py^FMavL6o!L z?1P+EtP1LBML=x-M@PcLH})Llz6KH5vnwmcxv$bmu(;DXewCHgmiw>6?H`5P zr%O45s$acf!?nbQQ53E9IfZpz5is+x>;4l)ZE&xcgZBwuoEL1p*m~U96hDXkfq|B- zEI+21*dq^vq#Q~S53M3r3?mos^!ppqcNZ3}D7v;(w` z>hgKshi=;~4v%5UFz{4Tv#?5$&J(=)J$E!@q&wMagKF=eNAvOsT|YKiv6^ zp5oi@+eSU4pQORi3!U$1UDwcZ*svtKuUzpKS3`ov=!M-kN^wp&8&>Y~JNU@LW=Ec! z!|I1n^b^J5q2tHvhz648Zt9#l8{nE%Ty-~1$1pA?UIGs`ftENz}^?8GK$c1^r$wDZQ08*kK;Ygop`#$3INIZcnir){BQ3ZYa z6floLwlIXWy}!o|Z1LIcoum9Nv8j@>h3!y7`^Gj|KiLJdDmv`CBMdTVr(1cO@rVI^Okiy0m0m=2Lx{(OYCQgAH{F zQ^4?0wnyVBN194i)rSacbz^Sbxf4RIz6FGhgA#T&812qOB$~lpQ;AWKMT`LI7JKLUR6&O!kYLVQY^_&CIuSC1-cyf7%N_65%*vp_{2%gQt%M;K_&IF30QO_$#cRx1IK5dpcA(RvD{yQ0A z_Fpo>Gsp;k{MRzV4Y40vxR;WkcbHfNW|}q?89el-1jF(u=+5lyHi<-2nRQ0Bniq|g zV$a+V#RwB z>walU25c7Kb_?1I)$bqoUbyfN@!;`^=T4yWGr0JD4>I_edCxa8p)BXhl}baO=*;{! z-(M+sFH8>=cvFF%7N31Sdzp-5PhGI+Ld#pXZc%5~AX~QG(w1u($IiaRswRbFVMv~) z;>4s2YY2K{bk4aU>sBpZ^!@Yej(t`u9R1V<*_(Ove?t0A_k6$oHk7R#j6^2{ zZ*>)gz)Y3j2%X+W_?@b#UYU2$6qNX0lRq&`+8l1f#O#?)#3%eAAT(V_LC;E@{Jt3o zs7rZR`DKG!XkI9%}i`C^7Ht_qEGTPOll>OYVm_Qr-b76k~K{v*ax^Y-6PY=S- z2BTQM`=0-;i?oahb8nc!erA5=Ae1^9KTK)C|0`vm{HNdrt00(PkMIm zE`cN}3Yw`lT59TWwhJqr2#CX^X4G+fh2^)pddiA=)398qsk0|24EBai1$l{%`MU^D z^H6N2|19U*S2oN1pMWQg%M~L2!`E~Z5N#nQnMn+C#5Bh2 zudb$>ngu2G1zQmgeNFY+bq<7d>F@TXGnOUb%S!ln*3S4<;v$#g_Z62`RRLFzWBc^A zGETW5kBV~djmMf&pmb(9H7q`OPw@0!{r-+Jxs_Q4uG>($N_Tx(nhhpjCgn`K>7y2E}d~1Fh)gZIKnxeW~jb>v=X)L3*v8vWV?z@tpa*ng^Kn^dE|J5OXk^|MMVoP;} z5IbZ~2{(rtb?wYKzmTiBk-#R_ZoFfp&s%#Io}qC6nS6oY{vP_%SjwAcHe?1Q2D zi9h-z?5&}79W+4f;Y<=pO+RtL-5cPsS>*ix21ZJF!v>1q!x;G~H?5gTyKcp}iWV|1 zMf5a8O|5h5A29qsf=LVNqzn!I6HKZSvp2H|19|@kFlpDnf=O&mZm$+g&^Bo1!tx)> zEduqUrzE~Cm?Ya1vGmyZ3Xm3sWh7sA{f3xQ;st2$-JbHL_0lKt?6D#-VG}xfm0f-z zW0Ay3L4Cd!yot?LjS`(fJ*urr(+zSQ-eMm}al01t4_qnFK5bnZxDrzDl+tIt%!-zO zAlKZ==wssg_?F^W{83=^D9_E%X-ab7e-QrZK>oGs*YDhv#oPDg_BkB;b^*pPk*Non z)EIAPCq*(t2CpIx&Gk?yvk2q?4dizmQMCSc=Z*=}ei-%Q58@<)ED%^Hr;l_|$pwY8 zZ1wclRtBzW95bf?)j!alpcbD$M zlaso(zi0TY_r2<8&-xBO8v5Ku`^!a}ndi4})IQyQpXa8Pt31B#yHKxB%|3S*sJa?z z)-TW6|6qTi{+&AW@2|Z7_E#I{lXu^|ecOo+r3YqBi9+_GPGOaeacy$56os^O< z_dXrYwx7_%{cA<`+XVJ+FCr~d7l*{WD=bfS$>^35hh!+J|H*^NQ*QA}!UPc27G699 z{op&03y{S|lDnH*QdU+LZ#~Me1532)+z?A7i8O{OIeL`rY5n6gJH^j3ce(!(4JD~> zwO_t}uU)UTL1%PVH-Xo>GTvK>Q~oBXfJ=J)QLjFH=y4b1BF5kd3yd2XRI=jn**Vrx z%M0HO&)}ZbQUo)}LH}fJPc#pa!zOJj{PfZUiO6Cqu?{YcwA|X?|J}EYT{i3}RE3n;EQ`lNX+7#4}RtqTaeCPEdk_XzYswi8Qa(1If=#C4>t&jA*0ul&+R||C< z!YbSl^Sz1h&A zwG<8jcy@0`6f_?bm_P2A@=q{YH! zzt%Wf1z?vZM5LE8M^wOir&S9UoJvo7I2=%?GjqCV#mDBmfJ@d_$jENLo1}0 z*q8nhoJyv+ob8&HMs9(qp+QY3OzbYzGCbf+Mv2p7L9dt~2FVp^-)Y>jkJIB9p5NiV zuG>gtooP=xntUjgH1rxEs*0`fWZ0in5pF9AeA#`~pT6cP~;mfdo#(9?Old)#QEQQGIQ{@YL3$fgmWq%%Dd z#DZfG6ZZhya|5l<5DYG97@|str4ggK?%ec71b82HvM6KX^KAFXb?b&6DZLal%-q}) z9}~ZP*xy)LVISDFSo7HBJ4QM>R(jo$R|_SD1PXIPXs&a3%K&t7r73nx0ja^!ABI}B z3-n$lLw-u1-+iC-A@ai~Kej2!$KrVkcL}``zG%R}fmL0Xd>lL!NrCN&I1YS`@AvNA zOFF;MF*@hXn>QL6(?i`W+7quVf%OvV#OGAyxQgBz)Uh<~)rFwDQ^t80AHNmTV(Z$q zYg2RBBWoxClF~x+PImXx(5s>dT;HVcn_1?zZ%-|H$_nE6N;@C-23ulJMHak>{#@(1 zR)cPIVCI$M6f9$&X6ugk{bk*nvd0y1cmyQTi{u8P){FYZ<@S-4zismM9T7R* zegBElDdX7b#N)@53C)+3IZnS_n)&3*)1`g-^zl39UnL+mEa|9zB0QQ| z-i5>3pLYz6i%PYhh+H7hgR+;|^g%emvO1{yF-LJR(^!tOId|an+oh|$HZz0;t>r0D>36fvzZ zj2IK5fH+ge6)>B|{iH96vM<@GB`gs!hV!X9qx8#n=){-VPh9f67@$V-X5ayaP~8C3 z`IE69I@#T0l8gU(3Nwr-YpK0KlU`EC{OM=q<)dS~r+8rIk}8QHj(3-8N8AG#;2BDU z{wZ?1Vso%9X}#+7I%~Nm5{V}z6#7**-A{;^aCh6yHGj-drokPzy@c&Zc6PT-n(>_o zYGWV*iQ~YI`wLC-P#{E_g-rzSH)Hbz#PUwa+itS4Ub9|Tv%cr;mB*UGE9G5-;mQUP z?^7ptG0R3doTUHzQHzcZiMo=3y_b<^YS9qnyMU57AiF>fV~vnoj%xAwQQ+I&ab2nF zgIvuAbxlq5oiB58!gM|lUAi=eRw`V$&dqmTUni(vG>m|wHQToKTVkb?4Q#ef&DgPo z_6yu@XTq0Gej^J|4?4HfJM7Q{(T94YM(tV3wsX(Uh;TLNcIP0Ek4_onc>@t}CVb)W z&OQ4PBkxg{K+es_y9eRMq@8~{eEn40a?}tH4kgB&*4BGoF-pIm)4te`A9H`b^a$?c zCZxqW0CU9fP3V8M1`L>hb7W|AJ`CiT=##l+p)IfFU>?-!+}Rv;p&Z=|E$Aec;x9#C zS)8e++3LnVNR~01)fSmgif)*ZN%-P=Z-4*Yhrjm)^R9hiQV-_+c0{$>1|fa$mJmW# zm}54!bEAz;`3+xxx|qJIYrW>-4?Ztmyf~ibcPK2Y7lnybPbA2w!$yv65%g{$hurn& z&nM5Fem>XOP{Z#Segtv^oDJ(K+lTevqn19<8Z%E@1B1&6?vWdQ`;r|0bs2gKq^)yL zhg`4`AxLFxRNxenMrzPDk@?f&_ZGda7X!a>u1Rv-6L$Z=iGx19dpV2!1zBJx8P-vl zM|c^9zBu9A9gYAA$iI#i&6{#f*E!W9x4-g>(F!@=wSv8`6O00CDtIrLZ8w*eYa1B1 z(bB47xmWiZFkZc;9Z_LmJ7YQFATS`A;5^#~TC)wZn) zjM*4Or;rZ}AgM}>ziIO;x1Zdp;R%y2k)-r6I=4UPZKZ)_;PCjO?oHJ9H1Q4Jr=~uv z6HiFd@oHICY3pf89N-ul91S;wnz;#(eAs{5Xe`V`@JGh+liEM+_Tw?T;#Cc&l|j2R!2k zaaQNNC$djU0H6l>=~1I!&o=12=Xl>mYFny(D?efQEY0R1C_D^jD|9H@?4?KiP57}n zQD_!=0{*4WY@*eBE7yq@ESo)bm;Nv6hDYiD#+W_4LoF{EiG4uoAa~Ct znZ{WMGo~nu<(DkAi#KTaaID<8f8Rf3mfDsn0*EqJIGfOetz4QMuDexLp0U-`hG#Md zsprgqOTa#+CnJFP@Q+k{-Gfz?Pv;->F>gw@CDHIY=zMnXiCWSoe8e~Z4o-u`|H_f1 zrKe{rZ@T`teOzlwrf+F+<Ls~=^{KaaM7 zI#4b|#}7as=ZU;w1IYf<0zAEA)DK}tHxq`pl_hJNSOB#qii0?D!(cKJir)F>j>Vi{aJpM|5hOkb0-&~c{8~X$9a57 zyPP_%b+9U9&zuGDClKeih!SN{<(0ZiNHj#M++@!yge40!IAzuM8S;(PKiRtmtIGY< zIDsN;Dj|1ri~iU-Os{t1sh-3TV9~`>5LMozrzrX!qM*Q)CY#fy%8T$7sFP5*EC@h( za#Dg>y;*QNi4to@r|QyDt9Jvo!n*tEe~^YoMt2KPGhU-qPXE=orUZ7;Vw+O@9A?8Z zy~$=$jYUA#>MzKk5%cM;q9XnQ?e^~3g+6Q;hyBfzs!dw7@FjsjiUql+?HuJBK4&S2 z!xhi+s`Br%IE?BjgtH`fi;;`=ue_AgXVaPPHu4xGYD6BW2^?0_r_1WyjU_|^gxNn$ zxb1iE-kmycoxZ;aaqz%Ds*j&dXwhgw^YS?mOK>O%t2h6} z{&g(Ph4_jkg%|jtZEb$QTb4RK;MknUeV9kl-dw3n5S=E*M^z4-9dgrq%ME@eZ-TUb zaF1OPM`3`2AeB>d#Pfzvh^NWoGGGmFoyT*zu zy2+lB#EDg>mA(yIOM4Yw*9(?Nz9}Ced``;^>q9?eaQc=P9;}!OZ6)`AgPf^~tEkf+ za)nbKFPZSZVaivg<4~pVX28?rHn$)~D&p_$&Oo(g>81gm7%iFen z5$34ChHQotFImT@j!kxv}A|xFz}eD5$Gz1rB2R3HLLLaX#Z&RIL)rh zK=poQq$@SqtEy*xWKT7>HtF(ZLv9GI$RRug;U3dBgig!eL1h)}=0HCtO(uA~^{lu( zZM1H@`uP`!5U&DDNn$f$Kb4QLI(N*+Cs(EowC&e#m&x1)TQs;iqZTk1%79F@Q>PwA zCT7qZL4|xXJEwAfd0}OaAaoKrGZa8!t5DOBo*i7UcVj-ee5?9T7}jjN znO0)25owivX=u(OU-U~UIO$PVn>xXa7$kx81d9iAtW1c- zB@-QkYV9hetPYN*wQqY3rFB?Cj2J-zTAazfb+n7~nu9cP;yML(^1@F&07pQJUk~K& zWmh6Cbe)iq_wS!bKgl_HgML&-*=y(o&a+r|)4jk9XB&wA? zfYA`wAmiJck1ze=o@pb==bs?Vu91BXSU!~FlCUx_`nLLrm=dXZZ5V?mEXyglJ2|yE zL{;xOIEm;HMM^`-NlXsi!ania%>}v#RBy7wp;y|a@4YeX_3~$EQH$I{lNkyk0&-eB z8PIBKesrMqiw73!d5h%KaHOv;;@Qo5sg=9wc7HDXz0I9IuiEDdi=LK0T$6z5vt zU|X7a>9u5BhUY-qq>NuR=q!34cZO^O(j2t!?(gSa(B4Ale)-zy4fhIQJJ)e-r~W!x^( zt$OwA=i#sqcufbTOUg&cjHZg4bh%&bW-%qI*Y6qD8LL*UbaVL{c<$Ue;&#+&b#02P{ss)^&14c??tMoqK(1_EP5kN*SPdSJ$sH) zsF4btw0yEcN$!{BD~%KsIGxZ_3N$0-^OE?eC;b%ezGe8Aoh&r_%-lpTqs1@k&80Hm zQJ&Pi|AMK0zGd9^UldO9;cCYF4VI4)I57D5af_4BO5Rw_`^dhPoW67W_L^vH84hG43zoI4@X0mzGARes4_K-@0)znhIg3NHv?R7x`*cuQ%U~ zh(}f#4D0c8Nx=>`;3kBe=Ncv)y%T!|`0ibABxHZ*E9~x5rpu^N7NKssez?igR>OPj z8ds`ExiOf+6s-CWYfxl9>gA6#*)wO()VOi#;`#FcrnSM6Oc)mveJ-r;+|1Zk;yY#N z>pJk!Yv^&=N8i$IgH6qZyfqxMxo`<$P2T z4Uygg{l_6KUz}ob9!tXzAPG^J$s$r;>Z7Xcwrlc~DfM`HzfzZS^1`bquq1{*?whic z&sI;N)~s2mPR}-N6jwuhHPeB=LtYq6%8*gAB8uQbbX;LyTYXQxCZ!D|@*WWm=VwQO zn&}tRjHj|+aT|+O3@+}SMa56*0F9T;g-LrXj*dHk%7`Apfmh+G#7n)(@6K-2GUZ<6 z`~%@JF4GLaFWcf^T6qDq0|_hHT0T;CrsFr zS~#|*%D<;HeB26cp3*Sg-9MnAz~^wa($={seBEo|pH(BMd<|WoEQ8|{`q*v>$&Z-% z`pGR$;zzsRg7dL_!dA_vKe1bw66?MKp?J`3izZE)Ab$BpdLGGvMfhzBQs(z_yKcPx zb~jdugM$`DHPEol>%LnS;;IQXyj)WuV#^yEY z4UtYM^aHtuTja^E7qvY|ke!`&q7~+;07S+wsfI*gOr2SPVMoGR`pmrh&^2(8c@i{B zGXsygmtc8>Tavk5*@b(2LdQg}G+S`x@PpZ{|1&FLa@%lFZwB)H2NEK*`&TZ5=moB0 z5#o6ZH+2%zy3>W*2MJ(s{(bL&#YYuwh~J;RnTs8E{tA~<_yF?i!qaK_=4d;jxihXA zq~i|xtlvuWwOWV(`tIM(lM~|PZaI4N=8<{*l4l$2$e-n2SqX?9QN|Mu88YPh{re*U z@oSTYCs6@@MdWLalA;Kelgv(fnU~iM>}@D+Gn+dH^_+KxyHl%;VN9ZhgKq1#UffuJ z9#S=8U#u+e+`j$jiN`37mv89%Q}w%UVMXJP(Qz+Xl0?{?$QbBOZhERzy-C@vyNDsj zqwwDTvd-AbZ`^K!KeYgn?!kGbrfIL=zIn5eop~e8culb2X1&*nO&5yu z|B@?9I6AeU|L!NV4bZg)gKGt&bP$wq+09#C4I$(o-W(Ph>*MQd;_7-n zHMU?(E)^kksO8d|P2As=mfyQ`XDvEhxYTZCGb4KN*te#d?**9yYaVsKyQb@xPkl5s zHKkiY5Ax`H5uhJb6=JEw>W^~XfQE?yk`uFlMDk&+*8Al88@@*~e7FYBjfn3+x1=mc zURY;%&DE%3b>}>)=G&xu_+l6Z4zxDpE%1D#Mm+4-0T&>kbUf|tgm(?M+y~lI&$&f! z1$aADmUv;|5r4;Cf2iJJr~G<<-VwE{zJeM-ki(tY6CAd`PCJTsMjmFGD~`WleV_P2 zdd(UqHcl%pB&~5otHk@H2*l;)86UeETB<6&-8OyI zl!h3)Wt51p*BEV`Lds-a(b`#XP{-;ld!&$x~hg~ zHU0oZD)C))^iPSVY}u_!ot7cmtOC8C9+KAmelTfS;0n))+d-wK{j)c_d}_Dd-py)a??yc zQ4axBS^M4Z-u>2Tk58R|gW5$`5elm)zL6)o0MT{Gi3m0ljy`!TiR=j5V|h#xBi}Op6QHat z*0qFKcvdtn*PG_-TpQdtvd~LS=7LdF`lVTqE7Y|arC+b^w6eyp|5wQ*@3w30)SuE}^Oh~Ec|2wZ zW+L68C#g#1y&FdaHLufvY55sUtpXmd`@)@(9+|Oq6|TikXX(9hfhSQ^q9-{hrzDgZ zG{8Ce!BBTuS}^g_i%Qug2()2>L!5uc=^3?QU)R%r1+%+>lTCj)V)}IBnu7kqTCCr< zZ{m@Bti`=>)<|KZt!?34QC4y@Jw1K)oe#uWV8Dhr3)cC_sfjuV7$hX&GE`DKN*IJ} zx^{itsUNDdjBe1|3ZPxolAEVZ-$A!7Or@t;*@V?*6^hy0P|3oPhtN9EeXW7(#49Wr zNAN-I2(Rbaz?27Cxji>w$ZK0ME=D{bJ)WT=K&x|}%{~v3p$M3Fbj3-;~mk#tF>-juSSg;GF<~_ zCumo{n=iu~r#yXw2qPlqYr#An(nSKD+}M9?Y0c~1{?3O2;UQ|$lzxm!5D#I@C7*^8 z%yeR0BN@{JQX%@gr%O?}%5#HA)Qf1gV|I7?y}7V&$BuOzJQB~rN1B~_yg8af=JBn| z{ivwbf8ap*;?!3+DY-WDqoge?wv0gGqxA!Id1UtYkV=*(B=7?+r`dQKwhkvgfHR#YyXC(w@5fmC~4wq+qxgwf{56oJGW!#dSt%^3xzlex7a8LV)&;{7XrN{W91M)&&W@b_;_?7R7VVtrWRJOXl0z9R`ES9M4_*HPS60le1Xo;jhi~dq zLKKQZL1v~#A-MurNEQV783*;sy>}x;kK`AWO17mhn2lsIHOjsQGO1|-*F$M}sc9J9 zj`(srqVz8nXf06Y@JX?xw00YZ?HWyQ6mxON5PBssu0S!m8+W!f@tz7xib0##oRmsdl6fb+Th=MXT{VldU%d)`yvTCTpbXMbj}|0bDTw_)km_Rdwm(VLvs)Tv zc?^v`O*UwWv+w8dU;ha?shv zbkWvM-o2B7b8WqTANQzX!-gW2mo1^*Knpf;cyY!@)^yH{z2eleqEi$@GO;x-z&Rp`fl~7W$|R@%8<0kQ z+|#u8CBIwEn;-wO7>y5s9yRGjt5vUVd%@CW!-C%8zY%YoFSQ-p1x5joy*3;GLqzo= z#e&mG;X@9AXx=IFdP;)ZfmJ1QR0hj|6?tXQ@~-}~w;nurvTyJ$CdVYFT0QM6Ud24i zV+k{Tl3c^n-w^LnTj7A9NDdV!L`#W+LRR066eLb z2k5{g)^hm#W~ocp&KoL6l|n>d-UiEH(T76hDPbbwsU&aGOeu-*{l;TH6t%G4JX3tT zXBBNYNUUBD3JcZm_b&JJkGP8RiP9w^+Z2T>g@9y6##7QO`K5I-tz+L5fP^jz9}bqB z%XND_tb38m(v(6)t3!t)33s$mFqviRc%^qO2H%R*m{-pe%I%WrKBI~s){%7;q6YO+ z(;7H%qCnVEV2DJN?MYOG1vTFNE7H>PDM(AgX-MkGEz{7-R`H~!3r@`!tR1kr5h%A* zE#SO5^PcsmdkwSukR7t--M(Y5iqkVPd|_T#o1sqIwr@WiwF#BqFMyz5=>Ny%^>4mr zP<*UfO2*71RErWTU7NfR;Tq7{3>AOMqa(gf`)1wSd&J59>B7;Ui;J6Zu*;~3{|B|_ zS;`&1!Z*X(J(FhHt|Cf@3UAxCcJP5c5WaN(ebEIz4nUG0ojGZxxzP<-maAoVS+S;Vk70lc92Oi*ri zZd*;D-^0TiGFmAV2uDT|uI9Oy$&@FJGu6#J_L)wy$L8L!xj99ydV5r9k@usvW$KUiuJ$QC*MiUg+M?nRA6hF~|AuCJs&q;^?ix!cL(MjcWjc;?Nx1mU& z-~1B?QCwXd-lVf;l>~Q7Ju7B(pNG+_!%j`4)@FX*yH4{p#AUq#%8~;M1Sl!Hc!6$ft?)j08f3f< z+rYK7w5FA+f(CjEFsfeTVU1c<=GLS{IejbKzEAFcwy74_t8U`|5rgKBY|RQ@U2iaM z4QYEp{JkJ6<-(h{0F(;8m`D~Pho4Nw5Iez7%TciEY+zY3z^~D8Xamy(5084%DOjH= z6)G}q7n~8Q0{MrwOM9omlC=%V)RyLpja$Ggt0RKy$MCSfQfbqig%Er(5`7?{Z)V&H^=8d{;HyT+uh8md3rYq=B#7cI z6l_YD0|=8uS-l`@Fmmi{9>r**(bp;>``ACxCqtS*``R z`$Svat55dac}knFNW+5N=F<=Z>fB&g5dQ~|<#29-C!Zr5nD`rQXc7V-fD!eab$kcC zn(!}c$ozW2JSx$nG9zNAeuF)y039UO;3_IQ$&f_{=3_ozKG8K-+-qP^zPQKeUDa6m zZyJssb_0K$Ox~3^WnNOA0xLiHM5@>Xr>y230A;J9eqy;r_3RralTHx#kN}-Pogq)I zjbr7@H^%|2(Qn=+cJ)S0nuyHw)Tyk*X(r>yL}H|jXbvSd9KZV!S$d8?@=TR=$FQqo z6k7kYu=*967UDa1eET4%2w}}dT`67!+6Aq(S$r#mvYQMNw;ooJoqdrTi) z`91O&pF+XpEeV=yRqGm0n--M3C3L4i+gzXPH8fXx%J>&~=C)kB<)vnvtEN;Q%_8GM zuoEFAQHus+Pa9*V)vg5gNS^V_q*Q?$RIb5I)9SOJf)gc`nyvv|$TdC~+Nbs|?R&3b z*UiS;=Y?8bxIP{S9!8(vniZdt*l$gvBV=Ky6 zyzm{Otg9;Dyc2b80ykJBI534-lrUVYRfBI-k(7Y@Ax*s^DalyVaomAO%dQp!gb<{vv*30Tz;$i~)nz+{#H{ z6)BsWjV1lEY=ltnI#aJII5lPO*+B7vE(u_}8i2<1pi#=YP2@tgBCEd{7~#8&b3J+f z7lIfM&uG%LX_`atF&CjmxZaWnMqPL+uO17L)#bBf`ivRt5DL~|5z|>QE7QkxpFq}t z;O7}|SFKjwIa+kWRYvArCZr<-o)6JZqFgQHt#@*Kd@O3qn;W8N((2o{32L!s5cR^~ zr(Bj)ZdCE#Fi#Y)@J8%Dy^8VDH`!96XyT)D;PAW;9@ISGmfK~2|AlKpKB%dyZ2sd& z%?+o17nh=h12HOL1LCV7)Y~#I4wcO>0aYO9Dvh~1?pRJT25PKcH;AV|4&L7sXq=OfjIi5;|Ki?(+btgu|5t+} z5t;~B{KY0)U^EeZJGxvMO|9A?|h#%~cv3(9t795CW_YM*E z#5Il5o)}}1cdp}bhK-3Z4_TV6?=5b^EKKW^lEMmOA}0 z*5A9nrayl+s6eyp9t&0e0~xyCa7B}fZ;3`uI&Iar+;TX`W4M>9`Z}+^1z!!hCiqNF zJldy3MiT%Eo3`ls#eB4UPvSg0j;xEF)T4$%#MCU)c&gv=?;5HbdL!NSsS}E1Q4U?I zmQ7sDDxP*mi;<5$i*;`yq}b5oeaPVTVMC=OtIqeavFz8U&svL)Ye_DW{hOPlg`pPV zy0W8hhvp8q)+V1Kfm{UTzA_TL{1*a4cs~6b1KjrJ0 zeH?#9`AMAxLIG^=VT%`xe;%#f>HKX)SNG(p=;RhY9(|=j>(>6fa4?H_j9FNk+~KFQ z4i=P6NIZgji3p+?R;XYG#95q36wsp=9_u>z2CnGYz{p7&3 z6nUj@QXM55v*UNeZ zt`XS7K5q>ITQjAJ2 z8v$$dQ23CrI4=DSXL~SG8bKJG9s`qCR}k^Azkk%Dv`!s5)PlqcT(svjxcvs;E+4j{ z4NR-3iQjN-4-cA~DxUCfF|a|6h^%=veL~UrKeYf1GFDfRwSUTVCy^o>(9|~nwanl} zuIuIHm+Njw%s87IPti562l|*3*8ZK6Yry$NNZ2Z4-6rNXv)$VDSkOkac`IdoND@WW z!@d7cdv6|(<+}EbU)4&px~o+pLn@6zg+ftoDk4fUlp!h^ONla;iZUgoA`umZgiyv> z2ua8kx1m9UDG|3Kyx+qb_W11m{Qmg;^M2m;-k-hql6$zW^E%Jt_)f=)CEOIL^Mk<2 zDZ8OJmsE||_UKbWkcVu%ww0|MVJ|Y(QMwJu27#0a^aSMMyN+evzJDJjmEb-+1ob0! z<*GZzj}C3X{qoE#7`dX~oCGEYq_y1jfi^vVeMZ-XEs3ZD@vB6f-i=z#2X!EsiBFB4 z^zfw};7QuXfT-Ydv0x=mx&DBQX1ivU=C`u}fyAkX^-& z@Bl{#tR%}Pr>D^dP1+&Erl@hy!I&Zo1s$Z4p5E2!p&PyD5T8&U+<*WT03|43RLmM- zU_(1W+C9JHDE4U{A1sD3ed)(DQ{Mme7RCW-D<&JY!)9uNgghD+5Ah+1eyIb1!2-iN z3^@A8EXF~Ps_QpAi#u&bl*h@xp=>;Zu5itoHI(yeMSfpDMDaFVx-`HwU$Z$lA4YP`{ukR|d*}$=m^8An(>mz<^QJhzWzzgJ3UrXkfDY z-Dlmgbu|u8QLF=`nqX(wxs-#5%V|*VKLN%16&eGC(mitt5AA;Za{<^I&?e9Dm!&X9 z5{CrL3bS#KDW_@Hay<_`ma6X^0D|x^WD)Ij_~ulzUdV3bU!CVCAI@}$R1Obcihafh zOMC+8LqHf3(07pP6SI2*84=*YH>+R%k0e%A@b4tqWC5A21SjIyJC8vfgqfBj zxG$i8n7E3$F}v^yDO7O+mK@yMll^R*w-2`u7c^!SsO{hy|G{#}!H1!4>Lj(IAt1B*T<)~RXxazpcs$Xn>cU#HXqAh;q^MWBA>+;d7 z5`6YAJ>?-KGWt}eyL-=7eXlvEpFV!_^~8FiZw1JXad|m#z4Y2OS+CL`*U`j6s^Og1 z)MR|Dvr!yDUiRQd&-wb!L{P@sqo1`x`wDIx4jD6xKUtzX=lzZyJIsTKV=J5Hh|Y&F`N)iL2$uP$b8J$zW%&W8eR3D^$ld#i9q5D*zz zWjW<}=cU(!m z7OA8^zxU8#3v263#9-ntWTM;0r(TY;?_yx!yrq}bP!`_K&Tec@hi(fkW6ejKy0_t%NLV&TcybR+Y#T>3Z$Ut;d7x>8#_xQO0_J-@huT ze1s<6j%T8N>CikErW(bZrld5SmspWIJadbkJ4ybyJS1d($5GG)}EkYinyn zl_k`Uyb=-#GBw}&`o=Nn&;`URELQV$Vy68lCBAwZfrghA|w$8PcDANZ0onb zonc7VReyN!&OpWM*W>+E&3cs1V;u=GhYsPI#MncWe$s4Rm z_s@p{kEM;nK?;4?SWkf_oo>)pT zG(Wa$c&KSO7n|wV*Jc3}(T}2?BuHeK@%G-}dS+vJyNs)g%OU7AD=RDYeu|a&Pe0(i z6SNgeN^V8^0^=(^W8kO?DzEs$L_|jZX3i-QZ1Z1$Ny|^{+;u{h!2Qlt#3p1ZHb%vo*y$Ywz&oXq^0cywMnvSD16tK^2fPEJ8PyBxro%X&*mj&JQo1s_+%1%%VjF z7PT0aIEE1u4!SQd>)={FtKE)c<{la_*dT-dm3+WGG~ZWBQT$ayydWRnVz}upB48Po zm`I9ng(Kqw012MnqmB;1U-;{*8jfb_A2EA0Tin3>=$QRhX5Qz|PiKm5779od3q<|a3Vycg@{Ty^zRoex$yKE&?;oNl9)Xz~)0>n{K7%Nf3m5*km^ zgCeN`N4aWIK{J^fD8*XfHcajlS}ptR+cB_4(;4xXjV48PhD>3s2MFjd{sVi} zte!cAR18tz76eZTnDh*XkKa&ND>RPK(9J`kz|(i}Gvs-A)=~U(GHtky#jl&rV)wOU zaUG8=Z)lS1=;ztP3WSUHnylRossXWu0VsZsW~Ui)I>)%^a*G8rGP;Pe?QwuZXspLm zE9j_1MO8oGn(WWlGB8*QoEt+eMAdF@r|W)h(Txi@+uJyqgS=lUCV z3y}a&aY?|k!a_tQNbw+ujy=sY#Rtp+)^L8CUNnSH>gS(}FUoNdA{R3*51RFjD0T9Y z0;99^G6n`ehda(U)mU459tyzexc}H@0n^O~Rf5LkzMVS=;{JYd!8RN_#}owuybGbX z6G46iQdIZ3>Qe%EVpfIkcr>{ye~b&1R{ZqwdNE3ncQEEpnKDIOSn@~HrL;Rn8qrs+ z)CT~E1ObnHjtu<#k`fJaH3Ax4Njr-`-BGkY3t(!rMWMKhv)^6743A(f_JpBSWB0a) z1Lom!i_{kk1m98T3Z9d`IEV!^ftNQJ2$cHi*I!7k5{Y2}VC$4qB}BnVN=!WSn?+ql zs&(jKLpEo&se7pBppEy)|2~+VV^?4vUbj$eAl1~*+?d^rK5jN7b;rR!bjsu%yPcS* zz5nI)CBQ)J5t_$alkL43@EvJejGW$%^|8TguK)8j`3EvwQzc%xxXV`AMmH{qa2`eYe0>neWujE;GE`kpi1Z|nWguV81E33(OxSrY{;lr5wIb@n=i zp1UnvIU*Uj0R~spYqIot6~ocvRaOdid&Ub|ZQK#5OOh&7h$fwq)CRWu=TfSNxA)wc zK|qA?XI#GdNP}3oL5jq$qN4U%C5;iG2vjLvQ#cAWO`ZHNUeWT;e!5JD$n#~G{e%7Z z=JXdM{d42)%B~HNy%x2uB)PM24cIXjOWGmYr*|&NOWEw^h^wT*WwF*S79#~Mo6UQ^ zXrwO<^xO-02Y;F)mfvVcoZVYI0!p}YH@Dv{!>snnLJE91L>D(A?h}=!!HFRJT^`iO z9so&i!o~#0JFa{GE{IMnt*rd24;pL(a}IscG4Dn>3SuYRG5>b$x$iH;MB#Z9Az2yx z^1?Ws$U%vf?}=h;PRU#@+W5VAsIa?j#Hz&yID`?Kl;@2eM$*z9)d8s5B)v>_SYZCe zLF_flQKrNBr3!i?(XrD=M@NTL%LJ8c>+7G(8R|{=i~)Q6{QS#P^l_cW;4I?96i|u< z>FAh(mfm|j%mY2epGraxJiKw=2(2af+Igac?8WD%J%SbNj~pjZJBb#YKZ42+VKfiH z)dumihzWuaha}PXFl7-#*tn@NpxAL_5t0EHx$z!oNm0q6<`d-U4F?!UIh82TXZeN3 ztV+~Nf);9foKY4(iB!=QoWTb18zKksBsjs*KsbsCRI9;t*Bi*9gBF_08>J$+P}3^0 zZ;0bOzz*Aq06j6y>)voi%mkGwWANqUM;<&|&|1S){S`J6zq3QwYel7`Sd$Z`WauKSEK zn;jPFErPm)&T7<_A@Q@}w1qU8MajZyYAe^eH3i1#EDg0w#^_>_-(z8~=GXA)g~UU9 z#|}?a0ic}t#KQq}lGYMBR>S$bMZNY1nh!S(56Lnnm_)um!4N}gXnZ^N+CvTwdltkcN-0S+ zRx}gSlCwy(Z3zGc)R8EZ4C81{?L1(5SlGF^i3U~K((Va$xsFK-b#!$})rfqa>Cjbu z1p}65nT4%%G(%nm`yZeZ8OGS{$L)Qi7q)J_bq>-7DQ%ZcD7;21WeZB~(^O8x7uN?7EXFgsW+Zs3`vNOr{%AD@D+%qbJiD>Kq>0cK!NwbBOI#rDCfr zkAHnSPUFiq45z5aD3o`dof1GPgE6~eEhaqS3_lP3%3KUMDH$*;U1K=L18sIndiG=2 zrurc~=spPv3EDrxxW<3qySlfd2{p&!cn66Jh~BhTE?o4BAfLPpedqqRtFMAf7ik|z zJp5jDug&4#pW6O5ixh)VBG~$aCtfMMSwBy)Fx4Vy7$kE+T<;C1cN0d5 zgu8T~+i={*CLWTjb85FQ;+I_?e<{X!8OGBKUD#L;XxR8uY?h7^RCLSSkVIbAC^;w; zrlANjh_83cjM~X*+0Y+ccDktjs1YV zy+7&B-@bnJR;~&g4O=sQ(A`t9%_liInYcQ~IAdL1F_@`?pw>NTVe!ap&zX($Kv5){ zKVtK~*DT6bIotL5nQHLm%hysGQL>Fu}iVT04Wbob4(oY0MG^%?$&>|Y9QIHfR}XLm`4+#fbEh{FeqFOW0RNZ z*yikAaj~whFZh;jZ0|6CHJLN9^p$Mh&KVDP!M zwLkoAG9Eoz%~51mD)=lIz~0Gt&?-3*mYyz$#R0T4^!mgX;87T@-Mg(H#c4N`9=rpZ~O-FN*UU7)>HC0GO9Z~u7xaAO4ESX3s_`CcD9h{-fn4Zd1%<@ z=hyPvv^WE%sLwoJ5o3$Vh($K5(}vTQNl3`b**+P*=(6XPU3|xkzJVz z{dwT3w?V0BksCr*iI95>l?FA?MRKS`A&e~J*YS%wXrge@1KZ@4FGaWcDrE+dfb&npb0nSyWsJ-LU-!;x| zI&q1vqDgVoDJzAZ%|x~GF1d8Qr$PKP`OZwUhxH*jyE@*=KaMA)bk3^%S9hnPY-64& zUmN14<-CRI_%|Gi_lG?r7N&O^?-8C6IOhf5o2E$A1U}pEUV_=U2)dTr_wQ?BDK0># zNZpg!Gv7e${cUZsVGR*UNv}+fdE)3Vjc{$4vQ1iAn&$&7cPrCtx7Qp)Xc%Iw)PYld zfNE%^RrPY(BthV!GuF|$#9RPSx&`eOk_D8re|!{Zf$4y`0CnOVYb)@>*p8b)69ghs z{2ZnOQD4VqW6TWYg}#d3CJY)b03|45!XFa_jC0f1)#7vaZn)`L#~Ve>m^^;`moreLvsqm5!BdnRN6ZU{>@eXEFf**pqb*h$J-k z#U%e{7APp}hAQr6!Y~r1J|Ad5_+?+K^I?c~Mk|4KwdJm#;lQIC?)T}~Fj{?cpm~3E z#|Q^D$99wiN%P&<*j4vvi-oH_2<<-Z%}n3~SbjhYqY{EbL#=xDJwPwSVnuc1k=oDU zojmyx2%{oAc|8u$_%1|bop1uw$O>I~Gm_w}aScr?Jx$LrGJvL~7>Fa2MKyUnNZVp? zO}D|LN9ruSZJ1^Y>!aBP-?V-1?X2jvFEqF+1~q+hm~(0kK#}}_$Sp>GH zf6(}$g?4P8A^>FAJU?I$m<}%=GzHYPu3Wht9xIdHj!kU#AsHdjWi;wIFF#*pg>iPA z1We!3{kB;ZlVwNR>`j^2cwhX`^at{?ZCmNA0}18j8V%O1RY#v|9pThira;NG1Q*~H zvZW3?IQ$AN|AeViuOLUIL8N>(3+u&dM^gBuOAByhL;hBx+p$Xfz>#Qk<9U16SRfo( z0P|GD3RcdL-gHw-WZAMwfF4pD7ss!J9p=*I%MMrPtT_7p$Aa`#@wz_9X~8ig1c^?v z703Z+KP9KQeR;juboNVFE)7VgGFG4mJ zo}dmv|9q4eZ{TKwkNRN63q`JN4kc?)M;)h^_*>)6X%2cT#COfJpG#9M6+@ZtHs8xH zE>wSjVRrJWD(v8DT&tjO8II=QX&|0f^0LVhhwAHK=QM9Q1+jt3yEK3X(bEqc`KUpa zd1|Ua|NZY;*FU@4nEiHT8ft1u`{p(?jV|9bKu%RPnyy*hp!@`v4=rGr{JI5|pC_cF zj&j2E);OV=ELN>9%2}L5{z#N@_QEr*Yw|9#O*e|#@wpX(LeZLRw*SFp1^>N+{_|t} zhbH^~;=eN6d7KiP9lQ&+e>5|dH8pL;*l0%isd|D2=Bu1CX;LoE3hTCMSWP^19o9x* z<>FkO0o`6u`O0`*tFLa5+^0_T@%Fa%C46LVrSQ<#agQF={|NENED8t$Y@^VI7FLh^ zdQ5?kGeN+X#~yFIsRYXfvOR5bWAO9f-+vB@kYt4z!I{$<78cg!rTFvdGi{(J;smkS zn;;AMG|V24;}DiZPuyXwE^~ES?sH-MyI5ooEx50s{46x$GX8j9>vI520>^xVA_)v7 z1`7EFmt0?4!HeqpkC!}zve?6$?-D?2)906#96L|Hb%uV+b6~L3ed_J)cilTNniZo2 zELQW=W57;*f`wN26!pF-0($yS4?`0{vB_akSg(dAKxZl^(Bq9BkYO&Xo!KOGJn!Ym zJ4)h9wEiNt^(vEMFop6WPOIHcIzr!JlB1iy97}&U01e6#=#-3^!H+;M5*i_JNJL(q z)A&|v(Q0_z(d*?lnoe_AI`N>K${3dZPJ}?9u-Z>3mGuhDT$*Y>KPf&wGijUoIEZgw zr#r-E<$iwfd#t$i>aYb3`j|dIV$GhO9^Hf}=f$&2ccmMatSh?a9p__)ODRWGJAos3 z8&=>Hy7H|En)^O=k7(q})Bk`%tw}0#_)`n;&!CmyYm^7*{6^v5Ko6X~l+Bv~worqK z?MNF@=!(Wr>tN^8LQL^P&59EsGf-BgDfd(-9w-$8ZREV!rwvY7dq{F5KWMP%0U|BTW5?put5Em&yrx(@&>s^^1{h_ za2g9TXO8?O-ZoTnk5GGn(Y5Q;nycyNww}~Hz=)yU&IP?9dI~ax!EVwu#7DYm~{uR?p}zl zuPPj02`}PFNWiG(1jt3v`w;C+ZdL59+(C17G2=y?UzVjW46L!WlKl&C5wLy_9T$st z_w?jpwY3YX#-e4XtZgT#AbuyF&<}k@Oetzk%E6FlTR4+~2pU*YN;@4tuAk`&{u=3f zX6R}WGqDLl5tJ7G8&ua&Imw_k!$XG?uocTIbx>;SxGjgmC1wj zei|(?!$I=8r=Pc+G@NQc8|&mJdnJSB00CzP$-Wq+V430cbZQP92^0qNOSkozc3m}~ zqp6qG_FYaL2VoXkj3|5XOtjXKgb&#RMCM}{^ZolntQW0bJrlJu%HwG)&vB+_{stVO z&{^ZROnV#!MY7GcMNdIGsPOg4nDG#Wr5eHSYvj_Ug1QZ`eNppw*G+rl*~6L`CrjKO z4o9>e5A|{Y!l39R-AvJwlClHenOM$Ebna=bpc0B-EJ2R0hT z1>$uWt%GYA_r$&wD8+ssuxXR{MO`B6G*&ffFcH6Ya3@Xdpx9F+R+H}qz5H0pDTF#T zHlZT;8^1-&wh!K zmA6oHVK6MGZjYU|;maCii|N=r(l<#-Vv z7)XUSDrS-_Jv4|Xg29XJ+Bh@=0;b7y-P-GjlLD9ycm( zXB)BVVBlY|iyf-JN|i|uv6-y8rEk5)pKyOsU%3UlM; zv^=A`I_GgQk;vUz93tek=!Vlqrf^ZX%U&%bL&IfopQ4t(1zotYt){R+n~QXQND+vm zJ$u3^2#$PnhmRc#hGgJ_e=ibi%(2QY!iIsv)G;nrYw;~a!S64~GY>CZk+jy=E5;L| zPzmOz%*!9g@X}&-*7e9d2E5>V=h9?^y^x_Fd*AN#qeT{3v~Dt|PM9!?8IdQDG8V1j zTM73clPDoqIQ>X}&q0(A-1}x0b_Peb9)*a-EynXDhKkU*VYk9U3n~F%XL#j~t;I1nBTqUa5l`!g9}lO#FGw>Ob#>&ud(SQQG_q4%Qk{`~NS^cI;=H`u$OufwT` zu_88yave#^{{5?IRR8Zf2;mvp17JvFJjosGF+Al{`4WsLLJ{ECiuk?}{lYB1KlKY1 z__JdzQua#o-$r27H{)UVA=wv( zAd4T_yysB`nZmS$+a*WU3&BBi>%O7>BF@AKamPgI0iUD@+&OdRIKk2K0137kA?aPn zka-5_u@)dS^p+IZi5g5rrFQvQ?&hfSH?ZX@q4EW4I+7v}I~|rQ6xx0p8gOdiVSS6l zs%H>0VHUVI_$~e^#jhSCzWgwFJ&F`XbGXLw3rs7bJ;hOxkzi-6y3fanqg03lo(VG2 zqN1P7B~a`Y?Sq0rj%Etb*TGW^sSV+aUvb^vW1FORbz2kg_{BQo123+kc0CCoChefJ zxK!F8w2W`y(s>F5(-%I5uH<7hAmEeq?G$ zg~kT{88eRb$!}(-nig|To{Q;7?(+7gBf$+b5quC>;nw;D#KIQj)w<#R2WTM}lM!h|Z(FMo&S4fyYH0v+CRl->EVpQATy7ft;z)W7qA8GT z^c;r`i28DokJWi5E7VJ#(UhquSG@I!Q2%pfwzm1TlQX}JH6K2j z+zVgv`10y+J7cT%mPKrUL8SlzPjRe}Jv()DMBtb~%y$7Us{HN&8?uhUfJOB&x{+1R z&|jSdF9vsW)x>g^_Nr8SzNsvh{&m%;r!cZ6+Hhnr%%QsRt==W?KTPmWy;ZyDm1s@| zG*2Sy)@5m&ThFSUN*aTt^LTMG)nE~;?Av!cD>v~fG9U@;LAz=b@}r;;=n<-Y)Z!?lzxWq7ueRAw9#7=hzd;~AY%`k5F z<5!LIrfCaMtCy}$+XK|k?See$l3BcDUL|bnW z)8zP0Sb!O)ICPUsN20;#6-Ihe=sd_|(IKenbs7CQ2p=J3fwDd2pAzq6+}2v$E;w2{ z`ga5De*}&Qu@Ur$j$Q=V^eILzPC!Mn0R;0zN4L-P0{Ws zFOu7k8a02#3SMmEWam(xy6!Z55Bybz|J-K2!3x1vAj~kRgU)&rM}erz-f{WS+ z_^R?ib(aGIC$NM{=nV}JlupFd6a-t{Re3Ka+Gd6-V*`NBT<}cz4$q)i^F%` zbGwwccUErOQ5-txc&}<^4BkPzAO+K?LjUI|vI~^k<8(!=IfALi5Me1O`Y;P}*S)AU zNqUW~W_ja((<=xF2y}f?9G-*AO|EIgsg6gVlZmp3Tws*Pv1?a!LK6bO$;*g2Z%Qz- z=bM4^Mv2iZLb`_cC&vjrq4tVWEx5d1a*x3o+(eo^0Q6Ol>mlN#0t*@QV0h>_5!htm z40dci{HNCCZ{_8{SwMLtxpXQFCTh3Ip7>P713W+z<)Xo~JpQuUZ3#y>?92kzo%NY5 zu@^^*s?9<%v3Jl;D=RB|=J%cSj`J*9ALvP{n`JSOjQEE|-F&%~eF5djI3Xtn3#+8s z2NWO#quywhK%-roo71`3cH2Fh+kb0MpDM=_$H7P*mpFZY`G{tb0y~g+)83fHQDe;r zyp8AAUL@UgE{R-RU9++?F(T^V!GoWxVrN4}Mq+c?V-R3re1McKvTV4YN+FOsi_kRa zNXVNH1&wD17%Ee=?|f?xA?{XzaFwlaKMdp1A}xt$di=Skb%?2_OnVwUjKdmn36p?p zc>qPwH9mkT4E<(@1|D3M$o{_3_{*nH(GtdBMWMi=Bc3``!Ge2 zpeW=EzUBjmlyBWmvzrP-1Y|sTsx5pRj8C*I#PRnA?p%agYR1;tX(*42?Ha``@;!b-RuXlwbc=`|49m7^(qc<@4)SVS1__ zq#VEy@-1p1WLeHMV^3Etrs=T^>Az(S?o?Th^}wNjRd6a(^!)is=XIj#%WARBH!J1k z`8~#VLZgKmo!(DT=q{X(MkNpZ*jGF_8`&XQAt4tpo+6nK3f7xmLK_iD0c{tJNKAl0 z*^|=kv4NgdyL}2x2C2{^+=qu|oqKu_Blu`oEsbWz>Fk9K6S;1bO)LT#GnV_T@OiiI zwzgVketRk3|6b1J`yq<2Bcm3Yp7`_*=+L~qHEbJcOg5tg5a?buY?=T_Z|W?CJMUgj ztF@ZpK%(@gBhG8KiQk5k8Xo-uEWAY92D#+ws<8QKQwPesxZJZC_uD7MN^!^0IM@5j zIK8_%tzIXnL!tQ#0Rgfx0?;|r7r}vqto)1GhO|bUgr`p*&7jDCbp^U#AuOohjEA~s z&xQL$@#rT=W)OoHmu+Nd_TU!8T4NYQu}^;9P+vbyP|y!eW$aW9t=Ou5(`j-Tg0w+P zYZ`#gxDX|pdi7URIz_PIwe#)mwXF{1>WADY3i}AsF=OuDmC{d$AABA1?eV(n(ZO1K z_V~d`R*%EsH9`alAa8}#{c~H0!7x`&0oQ(T41x3}ka^$>2x-ps|StFCPrvrgVfApNaxobkQ zvH#TEu~|BEB1KlC8juEH_yA%N@9{uyDBR@rg0s~?Cp}f8HXttM-o1Oi!EI+NR}-k@TiSLioFRMU7q5)R{`-=LN9ly zZ`ROI*|SFw3v!C>t1r+)5;)Z7w4LAf(gfa?b8Yc|BX8-*=2kE5`!-oR^#;Q^UO3m2|SylgAy|mwZQnPDe3q;$J zi*6~hZ`B0fom>UPOHHFe{ic?;YE&R-z(QoxG-LZJxo>P_v;w{G6=Vo_L)!tod&}0X zz6jXcX1qvNw#Gu>|3f$0&SwxSzQgXkH@Na5q*&d8S^|Orm8kN~aQq_lg0Ct*Cg#GW zOEV`-o;(w0D``f6gM*^45%z+tq@^uf&Or@*2|Hd_9sV%tt0J;+IFi~O7!2oFMw z3kx@|MbcMQnlOts4_$(kbAMr~=C1>Y>i{t4gIz-3Sl7V7^5}{)US6`CXZXTfHCNSz zxLFtfSiZOMI6tO>!#?r~57a%gBoOgYHf@mVPnJ#_9Fa;?XKmHU=tl@ZF%skQI2=RN z#0!@$ect>d27Tt=^aI~Ip4^o^*FMj1-d@k+uQ5eWHcz$hfxt>*XnG;TuvzJM>ozQc zlcCQR+$(d1lhW&gyTP~GVj8C6mE7o0oF5YtqlEpQrpW*caeTz(ATEq1*t|w=E7XSj zx%~jk0DNDCM&;MY`H}mrKS&Cpk6Z&v7exkzIrj?`AcFS)zwXna(|f*XYqM^GksrFR z)+VS^X_ydzfHX6m)CwpF2pnuQ)zeW@@))`{OE7UTRS!X|S;``jGNf!bSNZ$?(_#Bu zZEWsHP=joT`9HX*8FvLH%3JH@1P{&@_NeM!~;qt z1S!-V7guiagVY*cLeegT73q@bK8*eQoq3u7`@W{x|I-uDefT#vgx&3e3{VauoQ5y} zPks(Alwm+I0P{v)w63q-EcrDk{$n#mMY+7EyuFvV0n0suq7E=G6v>7211PRY#v9bT zwe>PD1dOkZfLu%jGG$FoarcsK5XAtBUzSb17m%@L%G#t{iLEvVS8A^i-XHO`u)ctGHB!B=a? zMsLRz+XIphUOvtmY%hQOght}=`#p=6SoPRY5*nxpOR_|}rINP(itA8kW}`)H@Q z7Td$)=LFhxAroDD(W_uK)I4%4=$rogWk=U9uxihvL!*d;ho1uAU4+)+o&DsNB$D&9ZTZ8I{IxKpgLj^NaGE z1Z1q0@M$pL570Splmn^k$q)iL90n6Fcp0u3fV0>H{RWMBn%uhnpR@zO5F<5TR8-8s z;o0(#lN0700oe=)A};T3m5!E2DYxJTBK8@hvMG{8KpY&ECq5)ZVP8>Iy`Hy`V~Ct{ z)c_$sn09^xoc*rjzo`T84(^!5h~asdBHHw zY8oe+w46SO`LF*~OAysVPs$g zUcWvWT4@5~phHBxsya}m?{BD%#u4KePoc1x)t24!N*#smQ!F(}%sS9bX$mPl``9&R z2eJd<)a_}lnnW;9b-V!DpbO#QP5ooa{6F7t$%Jauvm2P^ClTA`ZARjXJ)Xa!e+EG8wjiQQuiMIc#ArfXYw$Mc2i)gku`PmY z6A?J3mHt@)oPQzqoBo%?{zo^N7cIH}EgIp1e!*K!s2}oSK-}ALjU4)Da>0h~eb^3A zV-{miG~zz6v%fO-!-IWrt6QdwR>Cg*!haljQ?6wRu~N3kB(%>+F$0W(l3$_mM4LF0 zB62w#0c>UkFm?eC^~SyNDg9Wk$`kf_iXVe&QiIJR~`OM435 z{sYjmU#I3qK|G#V(Y=x~93cevk7hs~$KOM^H%Z-bP9o!|H9;=)RduPVRlg)QE97oJ zp%Vn6wqH;cQ+c|6uxE$&=GftHWkLizLwF4UV>vMX1J&v2-#&3o73CTm8wvefFBZx5 zp@$$9Bow2xd-wGXkD=&-dKyM8vtIWo7T|@(-c_ z7(vV>{>6Y%8{;1k5RiTUZm(TJ#U&pf_2fZicE>nur^oJrOhsD>+FdOA)1O%bhSL5Y z-9E!_#LGMaZN4+D>Bj1;jUBD66B)7Sw&ueFHg^P>n1lpbt1R3u#LQD-5q^>xTB@q< z8e^4#TY&1~^GzcRpj*e#q>TL?LGjY7SBv0lK!E)Hb5y`qv3^DpqFYAtM?o>joKXx` zf!#3y?xWhP-Y;@NLx%zO`$tq_@xMbQTARLUT)uK8bS`hCx~@Y}Y)WdAcGsg(*r^!? zicW4iAaBanBO4?h3jXC*#RsBN;CP}l5%Mw8iFzqZyW(dr+f!|pV6p@Dbj&1?d2})Z z>WmR0D9cvSUud0W<=Oko<@$%y96L8?>)OqIk|SY%Sl?u)j;(2=hOWi3o9`FSnJ!lL z)P4bLN9e0WpFNj+w^zpLtQ5Rsu6q4~WyteM7VpQFJl{O5RWn-W;pBr6-J=)3In*`! zyh4s*h^zbk46%%)j0bLts|IN9&bLF2p6kE8to`IC?FV#&_yw&Kp3ODr`NR8>r}lvbk4tV(mYs=jY`; zX=-X}=Dok_bMFZP`%$gPxUN@FsDC#ml4%>3iKDP+3fP0}{x_o1%E~;zgCONu02B+r zm$O9;-OvgsY0vzL(o3eqaZ$DJFia`$C^r+LhS88zCYxj(j8+AY)hyi zSb-!-=)UujKZJM&sPKwUjv3d!emLx?PD=^ks=Hlti~-xv_Izqmoeft6i&Yfr0gW$#NoX21>XdsjQBk{-%6e!bk6@$wD+3FG6Lo6M6tg-85Xv!_?1Qr zL4p#N+PxVA7Ez#w8SU-X4RdXIg0a5$^L=}l zO(39aL^*;Hl?MxMxd=s^xfrO&^O2M!iEh+0axnq}&n4%!_B^sps{!E)AYu~YN?-Ec z&i#dl=N*Jt=$kq(zUPoWB{OPUW&We4$CFqMR-gvK3$(UNrq8`Ez+ySbWd32&kED-> zKac>y-7PJl@X zD#v_~pmjnl*2#|__a~Ru*KO0D36Sc=gmO*+b&ilsPW$qOd-rDfjV_c1g-ds_SDeBL zKbv^Tx$90qfdo$2dpu2jg4~c?kC4ssL27~Ih;t|e*MR=!LLAD6Wc;%b*?<4><0ins zX)HXW_d26*-MZ@f@^z_+Bz7TT(Nn0qHhDF@1^3tm`zVsCr(hvCwth#sOl#&VgmlN8 z=CYghz{sS>kR%t@PHJ&TvV$Qz<6vN3_HcJ7Mue+}rh76codXt51o@pyY^5&M0ZRM$RUn z7iDd|j_m_5NY2Ay2(4lPO4aiFU7RDXHnp8fpXv(yC6QakP(1OQ=FQ%P`!}+ArH*%- zUsE`qR1&Uuq9=yA04-EwYAHCgu^!9?c+pv`yK!-sAXhhrWX2qy@Kt5y0t|Bt#c`mH z|N8;Wh?p4&a_z8B)R$o4*Jd~-&{4DA<H%pGHO#M;9=o z(3Gb8Ie|tAv*UG_LDIavCJiH!gy6mH>gl4W`qY4hjv4NDTpYoZ zm>=K`#Iud{^cKs7X%0TVb4L|L$5;;+aa@MvCX`)Tvv&!9{gP3U+@!!l%*!_5KaJwRsCLo2jer@t94a_+jdKmX! z-DjT3 zSK0{X?cu;GoE6A1;DOoE7kJ(7tP@px6%7;YoVm^iu&$fGd~xISibcK*z&S7pga^Zz zRK{o{dtXUieG;6)W!2R@VVVcHB9V9@hJo^9TXN!2xv-*Av~i3_YN||%IDCwhM-0Xj zpOJ=+BBoqZ;}Nm7f+c*k*u{f|Agg8=v{)QzRQMK%lTu?e=4)re z3%uqNsB$3p_wv?r@e`Dgw%%* zBf#G9`|%*u+R_=k4kUsHUZsH`gl{}`O*TZKTkO{(6E)5_r}5S{JP-Ys^r8qG1Z;OA zt8qbMQo+xcGDy*59<&r<-q%!ei$Q6;k-08ym!&Yi!)UtjfJh?zEfwig~2P<6B5vDt{E9niK1?E41y z6CQ^%kYalHCiB3OEdu`RR)A)7E=JCoNb=GANvMEL!GA(T!rs6C&Xy+s8;StsfvQly z8L#eCgCYiY79R*CL)Qx~TLxV+q4 zWju_)chr&OtKS4e)HR6cDBuG-Anb0GtcAz_UR&b7b}Y%~SDnZ*0uMmB8q<+Zit~|V zwU}-~hUvZ^pqH;3`9T$mpfb`hp&Z`9!9M(gTj##>5!BEA`RCakkF!(T9a(MM!=QB` z0@;jw(v0c_ii%Cvw(r}jFW&U$Lp;ioC0po?AnfP}iCXu>QemW<&|9-cjV<`n>EV9# ze474w4wxhcyFl%`AAK(^;WdkikMFSGX()GMSO%a5qK3$A1W>kap4l-mJf0|Co%t{=+-